
ON A BIFURCATION VALUE RELATED

TO QUASI-LINEAR SCHRÖDINGER EQUATIONS
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Abstract. By virtue of numerical arguments we study a bifurcation phenomenon occurring for
a class of minimization problems associated with the so called quasi-linear Schrödinger equation,
object of various investigations in the last two decades.

1. Introduction

Various physical situations are described by quasi-linear equations of the form

(1.1)

{

iφt + ∆φ + φ∆|φ|2 + |φ|p−1φ = 0 in (0,∞) × R
3,

φ(0, x) = φ0(x) in R
3,

where 1 < p < 11, i stands for the imaginary unit and the unknown φ : (0,∞) × R
3 → C is

a complex valued function. For example, it is used in plasma physics and fluid mechanics, in
the theory of Heisenberg ferromagnets and magnons and in condensed matter theory, see e.g.
the bibliography of [6]. Motivated by the classical stability results of the semi-linear Schrödinger
equation

(1.2)

{

iφt + ∆φ + |φ|p−1φ = 0 in (0,∞) × R
3,

φ(0, x) = φ0(x) in R
3,

namely the stability of ground states (least energy solutions of −∆u + ωu = |u|p−1u, ω > 0) for
1 < p < 7

3 and their instability for p ≥ 7
3 (see [2,5]), an interesting and physically relevant question

for equation (1.1) is the orbital stability of ground state solutions of

(1.3) − ∆u − u∆u2 + ωu = |u|p−1u in R
3.

When 1 < p < 13
3 , it is conjectured in [6] that the ground states are orbitally stable. However,

in [6] this result was not proved. Instead, it was considered the stability issue for the minimizers
of the problem

(1.4) M (c) = inf
u∈X

‖u‖2
L2(R3)

=c

E (u),

where the energy functional E is defined on X =
{

u ∈ H1(R3) : u|Du| ∈ L2(R3)
}

by

(1.5) E (u) =
1

2

∫

R3

(1 + 2u2)|Du|2dx − 1

p + 1

∫

R3

|u|p+1dx, 1 < p <
13

3
.

This problem, which looks interesting by itself, can be seen as a useful tool for a first attempt
towards the understanding of orbital stability of ground states of (1.3) for fixed ω > 0. Denoting
by G(c) the set of solutions to (1.4), in [6] the authors prove that if 1 < p < 13

3 and c > 0 is
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such that M (c) < 0, then G(c) is orbitally stable (see [6] for the definition). Concerning (1.4), we
learn [6] that the following facts hold:

Proposition 1.1 (CJS, [6]). The following properties hold.

(1) Assume that 1 < p < 13
3 . Then M (c) > −∞ for every c > 0.

(2) Assume that p = 13
3 . Then M (c) > −∞ for c > 0 small and M (c) = −∞ for c > 0 large.

(3) Assume that 13
3 < p < 11. Then M (c) = −∞ for every c > 0.

(4) Assume that 1 < p < 13
3 and let c > 0 be such that M (c) < 0. Then problem (1.4) admits a

positive minimizer uc ∈ X which is radially symmetric and radially decreasing. Moreover

any solution uc ∈ X of (1.4) satisfies

(1.6) − ∆uc − uc∆u2
c + λcuc = |uc|p−1uc

for some λc > 0.

(5) Assume that 1 < p < 7
3 . Then M (c) < 0 for every c > 0.

(6) Assume that 7
3 ≤ p ≤ 13

3 . Then M (c) ≤ 0 for every c > 0.

(7) Assume that 7
3 ≤ p < 13

3 . Then there exists

c♯ = c(p) > 0

such that:

(a) If c < c♯ then M (c) = 0 and M (c) does not admit a minimizer.

(b) If c > c♯ then M (c) < 0 and M (c) admits a minimizer.

The motivation for the formulation of the following problems is mainly related to point (7) in
the statement of Proposition 1.1. Notice that the value of c♯(p) can be characterized as follows

c♯(p) = inf{c > 0 : M (c) < 0},
This could help while trying to numerically compute the value of c♯(p). The bifurcation value
c♯(p) which appears in the previous Proposition 1.1 is obtained in [6] by an indirect argument by
contradiction and thus it is not explicitly available for calculation through a given formula. Hence,
on these basis, it seems natural to formulate the following problems:

Problem 1.2. Provide some lower and upper bounds of M (c) for c > 0 and p ∈ [73 , 13
3 ).

Problem 1.3. Numerically compute or provide bounds for the map c♯ : [73 , 13
3 ) → (0, +∞).

Problem 1.4. Numerically compute the solutions to M (c) for c > c♯(p) with p ∈ [73 , 13
3 ).

For the corresponding, more classical [5], semi-linear minimization problem

Msl(c) = inf
u∈H1(R3)

‖u‖2
L2(R3)

=c

Esl(u), Esl(u) =
1

2

∫

R3

|Du|2dx − 1

p + 1

∫

R3

|u|p+1dx, 1 < p <
7

3
,

there is no bifurcation phenomena, namely c♯(p) = 0 for every 1 < p < 7
3 and Problem 1.4

was studied in [4] by arguing on a suitable associated parabolic problem in order to decrease
initial energies computed on Gaussian initial guesses. An important point both for analytical and
numerical purposes is the fact that minimizers of Msl(c) have fixed sign, are radially symmetric,
decreasing and unique, up to translations and multiplications by ±1. In principle, the uniqueness is
used in [4] to justify that the numerical algorithm really provides the solution to the minimization
problem Msl(c). To show the uniqueness of solutions to Msl(c) one can argue as follows. By
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the result of [9], for any λ > 0 there exists a unique (up to translations) positive and radially
symmetric solution r = rλ : R

3 → R of

−∆r + λr = rp in R
3,

In turn, given λ1, λ2 > 0, if r1, r2 : R
3 → R denote, respectively, positive radial solutions of

(1.7) − ∆r1 + λ1r1 = rp
1 in R

3, −∆r2 + λ2r2 = rp
2 in R

3,

there exists some point ξ ∈ R
3 such that

(1.8) r2(x + ξ) = µr1(γx), γ :=
(λ2

λ1

)
1
2
, µ :=

(λ2

λ1

)
1

p−1
.

Let now r1 and r2 be two given solutions to the minimization problem Msl(c) and let −λ1 and
−λ2 be the corresponding Lagrange multipliers. By virtue of [5, Theorem II.1, ii)], λ1, λ2 > 0 and
r1, r2 are C2 solutions of (1.7), are radially symmetric, radially decreasing and with fixed sign. In
turn, up to multiplication by ±1, r1, r2 > 0 and by (1.8) it holds

c = ‖r2‖2
L2(R3) = ‖r2(· + ξ)‖2

L2(R3) = µ2γ−3

∫

R3

r2
1(x)dx = cµ2γ−3,

yielding in turn µ2γ−3 = 1. By the definition of γ and µ in (1.8), we get λ1 = λ2 and γ = µ = 1,
yielding from (1.8) as desired r1 = r2, up to a translation.

On the contrary, it is not currently known that minimizers r ∈ X of the quasi-linear mini-
mization problem (1.4) are unique, up to translations and multiplications by ±1, although it is
conjectured that this is the case. If r ∈ X is a given minimizer for (1.4), arguing as in [6] it is
possible to prove that it has fixed sign, so that, up to multiplication by −1, we may assume r > 0.
Then, r is radially symmetric and radially decreasing, see for instance the main result of [12].
Given r1 and r2 two solutions to the minimization problem M (c) we have that −λ1 and −λ2 are
the corresponding Lagrange multipliers and λ1, λ2 > 0 in light of [6, Lemma 4.6]

(1.9) − ∆ri − ri∆r2
i + λiri = rp

i in R
3, i = 1, 2.

With respect to the semi-linear case, the main problem is the identification of Lagrange multipliers,
which cannot be inferred as in the semi-linear case. In fact, let us consider as above the rescaling
for r1 by

w(x) = µr1(γx), γ :=
(λ2

λ1

)
1
2
, µ :=

(λ2

λ1

)
1

p−1
.

Then this yields ‖w‖2
L2(R3) = (λ2/λ1)

7−3p
2(p−1) c and

−∆w − (λ1/λ2)
2

p−1 w∆w2 + λ2w = wp in R
3.

Although there are recent uniqueness results for the positive radial solutions to (1.9), due to the

presence of the residual coefficient (λ1/λ2)
2/(p−1), we cannot infer as before that w(·) = r2(· + ξ)

for some point ξ ∈ R
3. In the course of the next section, we shall compute the ground state

under a conjectured property (indeed true in the semi-linear case discussed above) stated in the
following

Conjecture 1.5. Assume that r1, r2 > 0 are radial decreasing solutions to (1.9) with λ1, λ2 > 0,
E(ri) < 0 and ‖ri‖2

L2(R3) = c for i = 1, 2. Then λ1 = λ2 and r2 = r1(· + ξ), for some ξ ∈ R
3.

Consequently, given c > 0, assume that there exist r : R
3 → R and λ > 0 such that

r = ρ(|x|) > 0, ρ′ ≤ 0, ‖r‖2
L2(R3) = c, E(r) < 0, −∆r − r∆r2 + λr = rp in R

3.
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We know that this happens to be the case under the assumption that M (c) < 0. Then r is the
unique solution to problem M (c), up to translations and multiplication by ±1.

In figure 1, we compared the shape of the solutions to

(1.10) Mϑ(70) := inf
u∈X

‖u‖2
L2(R3)

=70

Eϑ(u), Eϑ(u) :=
1

2

∫

R3

(1 + 2ϑu2)|Du|2dx − 1

3

∫

R3

|u|3dx.

with ϑ = 1 (quasi-linear case) and ϑ = 0 (semi-linear case). Roughly speaking, the term −u∆u2

produces an additional diffusive contribution which tends to squeeze the bump down against source
effects.

00.20.40.60.81
1.21.4

-20 -15 -10 -5 0 5 10 15 20

semi-linearquasi-linear

Figure 1: Comparison between the solution (a section of the absolute value squared) of (1.10) with ϑ = 0
(semi-linear case) and with ϑ = 1 (quasi-linear case). The additional diffusive term present in the quasi-
linear case tends to produce squeezing effects.

2. Results

Concerning Problem 1.2, we have the following (see also Fig. 2)

Proposition 2.1. The following properties hold.

(1) For every 7
3 ≤ p < 13

3 there holds

∀c > 0 : M (c) ≤ inf
σ>0

(

σ2 3c

4
+ σ5 3c2

8
√

2π3/2
− σ

3(p−1)
2

2
√

2c
p+1
2 π

3
2
− 3(p+1)

4

(p + 1)
5
2

)

.

(2) For every 7
3 ≤ p < 13

3 , if

Kp := 4
3p−3
10 S

3p−3
5

sob , Ssob =
21/3

√
3π

1

Γ1/3(3/2)
,
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being Ssob the best Sobolev constant for the embedding of H1(R3) into Lq(R3), there holds

∀c > 0 : M (c) ≥ − 13 − 3p

3(p − 1)

( 10(p + 1)

3(p − 1)Kp

)
10

3p−13
c

11−p
13−3p .

(3) For p = 7
3 , setting A := 2

√
235/2

105/2π
, B := 32/3

27/3π
and c♯ := ( 105/2π

27/233/2 )3/2, there holds

∀c > 0 : M (c)|p= 7
3
≤

{

0 if c ≤ c♯,

−
[(

2
5

)2/3 −
(

2
5

)5/3] [Ac5/3−3c/4]5/3

Bc4/3 if c ≥ c♯.

In particular, M (c)|p= 7
3

> −Mc13/9, for every c > 0 large and some M > 0.

(4) If p = 13
3 , setting

c♭ := (16/3K 13
3
)3/2 ≈ 19.73, K 13

3
:= 4S2

sob,

we have M (c) = 0 for every c ≤ c♭ and the infimum M (c) is not attained.

(5) If p = 13
3 , setting

c♭ :=
33/2(16/3)15/4π3/2

323/2
≈ 85.09,

we have M (c) = −∞ for every c > c♭.

Proof. Properties (1), (3) and (5) easily follow by the arguments in Section 3 and direct com-
putations. Properties (2) and (4) need bounds from below and can be justified as follows. The
best Sobolev constant Ssob is computed through the formula contained in [13]. Concerning (4),
by Hölder and Sobolev inequalities, for u ∈ X we have

(2.1)

∫

R3

|u|16/3dx ≤
(

∫

R3

|u|2dx
)2/3(

∫

R3

|u|12dx
)1/3

≤ K 13
3
c2/3

(

∫

R3

|u|2|Du|2dx
)

,

where we have used the fact that (2∗ = 6 is the critical Sobolev exponent in R
3)

∫

R3

|u|12dx =

∫

R3

(u2)2
∗

dx,

∫

R3

|D(u2)|2dx = 4

∫

R3

|u|2|Du|2dx.

From inequality (2.1) we infer

E(u) ≥
∫

R3

|u|2|Du|2dx −
3K 13

3

16
c2/3

∫

R3

|u|2|Du|2dx,

which yields E(u) ≥ 0 for every u ∈ X and any c ≤ c♭ and hence, in turn, the desired conclusion.
In a similar fashion, concerning (2), if p < 13/3, using Hölder and Sobolev inequalities for any
u ∈ X we have

∫

R3

|u|p+1dx ≤ Kpc
11−p
10

(

∫

R3

|u|2|∇u|2dx
)

3p−3
10

,(2.2)

yielding immediately that

E(u) ≥
∫

R3

|u|2|∇u|2dx − Kp

p + 1
c

11−p
10

(

∫

R3

|u|2|∇u|2dx
)

3p−3
10

.

Since p < 3/13 it follows that 3p−3
10 < 1. In turn, the function ω : [0, +∞) → R

ω(s) = s − Kp

p + 1
c

11−p
10 s

3p−3
10 , s ≥ 0,

always admits a (negative) absolute minimum point at a point tp,c > 0 which can be easily
computed, yielding the desired assertion by the arbitrariness of u ∈ X. ¤
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Figure 2: Upper and lower bounds of M (c) according to the estimates obtained Proposition 2.1 in the
particular cases p = 7/3 (sharp bounds) and p = 10/3 (less sharp bounds).

Concerning Problem 1.3 we shall provide an upper bounding profile for the values of c♯(p) and give
indications showing that very likely c♯(p) remains in a small lower neighborhood of this profile.
As p increases from 7/3 up to a certain value p0 ∼ 3.3 the bounding profile is increasing, reaching
values around c = 250. Then, after p0 it decreases.

Concerning Problem 1.4, under the conjectured uniqueness result we compute the ground state
solutions for some values of c greater than the upper bounding profile for the values of c♯(p).
In the case c < c♯(p), roughly speaking, if (un) ⊂ X is an arbitrary minimizing sequence for
problem M (c), since we know that M (c) is not attained, (un) cannot be strongly convergent,
up to a subsequence, in L2(R3) and in turn in H1(R3). Then, by virtue of Lions’s compactness-
concentration principle, only vanishing or dichotomy might occur, in the language of [10, 11]. On
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the other hand, it was proved in [6, Theorem 1.11] that dichotomy can always be ruled out. In
conclusion, the only possibility remaining for a minimizing sequence is vanishing, precisely:

for every R > 0: lim
n→∞

sup
y∈R3

∫

B(y,R)
u2

ndx = 0,

where B(y, R) denotes the ball in R
3 of center y and radius R. In particular, fixed any bounded

domain C in R
3, imagined for instance as the computational domain, the sequence (un) cannot

be essentially supported into C, being for R0 = diam(C)
∫

R3\C
u2

ndx ≥ c − sup
y∈C

∫

B(y,R0)
u2

ndx ≥ c − sup
y∈R3

∫

B(y,R0)
u2

ndx ≥ c/2,

for n sufficiently large. This means that (un) (in particular any numerically approximating M (c))
tends to spread out of any fixed (computational) domain C. For instance, the sequence (gc,σj )

with σj → 0 as j → ∞, where gc,σ is defined in Section 3 is such that ‖gc,σj‖2
L2(R3) = c and

E(gc,σj ) → 0 as j → ∞ and hence, for c < c♯(p), being M (c) = 0, it is a minimization sequence.
It vanishes, since

sup
y∈R3

∫

BR(y)
g2
c,σj

dx ≤ CR3σ3
j ,

for all R > 0 and j ≥ 1.

3. Numerical approximation

Instead of a direct minimization of the energy functional (1.5) (see, for instance, [3]), as seen
in [1, 4], it is also possible to find a solution of (1.6) by solving the parabolic problem

(3.1)

{

∂tu = ∆u + u∆u2 + |u|p−1u − λ(u)u

u(0) = u0, ‖u0‖2
L2(R3) = c

up to the steady-state uc, where λ(u) is defined by

λ(u) = −
∫

R3(1 + 4u2)|Du|2 −
∫

R3 |u|p+1

∫

R3 u2

This approach in known as continuous normalized gradient flow. It is easy to show that the energy
associated to the solution u(t) decreases in time, whereas the L2-norm is constant.

In order to find a “good” initial solution u0, that is a function with a negative energy, we can
consider the family of Gaussian radial functions

gc,σ(r) =

√
cσ3

4
√

π3
e−σ2r2/2, ‖gc,σ‖2

L2(R3) = c, σ > 0

and minimize the energy E (gc,σ), which, for a given p and c, can be computed analytically as

(3.2) E (gc,σ) = σ2 3c

4
+ σ5 3c2

8
√

2π3/2
− σ

3(p−1)
2

2
√

2c
p+1
2 π

3
2
− 3(p+1)

4

(p + 1)
5
2

with respect to the parameter σ. If the infimum value for the energy is zero, we increase the value
of c and look again for the infimum energy. We proceed with increasing values of c until we find
a cg such that the minimum energy with respect to σ, corresponding to a value σ̄, is negative.
This is possible, since we consider a discrete sequence of increasing values for c in order to test
the negativity of the energy. Such a cg is clearly an upper bound for the desired value c♯. For the
range p = 7/3, 8/3, 9/3, 10/3, 11/3, 12/3 we obtain the values reported in Figure 3 (right).
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Figure 3: Values of the infimum (Gaussian) energy with respect to c (top) and values of cg (bottom): from
p = 7/3 to p = 12/3 they are 69.510, 150.65, 212.91, 241.01, 225.42, 170.33, respectively.

Now, we are ready to look for values c < cg, for which the steady-state of (3.1) has a negative
energy. To this purpose, we choose u0 = gc,σ, where σ = σ̄ · c/cg. The meaning of this choice is
the following: since c < cg, the infimum value of the energy attained by a Gaussian function is
zero and corresponds to the limit case σ → 0. We instead select 0 < σ < σ̄ with the idea that gc,σ

is a good initial value, because close to gcg,σ̄, that is the optimal element in the Gaussian family.
With this choice, clearly we have E (u0) > 0.

In order to fix once and for all the computational domain in such a way that it does not depend
on σ, we scale the space variables by σ and the unknown u in order to have unitary L2 norm, that
is √

cσ3vc(t, σ·) = u(t, ·)
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We end up with

(3.3)











∂tvc = σ2∆vc + cσ5vc∆v2
c + (cσ3)

p−1
2 |vc|p−1vc + η(vc)vc

vc(0) =
1

4
√

π3
e−r2/2

where

η(vc) =

∫

R3 σ2(1 + 4cσ3v2
c )|Dvc|2 − (cσ3)

p−1
2

∫

R3 |vc|p+1

∫

R3 v2
c

The corresponding energy is

E (u) = E(vc) =
1

2

∫

R3

cσ2(1 + 2cσ3v2
c )|Dvc|2 −

c(cσ3)
p−1
2

p + 1

∫

R3

|vc|p+1.

We solve equation (3.3) up to a final time T for which

‖σ̄2∆vc + cσ̄5vc∆v2
c + (cσ̄3)

p−1
2 |vc|p−1vc + η(vc)vc‖L2(R3) < tol

where tol is a prescribed tolerance to detect the approximated steady-state. As already done
in [4], we apply the exponential Runge–Kutta method of order two (see [8]) to the spectral Fourier
decomposition in space of (3.3). The embedded exponential Euler method gives the possibility
to derive a variable stepsize integrator, which is particularly useful when approaching the steady-
state solution, allowing the time steps to become larger and larger. For our numerical experiments,
we used the computational domain [−5, 5]3, the regular grid of 643 points, a tolerance for the local
error (in the L2 norm) equal to 10−8 and the steady-state detection tolerance tol = 10−7.

The solution vc(T ) is then considered an approximated steady-state solution. If its energy is
negative and it is radially symmetric and decreasing, then we conclude it is a minimum for M (c).
Therefore, c ≥ c♯ is the current upper bound for c♯ (blue circle in Figure 4).

On the other hand, if c < c♯, then M (c) = 0 and the infimum is approximated by flatter
and flatter functions. This is perfectly clear in the case one restricts the search among Gaussian
functions, for which E (gc,σ) → 0 for σ → 0. This situation can be recognized in the numerical
experiments because the essential support of vc(t) during time evolution tends to grow and to
spread out the computational domain (green plus in Figure 4), which was chosen in such a way
to comfortably contain the essential support of the initial solution vc(0). In this case, we apply a
bisection algorithm on the values c and cg (the Gaussian upper bound for c♯) in order to find a
tighter upper bound for c♯, since c < c♯ and cg ≥ c♯.

In the numerical experiments we encountered another situation: starting from an initial solution
with positive energy, it was possible to find a radially symmetric and decreasing approximated
steady-state solution, whose support was perfectly contained into the computational domain and
with a positive energy (red star in Figure 4). This solution is not a solution with minimum energy,
because for σ small enough it is possible to find a Gaussian function gc,σ with smaller energy. In
our numerical experiments, we observed this behaviour, for a given p and with the tolerances
described above, for the values of c between the first value for which the essential support of the
solution spread out the computational domain and the current upper bound for c♯. We notice
that we were not able to obtain solutions with positive energy in the limit case p = 7/3.

Overall, from the numerical experiments we found out that the higher is p the more difficult
is to find a value of c < cg for which the steady-state has a negative energy and can thus be
considered a solution of minimum energy.
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Figure 4: Values of cg (Gaussian upper bound of c♯), cm (values for which E(vcm
(T )) < 0), cp (values for

which E(vcp
(T )) > 0) and co (values for which the essential support of vco

(t) spreads out the computational
domain). For instance, for the case p = 9/3 and c = 0.9875 · cg ≈ 210.25 we found an approximated steady-
state with energy E(vc(T )) ≈ −1.30 · 10−1 (blue circle), whereas with c = 0.975 · cg ≈ 207.59, we found an
approximated steady-state with energy E(vc(T )) ≈ 6.97 · 10−2 (red star).
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