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Summary. A new method for the numerical simulation of the so-called soliton
dynamics arising in a nonlinear Schrödinger equation in the semi-classical regime
is proposed. For the time discretization a classical fourth-order splitting method
is used. For the spatial discretization, however, a meshfree method is employed in
contrast to the usual choice of (pseudo) spectral methods. This approach allows
to keep the degrees of freedom almost constant as the semi-classical parameter ε
becomes small. This behavior is confirmed by numerical experiments.
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1 Introduction

In this paper, we provide a new numerical method for the solution of the
nonlinear Schrödinger equation in the semi-classical regime (see [14]) iε∂tφε = −ε

2

2
∆φε + V (x)φε − |φε|2pφε, x ∈ Rd, t > 0

φε(0, x) = φε,0(x),
(1)

where V (x) is a smooth external potential and 0 < p < 2/d. We are in
particular interested in the so-called soliton dynamics, in which the shape of
the time-dependent solution remains close to the initial value. Moreover such
a solution has a small essential support and travels according to Newton’s
law. By a small essential support of a function we mean that the closure
of the set of points for which the magnitude of the function is greater than
some prescribed threshold value is small in comparison to the computational
∗ The work of this author was partially supported by the Tiroler Wissenschaftsfond
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domain, which can be even unbounded. A similar behavior can be observed for
solutions of other important classes of partial differential equations, such as
wave equations or transport equations. For nonlinear Schrödinger equations,
splitting methods (see, e.g. [3, 4, 6, 10, 17]) have shown to be quite efficient
and accurate, also in the conservation of the geometric properties, such as
mass and energy.

For the problem we have in mind, the resolution of the spatial discretiza-
tion has to be high enough to give a good approximation of the solution
whose support is concentrated in a small region. This support depends on the
semi-classical parameter ε. The smaller this parameter becomes the smaller
the support of the solution gets. On the other hand, in order to keep the
degrees of freedom at a reasonable level, it is not possible to have the same
high resolution everywhere, in particular, along the trajectory of the soliton
dynamics. One should rather consider an adaptive mesh, where most of the
discretization points are contained in the moving essential support of the so-
lution. Much more flexible, however, are the so-called meshfree (or meshless)
methods, whose advantage is the possibility to easily add or delete discretiza-
tion points. Nowadays there are many ways to construct meshfree approxima-
tions, for instance, by moving least squares or radial basis functions (RBFs).
Since the essential support of the solution of problem (1) is compact, we
choose compactly supported radial basis functions, developed around 1995
(see [18, 19, 21]). The overall goal of the proposed approach is to present a
method whose degrees of freedom are independent of ε. In addition we intro-
duce a smart procedure to control the spatial accuracy during time evolution,
a feature often missing in the method of lines, even if implemented with an
adaptive mesh or a meshless approach.

The outline of the paper is as follows. In Section 2 we give more details of
our equation and state some theoretical facts that we use to solve problem (1).
In Section 3 we shortly describe the method of RBF discretization. Sections 4
and 5 deal with the numerical solution of problem (1). First, in Section 4 we
concentrate on the numerical computation of the initial value φε,0(x). In Sec-
tion 5 we explain how the time evolution is carried out. In particular, we give
an introduction to splitting methods and show how the involved semiflows can
be computed in the context of meshfree approximations. In the final Section 6
we perform some numerical experiments that demonstrate the independence
of the degrees of freedom from ε.

2 Soliton dynamics

We are concerned with the numerical solution of nonlinear Schrödinger equa-
tions in the semi-classical limit. The problem has the form (1) with 0 < p <
2/d. The initial value φε,0(x) is a bump-like function

φε,0(x) = r
(
x−x̄
ε

)
e

i
εx·v̄, x̄, v̄ ∈ Rd. (2)
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Here r(x)e−iκt is the ground state solution of i∂tφ = −1
2
∆φ− |φ|2pφ

‖φ‖2L2 = m, m > 0 given,
(3)

that is the solution of the form φ(t, x) = u(x)e−iνt minimizing the energy
functional

E(φ) = E(u) =
1
2

∫
Rd

|∇u|2dx− 1
p+ 1

∫
Rd

|u|2p+2dx.

In this setting the following assertion holds.

Proposition 1 (see [8, Thm. 1]). Let φε(t, x) be the solution of (1) with
initial value (2). Then, there exists a family of shifts θε : R+ → [0, 2π) such
that, as ε tends to zero,∥∥∥φε(t, x)− r

(
x−x(t)
ε

)
exp

(
i
ε (x · ẋ(t) + θε(t))

)∥∥∥
Hε

= O(ε),

locally uniformly in the variable t.

Here,
‖φ‖2Hε

= ε2−d ‖∇φ‖2L2 + ε−d ‖φ‖2L2 ,

and x(t) is the solution of Newton’s law
ẍ(t) = −∇V (x(t)),
x(0) = x̄,

ẋ(0) = v̄.

(4)

This dynamical behavior, where the shape of |φε(t, x)|2 remains close to
|φε,0(x)|2, is typically known as soliton dynamics. The case where the ini-
tial value is a multibump, say

φε,0(x) =
∑̀
j=1

rj

(
x−x̄j

ε

)
e

i
εx·v̄j , (5)

where rj(x) minimizes E(u) under the restriction ‖u‖2L2 = mj , is studied, e.g.,
in [12, 14].

3 Meshfree approximation

For the numerical representation of a function f : Rd → R we use the concept
of RBF interpolation. Given a set of interpolation points Ξ = {ξ1, . . . , ξn}
and a radial function
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Ψα(x) = ψ (α‖x‖) , α > 0

we construct an interpolant

p(x) =
∑
ξ∈Ξ

λξΨ
α
ξ (x), Ψαξ (x) = Ψα(x− ξ)

satisfying
p(ξi) = f(ξi), i = 1, . . . , n.

For more details on RBF interpolation, in particular for the computation of
the coefficients [λξ]ξ∈Ξ , we refer to [9, 15, 20].

In order to save memory one aims to minimize the required number of
interpolation points, under the condition |p(x) − f(x)| ≤ tol for a given tol-
erance tol > 0 and all x ∈ Rd. This can be done using a residual subsampling
approach as described in [11]. For the convenience of the reader, a summary
of this approach is given in the appendix. Moreover with the help of the shape
parameter α we can adapt the form of the basis function in such a way that
the error is minimized for a fixed set of interpolation points.

For the practical implementation of the method we take the compactly
supported RBF

ψ(r) = (1− r)6
+(35r2 + 18r + 3),

also known as Wendland’s function ϕ3,2. For more details on compactly sup-
ported RBFs we refer to [9, 15, 19, 20].

4 Approximation of the initial value

The considered initial value (2) is the product of the ground state of (3) at
time t = 0 and a phase factor. This ground state, however, does not depend
on ε. Hence we can use standard methods to compute it.

4.1 Approximation of the ground state solution

There are several approaches to compute the ground state solution of (3).
One possibility consists in directly minimizing the Euler–Lagrange function

E(u, µ) = E(u) + µ(‖u‖2L2 −m)

by a Newton-like method with approximate line-search strategy, as done, for
instance, in [13]. Alternatively, it is possible to use the continuous normalized
gradient flow (see [2, 14]), i.e. the continuous version of the propagation of
the Schrödinger equation (3) along imaginary time −it with projection to the
L2 sphere of radius

√
m. This requires the solution of the parabolic PDE
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1
2
∆u+ u2p+1 + µ(u)u, t > 0

u(0, x) = u0(x), ‖u0‖2L2 = m

(6)

with

µ(u) =
1
2

∫
Rd |∇u|2dx−

∫
Rd |u|2p+2dx

‖u‖2L2

.

It can be shown that u(t, x) has constant mass m and its energy decreases in
time. Moreover, the steady-state solution r(x) = limt→∞ u(t, x) together with
κ = µ(r(x)) gives the desired ground state solution r(x)e−iκt of (3), see [14].

In both cases, a spatial discretization of the unknown function is neces-
sary. For this, spectral methods, based on Hermite or Fourier decompositions
are quite standard. Hermite functions are to be preferred when an external
harmonic (or quasi-harmonic) potential, that is a term of the form H(x)φ
with H(x) ≈ |x|2

2 is present in (3), see, for instance, [13]. In our case of the
free-potential equation, the use of Fourier modes is suggested. In fact, the
ground state solution of (3) exponentially decays to zero and is symmetric
(see [14]). This means that the computational domain can be safely truncated
to a reasonable size, corresponding to a modest number of Fourier modes to be
used. We further note that the computational domain required at this stage
needs just to contain the essential support of the ground state solution and
not the whole trajectory of the soliton dynamics.

For our method we use the imaginary time method and approximate the
solution of the ODE arising from the discretization of (6), namely{

w′(t) = Aw(t) + g(w(t)), t > 0
w(0) = w0,

with an exponential integrator. Here w(t) denotes the vector of Fourier coeffi-
cients of u(t, x), A is the diagonal matrix of the eigenvalues of the Laplace op-
erator (divided by two) with respect to the Fourier eigenfunctions and g(w(t))
is the truncated discrete Fourier expansion of the nonlinear part of (6). Expo-
nential integrators (see the survey paper [16]) are particularly suited in this
situation, because they are explicit and can manage stiff problems without
any restriction on the time step size. Moreover, in the case of a diagonal ma-
trix, the computation of matrix exponential-like functions is straightforward.
We use the exponential Runge–Kutta method of order two with tableau

0
1 ϕ1

ϕ1 − ϕ2 ϕ2

and the embedded exponential Euler method as error estimate. This is par-
ticularly useful when computing a steady-state solution. In this situation the
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time step sizes can be chosen larger and larger when approaching the steady-
state. We stop the integration at time t = t̄ and take w(t̄) as “steady-state”
solution if the condition

‖Aw(t̄) + g(w(t̄))‖ ≤ δ

is satisfied for a given tolerance δ. The initial value u(0, x) in (6) can be
arbitrary, but it appears reasonable to take a solution with small energy. If
we restrict ourselves to the Gaussian family of mass m

Gσ(x) =

√
mσd

4
√
πd

e−σ
2|x|2/2, σ > 0

it is possible to analytically compute the energy E(Gσ) and to minimize it,
for d = 1, 2, 3 (see [14]). The exponential decay σ for which the energy of the
corresponding Gaussian function is minimal gives also an indication of the
size of the required computational domain.

4.2 Choice of the interpolation points and the shape parameter

From the above construction, we have the ground state r available on a fine
grid G. Next we replace r by its RBF interpolant p on an reasonable small set
of interpolation points Ξ. To construct this set, we use a multilevel iteration
(see [15]). We select successively interpolation points from G and add them to
Ξ until the accuracy requirement

|p(x)− φε,0(x)| ≤ tol

is satisfied for all x ∈ G. In order to be able to use the resulting set Ξ for the
solution of (1), we have to rescale the spatial variable. For y := x

ε , we get

χ(y) = φε,0(x) = r(y − ȳ)eiȳv̄

which can be represented on the set of interpolation points Ξε := εΞ. Note
that the radial functions have to be rescaled as well. For arbitrary radial func-
tions this can be done by adjusting the shape parameter α, using a standard
one-dimensional minimization procedure. We take the golden section search
method starting from an admissible interval [0, α∗].

5 Approximation of the time dependent solution

For the numerical solution of (1), splitting methods are well established (see,
e.g., [17, Chap. 3]). In this section we give a short introduction to splitting
methods, and we describe how the involved semiflows can be computed in
the context of meshfree approximations. Based on this we explain how the
proposed numerical method is constructed.
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5.1 Splitting methods

The idea behind splitting is to decompose the right-hand side of a differential
equation into two parts and to split the problem into two subproblems. The
proper combination of their solutions gives an approximation to the solution
of the original problem of desired order.

In our case we split equation (1) into

iε∂tφ[1]
ε (t, x) = −ε

2

2
∆φ[1]

ε (t, x) (7a)

and
iε∂tφ[2]

ε (t, x) = V (x)φ[2]
ε (t, x)− |φ[2]

ε (t, x)|2pφ[2]
ε (t, x). (7b)

The linear problem (7a) is usually solved by (pseudo) spectral methods, rely-
ing on Hermite or Fourier basis functions (see, e.g., [10, 17]). However, even
if the mass of the solution is supposed to be mainly concentrated in small
regions, the bump moves according to x(t), the solution of (4). Hence, the
computational domain has to be large enough to cover at least this trajec-
tory. This might lead to an unreasonable number of spectral modes, if one
requires the solution to have the same accuracy as the initial value. In order
to keep the degrees of freedom small, we use a meshfree approximation based
on compactly supported radial basis functions instead.

For a real potential V , the modulus of the solution of (7b), |φ[2]
ε |, stays

constant in time. Thus problem (7b) is a linear differential equation with time
independent coefficients depending on a parameter x ∈ Rd, and its solution
can be computed exactly.

For the numerical approximation of φε(tn+1, x) we have to combine the
exact flows of the split problem, namely

∂tφ
[1]
ε =

iε
2
∆φ[1]

ε = Lφ[1]
ε , φ[1]

ε (tn, x) = w1(x),

∂tφ
[2]
ε = Bφ[2]

ε , φ[2]
ε (tn, x) = w2(x)

with the multiplication operator B(x) = V (x) − |w2(x)|2p and appropriately
chosen initial values w1 and w2. As time integration we use the fourth-order
symmetric Runge–Kutta–Nyström method SRKNb

6 which has the form

7∏
i=1

eaikLebikBφε(tn, x).

Here k = tn+1− tn denotes the time step size. The coefficients ai, bi are given
in Table 1. For more details about the method we refer to [7].

5.2 Computation of the semiflows

Since the multiplication operator B acts pointwise, the numerical computation
of φ[2]

ε (tn + bik) = ebikB(x)w2(x) is trivial for every x ∈ Rd.
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Table 1. Coefficients of SRKNb
6, see [7].

i ai bi

1 0.245298957184271 0.0829844064174052

2 0.604872665711080 0.396309801498368

3 0.5− (a1 + a2) −0.0390563049223486

4 a3 1− 2(b1 + b2 + b3)

5 a2 b3

6 a1 b2

7 0 b1

To approximate eaikLw1(·)|ξ∈Ξε
we use polynomial interpolation at con-

jugate pairs of Leja points (see [5, 11])). Similar as direct Krylov methods
(see [16] and references therein) and truncated Taylor series approximations
(see [1]), Newton interpolation is based on successive applications of L to a
given vector v = [vξ]ξ∈Ξε . In case of meshfree methods this can be realized as
follows: we construct an interpolant

p(x) =
∑
ξ∈Ξε

λξΨ
α
ξ (x), p(ξ) = vξ, ξ ∈ Ξε (8)

on the given set of interpolation points Ξε. The coefficients [λξ]ξ∈Ξε are com-
puted from the collocation conditions. With A denoting the interpolation
matrix Ψαξ (η), ξ, η ∈ Ξε, we approximate iε

2 ∆v(x) by

Lp(x) =
iε
2
∆p(x) =

∑
ξ∈Ξε

[
A−1v

]
ξ

(
iε
2
∆Ψαξ

)
(x),

hence
Lp(·)|ξ∈Ξε = ALA

−1p(·)|ξ∈Ξε = ALA
−1v

with the matrix AL = iε
2 ∆Ψξ(η), ξ, η ∈ Ξε.

5.3 Time evolution of the solution

The essential support of the solution of (1) for a fixed time becomes smaller
with decreasing ε. The trajectory, however, stays close to the solution of (4)
on compact time intervals. Since the modulus of the solution does not change
much during time evolution we want to use a similar number of interpolation
points for any ε and arbitrary time intervals. This will be done in the following
way. We start with the set of interpolation points for the ground state which
is independent of ε. This set is scaled according to the procedure described
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in Section 4.2. This gives an appropriate set of interpolation points for the
initial value φε,0(x). Next we combine the splitting method described before
and the concept of a meshfree integrator as in [11] to advance the solution in
time.

Starting from an approximation at time tn we perform a time step and get
a set of interpolation points for the current solution. Depending on the step
size this set of interpolation points might be too large to represent the actual
solution (in order to perform a time step the set of interpolation points has
to cover the essential support of the solution for the whole step). To reduce
this set we use the concept of residual subsampling to find a reliable set of
interpolation points for the actual solution. As described in the appendix, the
subsampling procedure requires a set of candidate interpolation points. This
set is obtained by propagating the set of interpolation points of the previous
time according to (4). So we have found an approximation at time tn+1. This
procedure is repeated until we reach the final time.

6 Numerical experiments

In this section we give some numerical experiments that demonstrate the
power of the method. Throughout this section we consider equation (1) in
two dimensions with p = 0.2 and the harmonic potential

V (x, y) =
(1.5x)2 + y2

2
.

We integrate from t = 0 to 2π. The initial value is the bump-like function (2)
with m = 1, x̄ = [−2.5,−2.5]T and v̄ = [0, 0]T. The trajectory for this po-
tential is a periodic Lissajous curve, starting at [−2.5,−2.5]T and ending at
[2.5,−2.5]T. In Figure 1 the time evolutions for ε = 10−2 and ε = 10−3 are
shown. The spatial tolerance is 2.5 · 10−4 and the time step size is k = 10−3.

Note that for moderate values like ε = 10−2, standard grid-based methods
have no problems, too. However, for decreasing values of ε, the computational
cost increases considerably. In fact, the trajectories lie in the same compu-
tational domain, but the essential support of the solution becomes smaller.
Therefore, the number of grid points, or, equivalently, the number of spectral
modes, has to be increased in order to have the same spatial resolution dur-
ing time evolution. The growth of the degrees of freedom can be dramatic,
especially in the three dimensional case.

On the other hand, for the proposed method the number of interpolation
points is in practice independent of ε, as can be seen in Figure 2, on the left.
For the same problem as described above and a range of ε from 2−6 to 2−16,
we state the number of interpolation points needed to meet the prescribed
spatial tolerance tol.

In the right plot in Figure 2, we see that the shape parameter α of the
compactly supported radial basis functions Ψα(x) scales as ε−1, as expected
from Section 4.2.
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Figure 1. Solution of (1) at t = 1 with the whole trajectory of (4) for ε = 10−2

(left) and ε = 10−3 (right) for spatial tolerance tol = 2.5 · 10−4 and time step size
k = 10−3.
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Figure 2. Number of interpolation points for ε = 2−j , j = 6, . . . , 16 and various
prescribed spatial tolerances tol (left); value of the shape parameter α for different
prescribed values of ε = 2−j , j = 6, . . . , 16 (right).

Still an open problem is the time step size. The error in time is inverse
proportional to ε. This means that a small ε will lead to a large number of
time steps. This requires a new time integrator which is work in progress.

Appendix

The idea of residual subsampling is the following. Given a set of candidate
interpolation points and a function f : Rd → R, find a reasonable set of
interpolation points in order that the resulting interpolant p fulfills a certain
accuracy requirement. Our aim is to construct an interpolant that satisfies
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θ(x) = |f(x)− p(x)| ≤ tol, x ∈ Rd. (9)

For this purpose we consider in a addition a set of check points C which is used
to check (9). Every candidate interpolation point has at least one check point.
Using the set of candidate interpolation points we construct an interpolant of
f and evaluate it at the set of check points. If the value θ(c) for some c ∈ C
is larger than tol we add this check point to the set candidate interpolation
points. Else, if θ(c) is smaller than 0.1 · tol for all check points c corresponding
to a candidate interpolation point, we remove this point from the set of can-
didate interpolation points. If the actual set of candidate interpolation points
has changed, we update the set of check points, interpolate again and repeat
this procedure until no more points are added ore removed. The final set of
candidate interpolation points becomes the set of interpolation points.

For the choice of check points there are various possibilities. From (9) it
is clear that the denser the set the better we can satisfy the accuracy require-
ment. On the other hand, more check points results in higher computational
costs. Our choice is the following. We compute a Delaunay triangulation of
the set of candidate interpolation points and choose the centers of the circum-
spheres of the resulting simplices as set of check points. For more details we
refer to [11].
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