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Abstract. The Leja method is a polynomial interpolation procedure that can be used to compute
matrix functions. In particular, computing the action of the matrix exponential on a given vector is
a typical application. This quantity is required, e.g., in exponential integrators.

The Leja method essentially depends on three parameters: the scaling parameter, the location of
the interpolation points, and the degree of interpolation. We present here a backward error analysis
that allows us to determine these three parameters as a function of the prescribed accuracy. Addi-
tional aspects that are required for an efficient and reliable implementation are discussed. Numerical
examples illustrating the performance of our Matlab code are included.
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1. Introduction. In many fields of science the computation of the action of
the matrix exponential is of great importance. As one example amongst others we
highlight exponential integrators. These methods constitute a competitive tool for
the numerical solution of stiff and highly oscillatory problems, see [9]. Their efficient
implementation heavily relies on the fast computation of the action of certain matrix
functions among those the matrix exponential is the most prominent one.

Given a square matrix A and a vector v the action of the matrix exponential is
denoted by eAv. In general, the exponential of a sparse matrix A is a full matrix.
Therefore, it is not appropriate to form eA and multiply by v for large scale matrices.
The aim of this paper is to define a backward stable method to compute the action
of the matrix exponential based on the Leja interpolation. The performed backward
error analysis allows one to predict and reduce the cost of the algorithm resulting in
a more robust and efficient method.

For a given matrix A and vector v, one chooses a positive integer s so that the
exponential es

−1Av can be well approximated. Due to the functional equation of the
exponential we can then exploit the relation

eAv =
(
es
−1A
)s
v.(1)

This results in an recursive approximation of eAv = v(s) by

v(i) = es
−1Av(i−1), v(0) = v.(2)

There are various possibilities to compute the stages v(i). Usually, this computa-
tion is based on interpolation techniques. The best studied methods comprise Krylov
subspace methods (see [14] and [12]), truncated Taylor series expansion [1], and in-
terpolation at Leja points (see [5, 3]). In this paper we take a closer look on the Leja
method (cf. (4) and (5) below) for approximating v(i) ≈ Lm,c(s−1A)v(i−1).
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Below we present two different ways of performing a backward error analysis of
the Leja method. Our analysis indicates how the scaling parameter s, the degree of
interpolation m and the interpolation interval [−c, c] can be selected in order to obtain
an appropriately bounded backward error by still keeping the cost of the algorithm
at a minimum. Furthermore, we discuss how the method benefits from a shift of the
matrix and we show how an early termination of the Leja interpolation can help to
reduce the cost in an actual computation. As a last step we illustrate the stability
and behavior of the method by some numerical experiments.

The paper is structured in the following way. In section 3 we introduce the
backward error analysis and draw some conclusions from it. In particular we show
how this analysis helps us to select the parameters s,m, and c. In section 4 we
discuss some additional aspects for a successful implementation based on the Leja
method. Section 5 presents some numerical examples dealing with different features
and benchmarks for the method. In section 6 we finally give a discussion of the
presented results.

For a reader not familiar with the Leja method we included a brief description in
section 2.

2. The Leja method. Like every polynomial interpolation, the Leja method
essentially depends on the interpolation interval and the position and number of in-
terpolation points. The choice of these parameters directly influences the error of the
interpolation and the cost. In this section we introduce the Leja method based on a
sequence of Leja points in a real interval. The extension to a symmetrized complex
sequence of points can be found in subsection 3.3.

Given an interval [a, b], the Leja points are commonly defined as

ζm ∈ arg max
ζ∈[a,b]

m−1∏
j=0

|ζ − ζj |, m ≥ 1, ζ0 ∈ arg max
ζ∈[a,b]

|ζ|.(3)

The interpolation polynomial of the exponential function is then given by

Lm(x; [a, b]) =
m∑
j=0

exp[ζ0, . . . , ζj ]
j−1∏
i=0

(x− ζi) ,(4)

where exp[ζ0, . . . , ζj ] denotes the jth divided difference. The scalar interpolation can
be extended to the matrix case and rewritten into a two term recurrence relation for
the actual computation, see [5, 3].

Due to the functional equation of the exponential it is always possible to shift
the argument and perform the interpolation on a symmetric interval with zero as its
center. This allows us to optimize the algorithm for symmetric intervals.

Let ζi be the Leja points in [a, b] and ξi the Leja points in the symmetric interval
[−c, c] with same length. Then the relation ζi = ξi + ` with ` = (a + b)/2 and
c = (b− a)/2 is valid. In practice, we use precomputed points on the interval [−2, 2]
and scale them to [−c, c]. Due to the functional equation of the exponential function
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the shift can be singled out of the divided differences and we get

Lm(x; [a, b]) =
m∑
j=0

exp[ζ0, . . . , ζj ]
j−1∏
i=0

(x− ζi)

=
m∑
j=0

e` exp[ξ0, . . . , ξj ]
j−1∏
i=0

((x− `)− ξi)

= e`Lm(x− `; [−c, c]).

Therefore, it is always possible to interpolate on a symmetric interval around zero
and apply the appropriate shifts to the argument and solution, respectively. In the
following we will always select ξ0 = −c and consequently we get ξ1 = c and ξ2 =
0. We denote the Leja interpolation polynomial of degree m on the interval [−c, c]
interpolating the exponential by

Lm,c(x) = Lm(x; [−c, c]).(5)

Note that it is not necessary to shift the matrix in order to use a symmetric interval.
Nevertheless, a well chosen shift can lead to faster convergence and can help to avoid
round-off and overflow errors.

In order to determine a possible shift we define a rectangle R = [α, ν] + i[η, β] in
the complex plane. We do this by splitting up the matrix into its Hermitian part AH

and skew Hermitian part ASH. Furthermore, we find bounds for the field of values
and the eigenvalues of these matrices with the help of Gerschgorin’s disk theorem, i.e.

σ(A) = σ(AH +ASH) ⊆ W(AH +ASH) ⊆ W(AH) +W(ASH)
= conv(σ(AH)) + conv(σ(ASH)).

The four real numbers α, ν, η, and β are chosen to satisfy

σ(AH) ⊆ [α, ν] and σ(ASH) ⊆ i[η, β].(6)

We note that in former versions of the Leja method ν was always assumed nonpositive
and −η = β. These restrictions are no longer required here. In this sense, the
method is now more general than previous versions. With the help of the rectangle
R the interpolation interval was chosen in [5, 3] as the focal interval of the ellipse
with smallest capacity circumscribing R. Here R is used to determine the type of
interpolation (real or complex conjugate Leja points) and a possible shift µ ∈ C, see
subsection 4.1.

We further note that, as stated in [13], the Leja ordering is of great importance for
the stability of the method. Reichel suggests the interpolation interval [−2, 2]. The
length of the interpolation interval does not influence the numerical accuracy. Reichel
suggests [−2, 2] only in order to avoid over- and underflow problems which may arise
for large interpolation intervals and/or with very large values of the interpolation
degree. In this version of the method we deviate from this choice. This is admissible
since the largest interpolation interval and the largest used degree do not give rise to
over- or underflow problems.

3. Backward error analysis. This section is devoted to the backward error of
the action of the matrix exponential when approximated by the Leja method. We
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first focus on the interpolation in a real interval, see subsection 3.3 for the extension
to the complex case.

The concept of backward error analysis goes back to Wilkinson, see [16]. The
underlying idea is to interpret the result of the interpolation as the exact solution of
a perturbed problem eA+∆Av. The perturbation ∆A is the absolute backward error
and we aim to satisfy ‖∆A‖ ≤ tol ‖A‖ for a user given tolerance tol.

The here presented backward error analysis exploits a variation of the analysis
given in [1]. For this, we define the set

Ωm,c = {X ∈ Cn×n : ρ(e−XLm,c(X)− I) < 1},
where ρ denotes the spectral radius and Lm,c is the Leja interpolation polynomial of
degree m on the symmetric interval [−c, c], see (4) and (5). Note that Ωm,c is open
in Cn×n and contains a neighborhood of 0 for m ≥ 2, since ξ2 = 0. For X ∈ Ωm,c we
define the function

hm+1,c(X) = log(e−XLm,c(X)).(7)

Here log denotes the principal logarithm [8, Thm. 1.31]. As hm+1,c(X) commutes
with X we get Lm,c(X) = eX+hm+1,c(X) for X ∈ Ωm,c. By introducing a scaling
factor s such that s−1A ∈ Ωm,c for A ∈ Cn×n we obtain

Lm,c(s−1A)s = eA+shm+1,c(s
−1A) =: eA+∆A,(8)

where ∆A = shm+1,c(s−1A) is the backward error resulting from the approximation
of eA by the Leja method Lm,c(s−1A)s.

On the set Ωm,c the function hm+1,c has a series expansion of the form

hm+1,c(X) =
∞∑
k=0

ak,cX
k.(9)

In order to bound the backward error by a specified tolerance tol we need to ensure

‖∆A‖
‖A‖ =

‖hm+1,c(s−1A)‖
‖s−1A‖ ≤ tol(10)

for a given matrix norm. As a consequence of this bound, one can select the scaling
factor s (always a positive integer) such that (10) is satisfied for a chosen degree of
interpolation m.

In contrast to [1] we have the endpoint c of the interpolation interval as an ad-
ditional parameter to m and s for our analysis. In the following, we are going to
introduce two different ways of bounding the backward error. The first one is closely
related to the analysis presented in [1]. We study how (10) can be used to select the
interpolation parameters when we perform a power-series expansion of the backward
error. In the second approach we consider a contour integral formulation of hm+1,c

and estimate the error along the contour.

3.1. Power-series expansion of the backward error. In this section we
investigate bounds on the backward error represented by hm+1,c. The analysis is
based on a power-series expansion of hm+1,c.

Starting from (9) we can bound hm+1,c(X) by

‖hm+1,c(X)‖ =

∥∥∥∥∥
∞∑
k=0

ak,cX
k

∥∥∥∥∥ ≤
∞∑
k=0

|ak,c| ‖X‖k =: h̃m+1,c(‖X‖).(11)
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By inserting this estimate into (10) we get

‖∆A‖
‖A‖ =

‖hm+1,c(s−1A)‖
‖s−1A‖ ≤ h̃m+1,c(s−1‖A‖)

s−1‖A‖ .(12)

Since zero is among the interpolation points for m ≥ 2 we get

h̃m+1,c(θ)
θ

=
∞∑
k=1

|ak,c|θk−1.

This is a monotonically increasing function for θ ≥ 0. Furthermore, for c = 0, the Leja
interpolation reduces to the truncated Taylor series at zero. We thus have a1,0 = 0
for m ≥ 1. The equation

h̃m+1,c(θ)
θ

= tol(13)

therefore has a unique positive root for c sufficiently small. Henceforth, we will call
this root θm,c. The number θm,c can be interpreted in the following way: for the
interpolation of degree m in [−c, c] the backward error fulfills ‖∆A‖ ≤ tol‖A‖, if the
positive integer s fulfills s−1‖A‖ ≤ θm,c. In other words, if the norm of a matrix is
smaller than θm,c, the interpolation of degree m with points in [−c, c] has an error
less than or equal to tol.

In the analysis up to now, we only used that zero is among the interpolation
points. However, the following discussion requires the sequence of Leja points.

In order to compute h̃m+1,c in a stable manner we expand hm+1,c in the Newton
basis for Leja points in [−c, c] as

hm+1,c(X) =
∞∑

k=m+1

hm+1,c[ξ0, . . . , ξk]
k−1∏
j=0

(X − ξjI),(14)

where hm+1,c[ξ0, . . . , ξk] denotes the kth divided difference. The above series starts
with k = m + 1 as hm+1,c(ξj) = 0 for j = 0, . . . ,m. Rewriting this series in the
monomial basis we obtain (11) with the according coefficients ak,c. In order to get
reliable results for these coefficients we use 300 digits in the actual computation.

Figure 1 displays the path of θm,c for the Leja interpolation with respect to c for
fixed m up to 100 and tol = 2−53. For an actual computation one has to truncate the
series (14) at some index M . We always used M = 3m.

As we now have a way of bounding the backward error we discuss the choice of
the number of scaling steps in (2). We propose to select the integer s depending on
m and c in such a way that the cost of the algorithm becomes minimal. We have
the limitation that m is bounded by 100 to avoid problems with over- and underflow.
However, we get several possibilities to select the free parameter c describing the
interval.

The value θm,0 corresponds to the truncated Taylor series expansion as described
in [1]. A second possibility is to choose, for a fixed m, c in such a way that θm,c is
maximal. This corresponds to the interpolation interval that admits the largest norm
of A. A third possibility is to select the interpolation interval such that the right
endpoint c coincides with θm,c. These are the points on the diagonal in Figure 1.

A priori none of the above choices can be seen to be optimal for an arbitrary
matrix. The choice c = 0 together with the smallest m such that θm,0 ≥ ‖A‖ is
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Fig. 1. The root θ = θm,c as a function of the right endpoint c of the interpolation interval
for real Leja points in [−c, c]. The tolerance is set to tol = 2−53. Along each line the interpolation
degree m is kept fixed.

a good choice for a matrix A with all the eigenvalues clustered in a neighborhood
of 0. On the other hand, if the convex hull of the eigenvalues of a matrix A, with
‖A‖ ≈ δ, is the interval [−δ, δ], the choice θm,δ with smallest m such that θm,δ ≥ ‖A‖
is preferable.

We choose θm,c according to the third option, which favors normal matrices where
all eigenvalues lie in an interval. More precisely, we select

θm = min{c : θm,c = c}.(15)

This means that θm is the first intersection point of the graph (c, θm,c) with the
diagonal, cf. Figure 1.

The behavior of the curves c 7→ (c, θm,c) is not unexpected. Let us consider
the approximation of eθ by Lm,c(θ) for θ ≥ 0 and s = 1. Then h̃m+1,c(θ)/θ is an
overestimate of the relative backward error hm+1,c(θ)/θ. The value θm,c represents
the maximum value for which Lm,c(θm,c) is an acceptable approximation of eθm,c .
The value θm,0 corresponds to interpolation at a set of confluent points at c = 0,
i.e. the truncated Taylor series approximation. If we slightly increase the interpolation
interval [−c, c], about half of the interpolation points lie in [0, c]. Therefore, it is
possible to have an acceptable interpolation up to θm,c ≥ θm,0. If we continue to
increase c, the mutual distance between interpolation points increases as well. When
the interval gets too large, the number of interpolation points is too small to achieve
the desired accuracy and the value θm,c starts to decrease.

Figure 1 shows that θm,c ≥ θm for all 0 ≤ c ≤ θm. Therefore, we can safely
interpolate with degree m for all intervals [−c, c] with 0 ≤ c ≤ θm. We will use this
fact in subsection 4.3.
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We compute θm by a combination of two root finding algorithms based on New-
ton’s method. The inner equation (13) for computing θm,c is solved by an exact
Newton iteration with an accuracy of 10−20. The outer equation θm,c = c is also
solved by Newton’s method. This time, however, the necessary derivative is approx-
imated by numerical differentiation. We compute the result up to an accuracy of
10−18. The resulting values are truncated to 16 digits (double precision) and used
henceforth as the θm values. In Table 1 we listed selected (rounded) values of θm for
various m and certain tolerances.

Table 1
Samples of the (rounded) values θm for tolerances half (tol = 2−10), single (tol = 2−24) and

double (tol = 2−53) for the real Leja interpolation.

m 5 10 15 20 25 30 35
half 6.43e-01 2.12e+00 3.55e+00 5.00e+00 6.37e+00 7.51e+00 8.91e+00

single 9.62e-02 8.33e-01 1.96e+00 3.26e+00 4.69e+00 5.96e+00 7.44e+00
double 1.74e-03 1.14e-01 5.31e-01 1.23e+00 2.16e+00 3.18e+00 4.34e+00

m 40 45 50 55 60 65 70
half 1.00e+01 1.10e+01 1.23e+01 1.35e+01 1.48e+01 1.59e+01 1.71e+01

single 8.71e+00 1.00e+01 1.15e+01 1.27e+01 1.40e+01 1.52e+01 1.64e+01
double 5.48e+00 6.67e+00 7.99e+00 9.24e+00 1.06e+01 1.18e+01 1.32e+01

m 75 80 85 90 95 100
half 1.84e+01 1.94e+01 2.07e+01 2.20e+01 2.30e+01 2.42e+01

single 1.76e+01 1.87e+01 1.99e+01 2.12e+01 2.23e+01 2.35e+01
double 1.46e+01 1.58e+01 1.71e+01 1.86e+01 1.99e+01 2.13e+01

We next describe the choice of the parameters used in our implementation. For
each m the optimal value of the integer s is given by

s = d‖A‖/θme.(16)

We recall that we have chosen mmax = 100. The cost of the interpolation is dominated
by the number of matrix-vector products computed during Newton interpolation.
Therefore, the cost is at most

Cm(A) := sm = md‖A‖/θme,(17)

resulting in the optimal m∗ and corresponding s∗ and c∗ as

m∗ = arg min
2≤m≤mmax

{
m

⌈‖A‖
θm

⌉}
, s∗ =

⌈‖A‖
θm∗

⌉
, c∗ = θm∗ .(18)

Remark 3.1 (precomputed divided differences). We now have a fixed discrete set
of interpolation intervals, given by θm. Therefore, the associated divided differences
can be precomputed, once and for all.

Remark 3.2 (nonnormal matrices). The truncated Taylor series method is able
to exploit the values dp = ‖Ap‖1/p. As shown in [1, Eq. (3.6)], the backward error
satisfies

‖∆A‖
‖A‖ ≤

h̃m+1,0(s−1αp(A))
s−1αp(A)

,

where h̃m+1,0(θ) =
∑∞
k=m+1 |ak,0|θk and αp(A) = min(dp, dp+1) with arbitrary p

subject to p(p− 1) ≤ m+ 1. For nonnormal matrices, this can be a sharper bound as
7



αp(A)� ‖A‖ is possible. Note that our method is not able to use this relation right
away. This is due to the fact that the series representation of h̃m+1,c starts at k = 1
for c 6= 0, see (11). As a result, we might use more scaling steps for such problems,
see section 5 for some experiments. Nevertheless, the values dp can be favorably used
also for the Leja method, see subsection 4.3.

3.2. Contour integral expansion of the backward error. The selection of
the scaling step and the length of the interpolation interval based on the norm of the
matrix does not take into account the distribution of the eigenvalues. In this section
we investigate bounds of the backward error, based on a contour integral expansion
along ellipses that enclose the spectrum of the matrix. This introduces more flexibility
as an ellipse can vary its shape from an interval to a circle. By this we can better
capture the distribution of the eigenvalues of a matrix A than by simply taking the
number ‖A‖.

Again our aim is to find a bound for hm+1,c. Due to the fact that zero is among
the interpolation points for m ≥ 2 it is convenient to write hm+1,c as

hm+1,c(X) = Xgm+1,c(X).(19)

For fixed ε > 0 we can rewrite (10) in the Euclidean norm as

‖∆A‖2
‖A‖2 =

‖hm+1,c(s−1A)‖2
‖s−1A‖2

≤ ‖gm+1,c(s−1A)‖2
=
∥∥∥∥ 1

2πi

∫
Γ

gm+1,c(z)(zI − s−1A)−1 dz
∥∥∥∥

2

≤ L(Γ)
2πε
‖gm+1,c‖Γ.

(20)

Here Γ = ∂K denotes the boundary of the domain K that contains Λε(s−1A), the
ε-pseudospectrum of s−1A. The ε-pseudospectrum of a matrix X is given by

Λε(X) =
{
z :
∥∥(zI −X)−1

∥∥
2
≥ ε−1

}
.

The length of Γ is denoted by L(Γ) and ‖ · ‖Γ is the maximum norm on Γ. For given
m, c, and K the last term in (20) can be computed in high precision. We use 300
digits and sample the contour in any performed computation.

For the time being, let us fix m. Furthermore, we assume that Γ is an ellipse,
with focal interval equal to the interpolation interval [−c, c], and its convex hull K
encloses Λε(s−1A). As a result of these assumptions, there is not only one ellipse but
rather a two parameter family of ellipses Γγ,c. The parameters are the right endpoint
c of the interpolation (focal) interval and the capacity γ of the ellipse, that is the half
sum of the semi-axes. In the following we describe how to extract a discrete set of
ellipses from the two parameter family of ellipses. This discrete set can then be stored
and used in the algorithm.

We start by reducing the two parameter family of ellipses Γγ,c to a one parameter
family, only depending on the focal interval [−c, c]. For fixed c we have a family of
confocal ellipses that are described by

Γγ,c =
{
z ∈ C : z = γw +

c2

4γw
, |w| = 1

}
.(21)
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An ellipse Γγ,c will be considered valid for interpolation if

L(Γγ,c)
2πε

‖gm+1,c‖Γγ,c ≤ tol(22)

is satisfied. For every c there exists an ellipse with largest capacity γ =: γm,c satisfying
(22) as tolerance equality, if m is sufficiently large. We single out this ellipse and
thereby link the capacity directly with the focal interval and construct a one parameter
family of ellipses.

We further reduce the number of ellipses by selecting only a discrete set of focal
intervals for every m. More precisely, we use the known values θj for j ≥ m from
(15) and Table 1, respectively. For these values we already have precomputed divided
differences at hand and no extra storage is needed.

The overall procedure is as follows. For each interpolation (focal) interval [−θj , θj ],
j ≥ m we compute the ellipse with largest capacity fulfilling (22) with ε = 1

50 and
store its semi-axes. We increase j as long as there is a γ =: γm,θj satisfying (22).
Furthermore, we enforce the upper limit j ≤ 120. With this selection we allow at
most 20 ellipses for the maximal degree of interpolation mmax = 100.

Figure 2 shows the stored ellipses for m = 35 and tol = 2−53. The dashed circle
has radius θ32 = 3.60 corresponding to the largest circle with radius θj that fulfills
(22) if a circle is used instead of an ellipse; see subsection 4.3 for further reasoning
why to include this circle.

−8 −6 −4 −2 0 2 4 6 8

−4

−2

0

2

4
3.60

4.34

4.52

4.75

5.01

5.22

5.48

5.76

5.95

6.21

6.49

6.67

6.95

7.17

7.45

z plane

Fig. 2. For ε = 1
50

, m = 35 and tol = 2−53 the ellipses (21) satisfying (22) are shown for
various focal intervals [−θj , θj ] with j = 35, . . . , 48. The value θj (see Table 1) is indicated on the
ellipse. The dashed circle has radius θ32 = 3.60. It is the largest circle in lieu of the ellipse Γγ,c
that fulfills (22) for m = 35.

We can see that, for larger focal intervals, the semi-minor axis decreases until
we end up, in the limit, with an interval on the real axis. As we have additional
information on the spectrum of the matrix at hand, it is possible to interpolate the
exponential of certain matrices with fewer scaling steps than predicted by our power-
series estimate.
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Remark 3.3. If we reduce the size of the focal interval of our ellipses Γm,c to a
point, we end up with a circle. In fact, for a fixed m this circle is slightly smaller than
the one obtained by the estimate θm.

For our backward error analysis we can interpret the value γm,θj in the following
way. If we prescribe an interval [−θj , θj ] and select m+ 1 Leja points in this interval,
we have ‖∆A‖ ≤ tol ‖A‖ under the assumption that s ≥ 1 is selected such that
Λε(s−1A) ⊆ conv(Γγm,θj ,θj ).

Before discussing how to select the optimal ellipse for m, we show how to com-
pute s for a given matrix A and an ellipse Γ. We recall that, with the help of
Gershgorin’s disk theorem, we can enclose the spectrum of A in a rectangle R with
vertices (α, β), (α, η), (ν, β), (ν, η), see (6). Furthermore, we assume that this rectangle
is centered in zero (−α = ν and −η = β), otherwise we shift the matrix accordingly.
In order to keep the notation simple we consider a single ellipse Γ with focal interval
[−c, c] and capacity γ for which (22) is satisfied. As before we denote the convex hull
of Γ by K. Let ∆ε denote the open disc of radius ε around the origin. Hence, we
have the following chain of inclusions

Λε(A) ⊆ W(A) + ∆ε ⊆ R+ ∆ε.

The first inclusion connecting the pseudospectrum and the field of values can be found
in [15]. The above inclusions state that if R + ∆ε ⊂ K then ‖∆A‖2 ≤ tol ‖A‖2. Our
aim is to determine the correct scaling factor s such that the inclusion s−1(R+∆ε) ⊆
K is valid. We do this by computing the intersection of Γ with the straight line
through zero and rε = (ν + ε, β+ ε), the upper right vertex of the rectangle extended
by ε. The procedure is illustrated in Figure 3.

Γ

-c 0 c

R
∆ε

(ν + ε, β + ε) = rε

S−1rε

s−1R

s−1ν

s−1β

Fig. 3. Illustration on the selection of the correct scaling factor s to fit the scaled and extended
estimate of the pseudospectrum s−1(R+∆ε) inside the ellipse Γ with convex hull K ⊂ R2. We have

S =
p

(ν + ε)2a−2 + (β + ε)2b−2 and s = dSe.

For

a = γ +
c2

4γ
, b = γ − c2

4γ

denoting the semi-axes of Γ we have

s =

⌈√
(ν + ε)2

a2
+

(β + ε)2

b2

⌉
.(23)

Due to our choice of rε it holds that s−1(R+ ∆ε) ⊆ K for s−1rε ∈ K.
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We can now use the the degree of interpolation m to minimize the cost of the
interpolation. This is done in the following way. As discussed above and illustrated
in Figure 2, for every m, we get a family of ellipses with semi-axes

am,θj = γm,θj +
θ2
j

4γm,θj
and bm,θj = γm,θj −

θ2
j

4γm,θj
,(24)

where γm,θj fulfills (22). Recall that we have chosen mmax = 100. We now use (23) to
select the optimal ellipse for each m. In this family the optimal ellipse is identified as
the one with the fewest scaling steps. For these optimal ellipses the number of scaling
steps sm is given by

Sm,j =

√(
ν + ε

am,θj

)2

+
(
β + ε

bm,θj

)2

, jm = arg min
j≥m

{dSm,je} , sm = dSm,jme .

Now we can minimize with a similar cost function as in (17) over m and obtain our
optimal degree of interpolation m∗ and scaling factor s∗ as

m∗ = arg min
2≤m≤mmax

{msm} , s∗ = sm∗ .(25)

The corresponding c∗ is given by θj with j = jm∗

3.3. Symmetrized complex Leja points. All the statements made in the
previous sections remain valid if we use complex conjugate Leja points [4]. The
advantage of such points lies in the better handling of matrices that have eigenvalues
with dominant imaginary parts. This situation is characterized by a height-to-width
ratio of more than one for the rectangle R. Examples include the (real) discretization
matrices of transport equations or the discretization of the Schrödinger operator (a
complex matrix) which has eigenvalues on the negative imaginary axis.

On the interval i [−c, c] on the imaginary axis, symmetrized or conjugate complex
Leja points are defined as

ξm ∈ arg max
ξ∈i[−c,c]

m−1∏
j=0

|ξ − ξj |, ξm+1 = −ξm for m ≥ 1 odd, and ξ0 = 0.

We use conjugate complex pairs of points rather than standard Leja points in an
interval along the imaginary axis as this allows real arithmetic for real arguments.
This gives rise to polynomials of even degree.

To allow conjugate complex Leja points in our backward error analysis we only
need to change the actual computation of the values θm,c, θm and γm,c. The theory
itself stays the same. Figure 4 displays the path of θm,c for complex conjugate Leja
points in i [−c, c]. Table 2 displays a selection of (rounded) θm values for various
tolerances.

If we apply complex conjugate Leja points in the framework of subsection 3.2 we
get ellipses for which the major axis is on the imaginary axis.

3.4. Extension to ϕ functions. The presented backward error analysis extends
in a straightforward way to the ϕ functions which play an important role in exponen-
tial integrators, see [9]. We illustrate this here for the ϕ1 function. For A ∈ Cn×n
and w ∈ Cn we observe that

ϕ1(A)w = [I, 0] exp
([
A w
0 0

])[
0
1

]
,

11
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Fig. 4. The root θ = θm,c as a function of the right endpoint c of the interpolation interval for
complex conjugate Leja points in i[−c, c]. The tolerance is set to tol = 2−53. Along each line the
interpolation degree m is kept fixed.

Table 2
Samples of the (rounded) values θm with tolerances half (tol = 2−10), single (tol = 2−24) and

double (tol = 2−53) for complex conjugate Leja interpolation.

m 10 20 30 40 50
half 1.94e+00 4.53e+00 7.11e+00 9.62e+00 1.21e+01

single 8.11e-01 2.99e+00 5.41e+00 7.85e+00 1.03e+01
double 1.16e-01 1.19e+00 2.98e+00 5.06e+00 7.29e+00

m 60 70 80 90 100
half 1.46e+01 1.70e+01 1.95e+01 2.20e+01 2.44e+01

single 1.27e+01 1.52e+01 1.77e+01 2.01e+01 2.25e+01
double 9.57e+00 1.19e+01 1.43e+01 1.67e+01 1.90e+01

see [14]. For the choice

A =
[
A w
0 0

]
and v =

[
0
1

]
the backward error is preserving the structure, i.e.

∆A =
[
∆A ∆w
0 0

]
.

Thus the above analysis applies. For general ϕ functions we can extend our approach
with the help of [1, Thm. 2.1].

4. Additional aspects of interpolation. By using the previously described
backward error analysis to compute the values m∗, s∗ and c∗ a working algorithm
can be defined. Nevertheless, the performance of the algorithm can be significantly

12



improved by some preprocessing and by introducing an early termination criterion.
Moreover, interpolation in nonexact arithmetic will suffer from roundoff errors, in
particular in combination with the hump phenomenon. We address all these issues in
this section.

4.1. Spectral bounds and shift. In the above backward error analysis, it was
assumed that the rectangle R lies symmetrically about the origin. In general, this
requires a shift of A. On the other hand, it is clear that a well chosen shift µ satisfying
‖A−µI‖ ≤ ‖A‖ is beneficial for the interpolation (a lower degree or less scaling steps
will be required). For the exponential function such a shift can easily be compensated
by scaling. More precisely, if the shift µ is selected, we use

[eµ/sLm,c(s−1(A− µI))]s

as approximation of eA.
For our algorithm a straightforward shift is to center the rectangle R at the origin,

namely

µ =
α+ ν

2
+ i

η + β

2
.(26)

If A is real then η = −β and µ ∈ R. Therefore, a complex shift is only applied to
complex matrices.

It is easy to see that for a Hermitian or skew Hermitian matrix A the proposed
shift (26) coincides with the norm-minimizing shift presented in [8, Thm. 4.21(b)].
For a general matrix, the shift somewhat symmetrizes the spectrum of the matrix
with regard to its estimated field of values.

The shift µ = n−1 traceA used in [1] is a transformation that centers the spectrum
of the matrix around the average eigenvalue. In many cases the two shifts are similar.
Nevertheless, it is possible to find examples where one shift leads to better results than
the other. The matrix one-sided of Example 4 is one of these cases. For the trace
shift a symmetrization of the rectangle R might be required, resulting in a potential
increase of scaling steps for the estimate based on (20). For the method proposed
here, we always use (26) as shift.

4.2. Early termination criterion. The estimates based on (15) and (22) are
worst case estimates and in particular do not take v into account. As a result, the
choice of m∗ is likely to be an overestimate and can be reduced in the actual com-
putation. By limiting m in the computation of Lm,c(s−1A)v(i) in (2) we introduce a
relative forward error that again should be bounded by the tolerance tol. We propose
to take

‖ek‖ = ‖Lk,c(s−1A)v(i) − Lk−1,c(s−1A)v(i)‖

= |exp[ξ0, . . . , ξk]|
∥∥∥∥∥∥
k−1∏
j=0

(s−1A− ξjI)v(i)

∥∥∥∥∥∥ ≤ tol
s
‖Lk,c(s−1A)v(i)‖(27)

as an a posteriori error estimate for the Leja method in the kth step. Experiments
show that (27) turns out to be a good choice. In contrast to the method described in
[1] we divide the tolerance by the amount of scaling steps. This potentially increases
the number of iterations per step but in practice results in a more stable computation
for normal matrices, see section 5. Nevertheless, it sometimes leads to results of
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higher accuracy than prescribed. In practice it is advisable to take the sum of two or
three successive approximation steps for the estimate as this captures the behavior
better. On the other hand, it can also be beneficial to make the error estimate only
every couple of iterations rather than in each step to save computational cost, see [3].
A second approach for an a posteriori error estimate for the Leja method based on
the computation of a residual can be found in [10]. This procedure can also be used
here. Furthermore, it is possible to adapt the early termination criterion to complex
conjugate Leja points. With the help of an early termination criterion computational
cost can be saved for certain matrices, see section 5.

4.3. Handling the hump phenomenon. In general, the interpolation error
does not decrease monotonically with the degree of interpolation. Even worse, a dis-
tinct hump can occur in certain situations, see Figure 5. This hump can significantly
reduce the accuracy of the interpolation due to roundoff errors. The phenomenon is
linked to the distribution of the eigenvalues of a matrix with respect to interpola-
tion interval. Note that the hump we are describing here is not the same as the one
described in [11] for nonnormal matrices.

Figure 5 illustrates the problem for the matrix A = diag(linspace(-10,10,10))
and vector v = [1, . . . , 1]T. Figure 5a shows the real case. For c = 0 (i.e. the truncated
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(a) Relative error vs. degree of interpolation m for Lm,c(A)v; real case.
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(b) Relative error vs. degree of interpolation m for Lm,c(iA)v; complex case.

Fig. 5. Illustration of the hump phenomenon for the real and complex case. The used matrix
A = diag(linspace(-10,10,10)) and v = [1, . . . , 1]T.
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Taylor series method) the final error is low and no hump is formed. If we increase the
interpolation interval [−c, c], we observe that the necessary degree of the interpolation
gradually decreases, while the final error stays approximately constant. The optimal
interpolation interval is reached when c approaches the largest eigenvalue. In the figure
this is the case for c = 10.6. When the interval is increased further, however, a hump
starts to form. This is due to the fact that the divided differences are significantly
larger than the result, which has size e10.

As can be seen in Figure 5b, the behavior is different for the complex case. Here
the divided differences have modulus one and a hump forms if the interpolation in-
terval is too small. Note that the smallest necessary degree of interpolation is again
obtained by selecting the optimal interval.

In both cases the undesired behavior can be improved by obtaining a better
estimate of the spectral radius and consequently reducing the interpolation interval.
For this we employ the values dp = ‖Ap‖1/p which satisfy the well known relation

ρ(A) = lim
p→∞ ‖A

p‖1/p.

As long as the sequence of {dp} decreases, we adjust the interpolation interval accord-
ingly.

For a general matrix A this phenomenon will influence the computation whenever
‖A‖ strongly overestimates ρ(A). In this case our algorithm chooses an interpolation
interval that is far too large. Note that this happens in particular for nonnormal
matrices.

For the estimate based on (15) the reduction of the interpolation interval is pos-
sible due to the behavior of the θm,c curve shown in Figure 1. However, if we use
the estimate based on (20) the reduction of the interpolation interval is not straight-
forward. If we fit our rectangle R into an ellipse with semi-axis given by (24) then,
in general, R will not fit into an ellipse with a smaller interpolation interval. We
overcome this problem by adding a circle to the ellipses. We use the largest circle
defined by am,θk = bm,θk = θk for some k ≤ m that fulfills (22), see Figure 2 for an
example. In most cases the radius of the circle is not going to be θm. If the values
dp indicate a reduction of the interval, we restrict the ellipse estimate to these circles
and perform a reduction of the interpolation interval. The validity of this process can
be checked in the same manner as for θm.

Remark 4.1. In the current version the algorithm does not allow to reduce the
number s along with the decay of dp as in [1]. Nevertheless, if a drastic decay is
indicated it is possible to transform our method into Taylor interpolation by simply
setting c = 0.

5. Numerical examples. In order to illustrate the behavior of our method we
provide a variety of numerical examples. We use matrices resulting from the spatial
discretization of time dependent partial differential equations already used in [3].
Furthermore, we also utilize examples from [1] and certain prototypical examples to
illustrate some specific behavior of the method. All our experiments are carried out
with Matlab 2013a. As a measure of the required computational work we use the
number of matrix-vector products (mv) performed by the method, without taking
into account preprocessing tasks. We will compare our method to the function expmv
of [1].

Note that the Leja method also employs divided differences. They are computed
as described in [2]. The used divided differences are precomputed as the employed
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interpolation intervals are fixed.
In the following we are going to compare different variations of our algorithm

based on the presented ways to compute the scaling factor s and degree of interpolation
m.

Algorithm 1: Uses m∗ and s∗ given by (18).
Algorithm 2: Uses m∗ and s∗ given by (25).

In both algorithms, the early termination criterion (27) is used, as well as the shift
and the hump test discussed in the previous section, if not indicated otherwise. For
Alg.2 the hump test procedure is only employed if the estimate of the scaling step is
based on circles.

In Example 1 we take a look at the stability of the methods with and without
early termination, Example 2 and Example 3 focus on the selection of the degree and
the interpolation interval for the different variations of our algorithm, and Example 4
investigates the behavior for multiple scaling steps, i.e., s > 1.

Example 1 (early termination). This example is taken from [1, Exp. 2] to show
the influence of the early termination criterion for a specific problem. We use the ma-
trix A as given by gallery(’lesp’,10). This is a nonsymmetric, tridiagonal matrix
with real, negative eigenvalues. We compute etAv by Alg.1 and Alg.2, respectively,
for 50 equally spaced time steps t ∈ [0, 100]. We select the tolerance tol = 2−53 and
vi = i. As A is a nonnormal matrix, Alg.2 is restricted to circles to allow the hump
reduction procedure. The results of the experiments can be seen in Figure 6 where
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Fig. 6. Time step t versus relative error in the 2-norm for the computation of etAv with
tolerance tol = 2−53. The ∗ indicates that no early termination was used. Note that there is almost
no visible difference between the methods with and without the early termination in place.

the solid line corresponds to the condition number (28) multiplied by the tolerance.
We can not expect the algorithms to perform much better than indicated by this line.
As condition number we use

κexp(tA, v) :=
‖ exp(tA)‖2‖v‖2
‖ exp(tA)v‖2 +

‖(vT ⊗ I)Kexp(tA)‖2‖ vec(tA)‖2
‖ exp(tA)v‖2 ,(28)

as defined in [1, Eq. (4.2)]. Here vec denotes the vectorization operator that converts
its matrix argument to a vector by traversing the matrix column-wise. Furthermore,
let L(A,∆A) denote the Fréchet derivative of exp at A in direction ∆A given by

eA+∆A = eA + L(A,∆A) + o(‖∆A‖).
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With the relation vec(L(A,∆A)) = Kexp(A) vec(∆A) the Fréchet derivative is given
in its Kronecker form as Kexp(A). In addition we use the relation

vec(L(A,∆A)v) = (vT ⊗ I) vec(L(A,∆A)).

For the computation we use the function expm cond from the Matrix Function Tool-
box, see [7].

Overall we can see that the algorithms behave in a forward stable manner for
this example. The early termination criterion shows no significant increase in the
error. Both algorithms are well below κexp(tA, v) for all values of t. For this rather
small matrix we used the exact norm and not a norm estimate to allow for a better
comparison.

Example 2 (advection-diffusion equation). In order to show the difference be-
tween the two suggested processes for selecting the interpolation interval for our al-
gorithms, we use an example that allows us to easily vary the spectral properties of
the discretization matrix. Let us consider the advection-diffusion equation

∂tu = a∆u+ b(∂xu+ ∂yu)

on the domain Ω = [0, 1]2 with homogeneous Dirichlet boundary conditions. This
problem is discretized in space by finite differences with grid size ∆x = (N + 1)−1,
N ≥ 1. As a result of the discretization we get a sparse N2×N2 matrix A. We define
the grid Péclet number

Pe =
|b|∆x

2a

as the ratio of advection to diffusion, scaled by ∆x. By increasing Pe the nonnormality
of the discretization matrix can be controlled. In addition, Pe describes the height-to-
width ratio of the rectangle R. The estimates for α and ν stay constant but η = −β
increases with Pe.

For the following computations the parameters are chosen as: N = 20, a = 1 and
b = 2aPe

∆x . As a result, for Pe = 0 we get that R is an interval on the real axis and for
Pe = 1 a square. For Pe = 0 the matrix is equal to -(N+1)^2*gallery(’poisson’,N).
The vector v is given by the discretization of the initial value u0(x, y) = 256 · x2(1−
x)2y2(1− y)2. In the following discussion we call the shifted matrix again A.

Table 3
For varying grid Péclet number in Example 2 the selection of the degree of interpolation m∗,

the actual degree due to the early termination m and the right endpoint c of the interpolation interval
are shown. We compute exp(tA)v with a time step t = 5e-3, discretization parameter N = 20 and
tolerance tol = 2−53. The error is measured relative to the result of the Matlab built-in function
expm in the maximum norm.

Alg.1 Alg.2 expmv

m∗ m rel. err c m∗ m rel. err c m∗ m rel. err
Pe = 0 54 32 3.66e-15 8.96 40 32 3.66e-15 8.96 52 44 2.88e-15
Pe = 0.2 54 34 5.47e-15 8.96 49 35 4.17e-15 8.28 52 44 3.91e-15
Pe = 0.4 54 35 2.21e-15 8.96 55 36 2.86e-15 9.24 52 44 2.34e-15
Pe = 0.6 54 38 3.63e-15 8.96 62 40 6.36e-15 11.08 52 44 4.93e-15
Pe = 0.8 54 41 2.98e-15 8.96 67 43 9.86e-15 11.34 52 43 2.59e-15
Pe = 1 54 44 3.24e-15 8.96 72 49 4.50e-14 12.99 52 39 1.30e-15

Table 3 gives the results of an experiment where we varied the grid Péclet number.
We show the results of the different selection procedures. The time step t = 5e-3 is
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chosen such that expmv is able to compute the result without scaling the matrix. The
actual degree of interpolation m and the relative error with respect to the method
expm in the maximum norm are shown. As the maximum norm of the matrix stays
the same (for fixed N) the parameters of expmv and Alg.1 are always the same. For
Pe = 1 the eigenvalues of the matrix tA are in a small circle around zero and therefore
the Taylor approximation requires a lower degree of interpolation.

On the other hand we can see that for a small height-to-width ratio (small Pe)
the estimate based on ellipses, i.e. Alg.2, produces a significantly smaller m∗ with
the same actual degree m of interpolation and comparable error. This means that
less scaling is required for larger t, cf. Example 4. When the rectangle R is closer to
a square the algorithm still produces reliable results but is slightly less efficient than
Alg.1.

Remark 5.1 (θm selection). As mentioned in subsection 3.1 it is possible to
select the θm values differently depending on c. By selecting θ̂m = maxc θm,c the
computation corresponding to Pe = 0 gives the following results: m∗ = 51, m =
44 and c = 4.31. This indicates a slower convergence with a similar error, as the
eigenvalues of the shifted matrix are in [−8.82, 8.82] but we interpolate in [−4.31, 4.31].

Example 3 (hump and scaling steps). In order to illustrate the potential gain
of testing for a hump in our algorithm, we use the matrix A given by the command
-1/2*gallery(’triw’,20,4) and vi = cos i. This corresponds to [1, Experiment 6]
with a single time step of size t = 0.5. In the following discussion we call the shifted
matrix again A.

The 20× 20 matrix A is an upper triangular matrix with 0 in the main diagonal
and −2 on the strict upper triangular part. The 1-norm of the matrix is ‖A‖1 = 38
and ρ(A) = 0. For this example the truncated Taylor series method is optimal and
stagnates after 20 iterations, in a single scaling step, with a final error of about
10−14. We use this example to illustrate the hump phenomenon and the procedure
to counteract it. This will result in a better performance of the Leja method, even
though for this example it is not as efficient as expmv.
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Fig. 7. Relative error vs. interpolation degree m for the approximation of exp(A)v. The
plot illustrates the behavior of the hump reduction procedure. Here Alg.1* indicates that no hump
reduction was performed. The relative error is measured with respect to exp(A/2)v in the first scaling
step and exp(A)v in the second. No early termination criterion is used in the computation.

In Figure 7 we illustrate the behavior of the hump reduction procedure, described
in section 4. A first observation is that our method selects two scaling steps (s =
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2). For this nonnormal matrix the rectangle R is a square and therefore we only
show the results for Alg.1, as we can expect a better performance for this algorithm
(cf. Example 2). We can see quite clearly that a hump of about 8 digits is formed when
we use the initial guess of c = θ92 = 19.10. As expected we get an error of about 10−8

in each scaling step and consequently a final error of the same size. In this experiment
we deactivate the early termination criterion and therefore the algorithm uses m = 92
in each of the two scaling steps. Furthermore, for Alg.1* and Alg.1 the relative
error is measured with respect to exp(A/2)v in the first scaling step and exp(A)v in
the second. For sake of comparison we run expmv without early termination and 182
iterations, and we measure the relative error with respect to exp(A)v.

On the other hand, if we reduce the interval length, the hump is reduced as well.
For this (shifted) matrix the values dp are (38, 26, 20, 16, 13, . . . , 0) (see subsection 4.3),
where d20 = 0. These values suggest that the interpolation interval should be reduced.
In fact, by reducing the interval to c = 0 we would recover the truncated Taylor series
method and therefore the optimal choice for this example. The cost of the computation
of dp can not be neglected and in a practical implementation p is therefore limited.
Experiments have shown that p ≤ 5 is a practical choice. Therefore, we use the
interpolation interval c = θ45 = 6.67 in the reduced case.

From Figure 7 we can see that the algorithm to reduce the impact of the hump
is working. The hump is significantly reduced and the error is close to the error
of the truncated Taylor series method. Nevertheless, the method takes about three
times as many iterations (approximately 60) than the truncated Taylor series method,
cf. Example 4.

Even though this procedure might not be necessary for accuracy it is still beneficial
for the overall cost reduction. If we only require 8 digits of accuracy we do not need
to reduce the interpolation interval to achieve this. However, for this example it
would still be beneficial to reduce the interpolation interval, as the necessary degree
of interpolation is reduced as well. This is related to the observations of Remark 5.1
and subsection 4.3. Here the norm of the matrix is a large overestimate of the spectral
radius leading to slow convergence.

Example 4 (behavior for multiple scaling steps). In this experiment we investi-
gate the behavior of the methods for multiple scaling steps. We use the two matrices
of Example 2 and Example 3 from above and in addition the matrices orani676 and
bcspwr10 which are obtained from the University of Florida sparse matrix collection
[6], as well as several other matrices, see Table 4a. The sparse matrix orani676 is real
and nonnormal with 90158 nonzero entries, whereas bcspwr10 is a real and symmetric
sparse matrix with 13571 nonzero entries. The matrix triu is an upper triangular
matrix with entries uniformly distributed on [−0.5, 0.5]. For the matrix onesided we
have a 41× 41 upper triangular matrix with one eigenvalue at 10 and 40 eigenvalues
uniformly distributed on [−10.1,−9.9], with standard deviation of 0.1. The values in
the strict upper triangular part are uniformly distributed on [−0.5, 0.5]. Furthermore,
we use S3D from [3, Example 3], a finite difference discretization of the three dimen-
sional Schrödinger equation with harmonic potential in [0, 1]3. The matrix Trans1D
is a periodic, symmetric finite difference discretization of the transport equation in
[0, 1]. For the matrices orani676, S3D and Trans1d complex conjugate Leja points
are used in the computation.

As vector v we use [1, . . . , 1]T for orani676, [1, 0, . . . , 0, 1]T for bcspwr10, v as
specified in Example 2 for AD, the discretization of 4096x2(1−x)2y2(1− y)2z2(1− z)2

is used for S3D, the discretization of exp(−100(x− 0.5)2) for Trans1D, and vi = cos i
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# A n t ν − α β − η κ1 ‖ · ‖1 ‖ · ‖2 ‖ · ‖∞
1 orani676 2529 100 1.0e+03 1.0e+03 0.002 1.0e+03 3.2e+01 9.4e+00
2 bcspwr10 5300 10 2.6e+01 0.0e+00 0 1.4e+01 6.8e+00 1.4e+01
3 triw 2000 10 8.0e+03 8.0e+03 0.5 8.0e+03 5.0e+03 8.0e+03
4 triu 2000 40 1.0e+02 1.0e+03 0.021 1.0e+03 4.2e+01 1.0e+03
5 AD Pe=0 9801 1/4 8.0e+04 0.0e+00 0 8.0e+04 7.9e+04 8.0e+04
6 AD Pe=0 9801 1 8.0e+04 0.0e+00 0 8.0e+04 7.9e+04 8.0e+04
7 onesided 41 5 3.1e+01 1.2e+01 0.5 2.0e+01 1.1e+01 2.0e+01
8 S3D 27000 1/2 0.0e+00 5.7e+03 0 5.8e+03 5.7e+03 5.8e+03
9 Trans1D 1000 2 0.0e+00 2.0e+03 0 1.0e+03 1.0e+03 1.0e+03

(a) Summary of the spectral properties of the matrices.

Alg.1 1-norm Alg.2 1-norm expmv 1-norm
# t s mv rel.err s mv rel.err s mv rel.err
1 100 4639 41751 1.8e-11 3508 31572 2.2e-11 21 526 4.0e-08
2 10 6 157 7.8e-10 6 157 7.8e-10 5 171 7.2e-07
3 10 3408 98840 5.4e-09 2423 87233 1.0e-07 1588 10425 1.1e-09
4 40 1730 22495 1.6e-11 1268 17755 1.6e-12 59 960 4.3e-09
5 1/4 427 14945 1.0e-08 357 13923 1.9e-09 749 29211 2.2e-06
6 1 1705 59675 1.9e-08 1426 55614 3.3e-09 2995 116805 9.0e-06
7 5 5 129 3.0e-09 4 119 1.6e-10 8 296 2.1e-08
8 1/2 65 3185 2.2e-11 57 2793 8.0e-09 108 5400 1.3e-07
9 2 89 4539 9.5e-13 79 3871 1.4e-08 150 5135 3.6e-08

(b) Results for each matrix and the used algorithms, respectively.
Table 4

Results for Example 4. For a tolerance of tol = 2−24 we compute exp(tA)v in a single call
of the respective algorithm. The value s indicates the number of scaling steps and mv denotes the
number of matrix-vector products without preprocessing. The values α, ν, η, ν correspond to (6).

for all other examples. This corresponds to [1, Exp. 7].
We summarize the properties of all the matrices used in this example in Table 4a.

The tolerance is chosen as 2−24 and the relative error is computed with respect to
expmv running with the highest accuracy. Furthermore we use

κ1 =
‖AA∗ −A∗A‖1

‖A‖21
as an indicator for the nonnormality of the matrices. From now on we refer to the
matrices by their number given in the first column of Table 4a.

We can see that for the nonnormal matrices {1, 3, 4} the algorithm expmv is
superior in terms of matrix-vector products, in comparison to both variants of our
algorithm. This is largely due to the fact that for these matrices the method expmv
can reduce the number of scaling steps based on the values dp (see Remark 3.2). As
the Leja method is not able to do this, the only way of getting comparable results
for these example is by obtaining sharper bounds for the rectangle R in Alg.2. This
could be achieved using the Matlab routines eig (based on LAPACK — Linear Algebra
PACKage and suited for full matrices), eigs (based on ARPACK — ARnoldi PACKage
and suited for sparse matrices), or an eigensolver of your choice fitted to the example.
However, the computation can be very expensive and therefore is not practicable in
a general purpose algorithm.

Furthermore, for these matrices the user specified norm has a relevant influence
on the performance, as can be seen in Table 4b and Table 5, respectively. If the
problem is considered with the 2- or the maximum norm the number of matrix-vector
products is significantly reduced.
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Table 5
For a tolerance of tol = 2−24 we compute exp(tA)v in a single call of the algorithm Alg.1 with

the 2- and maximum norm, respectively. The value s indicates the number of scaling steps and mv
denotes the number of matrix-vector products without preprocessing. The numbers # correspond to
Table 4a.

Alg.1 2-norm Alg.1 ∞-norm
# t s mv rel.err s mv rel.err
1 100 142 2434 1.8e-10 43 2195 2.2e-11
2 10 2 106 7.0e-08 6 154 1.0e-09
3 10 2175 76141 5.8e-08 3408 98847 5.4e-09
4 40 66 2122 7.4e-10 1748 22732 1.5e-11
7 5 3 91 5.5e-10 5 128 3.0e-09

For the matrices {2, 5, 6, 7, 8, 9} the results show a different picture. Here, the
Leja method is clearly beneficial in terms of matrix-vector products. Furthermore, we
also produce a smaller error in comparison to the truncated Taylor series approach.
This is due to the fact that we divide the tolerance by s in the early termination
criterion, cf. (27). In the case of the complex conjugate Leja points this leads to a
higher accuracy than required. On the other hand, for the AD problem, the errors of
the Leja methods increase by a factor of 2, if we increase t by a factor of 4, whereas
the error for expmv increases by a factor of 4. This is due to the fact that the used
early termination criterion (27) for the Leja method takes the number of scaling steps
into account whereas expmv does not.

For matrices {1, 8, 9} conjugate complex Leja points are used, see subsection 3.3.
For the two normal matrices {8, 9} the Leja method saves a lot of matrix-vector
products in comparison to expmv. As here the rectangle R is a line, Alg.2 is again
superior to Alg.1 as it leads to fewer scaling steps and less matrix-vector products.

Matrix 2 is normal. However, only for the 2-norm we have that ‖A‖ = ρ(A). This
is the reason why the number of scaling steps is only two in the 2-norm.

The final error of the methods is always comparable. The more precautious
approach we propose leads sometimes to an increase in accuracy. Nevertheless, in the
cases where the Leja method is beneficial it still uses significantly less matrix-vector
products than expmv.

A comparison of Alg.1 and Alg.2 shows that none of the two approaches can
be considered superior or the better overall choice. Due to the construction, Alg.2
provides a scaling factor and a degree of interpolation that are independent of the
norm, even though the Gerschgorin discs are closely related to the 1- and maximum
norm. Nevertheless, the reduction of the interpolation interval is connected to a norm.
In fact, this is also the case where the two methods do provide similar estimates for s.
In total, if we always select the method with the least (predicted) computational cost
we always use the more efficient methods as we save matrix-vector products. This
indicates that a combination of the two algorithms, where we always select the one
with the least expected cost is beneficial.

Depending on the specified norm, Alg.1 has some significant fluctuations in per-
formance.

6. Discussion. The backward error analysis presented in this work provides a
sound basis for the selection of the scaling parameter s∗ and the degree of interpolation
m∗ for the Leja method. With this information at hand the algorithm becomes in
a sense direct, as the maximal number of matrix-vector products is known after the
initial preprocessing. The cost of Alg.1 is determined by the norm of the matrix,
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whereas the cost of Alg.2 is determined by the spectral information of the matrix.
The convergence is monitored by the early termination criterion. The practical use
of this approach is confirmed by the numerical experiments of section 5.

The algorithm can be adapted in a similar way as the expmv method to support
dense output and provides essentially the same properties as [1, Algorithm 5.2]. In
particular this means that the new algorithm also has some benefits in compared to
Krylov subspace methods.

Note that in certain applications one has to compute etAV for a scalar t and
a n × n0 matrix V . This problem, however, is not more general since the product
tA can always be considered as a new matrix and the performed analysis extends
to a matrix V instead of a vector v. This is especially interesting in comparison to
Krylov subspace methods as the available implementations would need to be called
repeatedly for each column of V .

In comparison to expmv the Leja method is especially beneficial for matrices where
the values d1, . . . , dp do not vary much. In these cases the method saves matrix-vector
products. On the other hand our method makes a higher preprocessing effort than
expmv. This is due to the more complex selection procedure of m∗ and s∗ and the fact
that we need an estimate of the field of values. As the overall cost is dominated by the
matrix-vector products, this fact comes only into play for low-dimensional examples.

The combination of the two algorithms Alg.1 and Alg.2, where we select the
scaling parameter and the degree of interpolation based on the minimum of the pre-
dicted cost of the two algorithms, seems to be the logical choice for a combined (black
box) algorithm. With the changes applied to the method it can be called for any
matrix A, it is numerically stable, the costs are predictable and the effort for the
implementation is manageable.

In the present version of our algorithm, the knowledge of dp can not be used to
properly scale the interpolation interval. However, and this is the focus of our future
work, it is possible to modify the method and repeatedly use zero as interpolation
point. These so-called Leja–Hermite methods will then be able to make use of dp in
a suitable fashion as expmv.

A Matlab implementation of the algorithm presented in this paper is available on
the homepage https://numerical-analysis.uibk.ac.at/exponential-integrators.
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