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Hyper2d: A numerical code for hyperinterpolation on rectangles
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Abstract

Hyperinterpolation at Morrow–Patterson–Xu cubature points for the product Chebyshev measure provides a simple
and powerful polynomial approximation method on rectangles. Here, we present an accurate and efficient Matlab/Octave
implementation of the hyperinterpolation formula, accompanied by several numerical tests.
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1. Introduction

Hyperinterpolation of multivariate continuous functions on compact subsets or manifolds, originally intro-
duced by Sloan in [15], is a discretized orthogonal projection on polynomial subspaces, which provides an
approximation method more general (in some sense) than interpolation. Its main success up to now, has been
given by the application to polynomial approximation on the sphere; see, e.g. [10,13].

Indeed, in order to become an efficient approximation tool in the uniform norm, hyperinterpolation needs a
‘‘good’’ cubature formula (i.e., positive weights and high algebraic degree of exactness), together with ‘‘slow’’
increase of the Lebesgue constant (the operator norm). The importance of these basic features can be under-
stood by summarizing briefly the structure of hyperinterpolation.

Let X � Rd be a compact subset (or lower dimensional manifold), and l a positive measure such that
l(X) = 1 (i.e., a normalized positive and finite measure on X). For every function f 2 C(X) the l-orthogonal
projection of f on Pd

nðXÞ (the subspace of d-variate polynomials of degree 6n restricted to X) can be written
as
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where x = (x1,x2, . . . ,xd), y = (y1,y2, . . . ,yd), and the so-called reproducing kernel Kn is defined by
Knðx; yÞ ¼
Xn

k¼0

X
jaj¼k

P aðxÞP aðyÞ; a ¼ ða1; a2; . . . ; adÞ ð2Þ
the set of polynomials {Pa, jaj = a1 + � � � + ad = k, 0 6 k 6 n} being any l-orthonormal basis of Pd
nðXÞ, with

Pa of total degree jaj; cf. [8, Section 3.5].
Now, given a cubature formula for l with N = N(n) nodes n 2 N � X, n = (n1,n2, . . . ,nd), and positive

weights {wn}, which is exact for polynomials of degree 62n,
Z
X

pðxÞdl ¼
X
n2N

wnpðnÞ; 8p 2 Pd
2nðXÞ; ð3Þ
we obtain from (1) the polynomial approximation of degree n
f ðxÞ � Lnf ðxÞ ¼
X
n2N

wnKnðx; nÞf ðnÞ: ð4Þ
It is known that necessarily N P dimðPd
nÞðXÞ, and that (4) is a polynomial interpolation at N whenever the

equality holds; cf. [15,10].
The hyperinterpolation error in the uniform norm, due to exactness on Pd

2nðXÞ, can be easily estimated as
kf � Lnf k1 6 ð1þ KnÞEnðf Þ; Kn ¼ kLnk ¼ max
x2X

X
n2N

wnjKnðx; nÞj
( )

; ð5Þ
where Kn is the operator norm of Ln : ðCðXÞ; k � k1Þ ! ðPd
nðXÞ; k � k1Þ, usually termed the ‘‘Lebesgue con-

stant’’ in the interpolation framework.
The aim of this paper is to provide an efficient implementation of hyperinterpolation in dimension d = 2 on

rectangles, based on cubature at MPX (Morrow–Patterson–Xu) points [16,6]. In Section 2, we discuss a Mat-
lab-like implementation of hyperinterpolation at MPX points. The corresponding Matlab/Octave functions
are displayed and described in Section 3. In Section 4 we state a conjecture on the asymptotics of the Lebesgue
constant, based on a wide set of numerical experiments. Finally, we provide the numerical results correspond-
ing to hyperinterpolation of several test functions.

2. Hyperinterpolation at Morrow–Patterson–Xu (MPX) points

In the paper [16], Xu introduced a set of Chebyshev-like points in the square X = [�1,1]2, which generate a
(near) minimal degree cubature for the normalized product Chebyshev measure,
dl ¼ 1

p2

dx1 dx2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

2

p ; X ¼ ½�1; 1�2: ð6Þ
For even degrees, such points and the corresponding minimal cubature formula were originally proposed by
Morrow and Patterson in [12]. In addition, Xu proved that these points are also suitable for constructive poly-
nomial interpolation, in a polynomial subspace Vn, P2

n�1 �Vn � P2
n. Xu-like interpolation, recently studied

thoroughly in [2–4], turned out to be a good approximation method in the uniform norm. In particular, its
Lebesgue constant is Oðlog2nÞ, n being the degree, i.e. the polynomial approximation is ‘‘near-optimal’’ (cf.
[5]).

Hyperinterpolation at the MPX points, even though is not interpolant, shares the same good computa-
tional features of Xu-like interpolation, as it has been recently shown in [6]. In particular, hyperinterpolation
(of degree n) and interpolation (of degree n + 1) at the same set of MPX points exhibit very close errors. Here
we describe an efficient Matlab-like implementation of the hyperinterpolation formula on rectangles.

Consider the n + 2 Chebyshev–Lobatto points on the interval [�1,1]
zk ¼ zk;nþ1 ¼ cos
kp

nþ 1
; k ¼ 0; . . . ; nþ 1: ð7Þ
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The MPX points on the square X for cubature with exactness degree 2n + 1, are defined as the two dimen-
sional Chebyshev-like set
N ¼ A [ B; cardðNÞ ¼ N ;
where

• Case n odd, n = 2m � 1
Aodd ¼ fðz2i; z2jþ1Þ; 0 6 i 6 m; 0 6 j 6 m� 1g;
Bodd ¼ fðz2iþ1; z2jÞ; 0 6 i 6 m� 1; 0 6 j 6 mg

ð8Þ

with N = (n + 1)(n + 3)/2. These points generate a minimal cubature formula, that isZ
X

pðxÞdl ¼
X
n2N

wnpðnÞ; 8p 2 P2
2nþ1; ð9Þ

where the weights are simply wn = (n + 1)�2 for n 2 N \ oX (boundary points), wn = 2(n + 1)�2 for

n 2 N \ X
�

(interior points); cf. [12,16].
• Case n even, n = 2m
Aeven ¼ fðz2i; z2jÞ; 0 6 i 6 m; 0 6 j 6 mg;
Beven ¼ fðz2iþ1; z2jþ1Þ; 0 6 i 6 m; 0 6 j 6 mg

ð10Þ

with N = (n + 2)2/2. The weights for the corresponding near minimal cubature formula are wn = (n + 1)�2/
2 for n = (1, 1) and n = (�1,�1) (corner points), wn = (n + 1)�2 for the other boundary points and
wn = 2(n + 1)�2 for the interior points.

Hence, in view of (3) we can construct the hyperinterpolation formula (4), which is not interpolant, since in
both cases
N > m ¼ dimðP2
nÞ ¼

ðnþ 1Þðnþ 2Þ
2

: ð11Þ
The polynomial approximation (4) can be rewritten as
Lnf ðxÞ ¼
Xn

k¼0

X
jaj¼k

caP aðxÞ; ca ¼
X
n2N

wnf ðnÞP aðnÞ; ð12Þ
where the coefficients ca can be computed once and for all. Now, take the l-orthonormal basis
fP aðxÞ ¼ T jðx1ÞT k�jðx2Þ; a ¼ ðj; k � jÞ; 0 6 j 6 k 6 ng; ð13Þ

where Tj is the normalized Chebyshev polynomial of degree j (that is T0(Æ) = 1, T jð�Þ ¼

ffiffiffi
2
p

cosðjarccosð�ÞÞ). In
order to implement efficiently the hyperinterpolation formula (12) in Matlab/Octave, it has to be rewritten in a
matrix formulation, avoiding iteration loops. Consider the matrices
DðN; f Þ ¼ diagð½wnf ðnÞ; n ¼ ðn1; n2Þ 2 N�Þ 2 RN�N ; ð14Þ

T ðiÞðNÞ ¼

� � � T 0ðniÞ � � �
� � � T 1ðniÞ � � �
..
. ..

. ..
.

� � � T nðniÞ � � �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n2N

2
6666666664

3
7777777775
2 Rðnþ1Þ�N ; i ¼ 1; 2; ð15Þ
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and
B0ðN; f Þ ¼

b1;1 b1;2 � � � � � � b1;nþ1

b2;1 b2;2 � � � b2;n 0

..

. ..
. . .

. . .
. ..

.

bn;1 bn;2 0 � � � 0

bnþ1;1 0 � � � 0 0

2
66666664

3
77777775
2 Rðnþ1Þ�ðnþ1Þ; ð16Þ
which is the upper-left triangular part of
ðbi;jÞ ¼ BðN; f Þ ¼ T ð1ÞðNÞDðN; f ÞðT ð2ÞðNÞÞ0; ð17Þ

where the 0 symbol denotes the transposition, that is the coefficients {ca} in (12). Then, (12) becomes
Lnf ðxÞ ¼ T 0ðx1Þ T 1ðx1Þ � � � T nðx1Þ½ �B0ðN; f Þ

T 0ðx2Þ
T 1ðx2Þ

..

.

T nðx2Þ

2
66664

3
77775: ð18Þ
Given a set X � X of target points with cardinality M, we compute
T ðiÞðX Þ ¼

� � � T 0ðxiÞ � � �
� � � T 1ðxiÞ � � �
..
. ..

. ..
.

� � � T nðxiÞ � � �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
x2X

2
6666666664

3
7777777775
2 Rðnþ1Þ�M ; i ¼ 1; 2; ð19Þ
and then
Lnf ðX Þ ¼ � � � Lnf ðxÞ � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
x2X

2
4

3
5 ¼ diagððT ð1ÞðX ÞÞ0B0ðN; f ÞT ð2ÞðX ÞÞ0: ð20Þ
Notice that the meaning of the keyword ‘‘diag’’ is different in (14) and (20) (as it is in Matlab/Octave): in (14) it
represents a diagonal matrix with the specified diagonal, whereas in (20) it represents the diagonal (as a col-
umn vector) of the specified matrix.

Clearly, we can immediately extend the hyperinterpolation formula to a function f defined on a generic rect-
angle [a,b] · [c,d], via the affine mapping
r : ½�1; 1�2 ! ½a; b� � ½c; d�; r1ðt1; t2Þ ¼
b� a

2
t1 þ

bþ a
2

; r2ðt1; t2Þ ¼
d � c

2
t2 þ

d þ c
2

: ð21Þ
Indeed, for a set of target points X � [a,b] · [c,d], we have simply
Lnf ðX Þ ¼ diagððT ð1Þðr�1ðX ÞÞÞ0B0ðN; f � rÞT ð2Þðr�1ðX ÞÞÞ0: ð22Þ
Remark 1. The representation (12) of the hyperinterpolation polynomial is particularly suitable for a Matlab-
like implementation as (14)–(22), since it allows to easily avoid bottlenecks like recurrences and iterations
loops, via predefined matrix functions. Moreover, for evaluation at a large number of points, it compares
favourably with other implementations. First, we observe that a simple analysis of the hyperinterpolation
algorithm gives the following complexity estimates for construction (excluding evaluation of the function f at
the MPX points), and evaluation at M target points:
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• construction: cost of (15) + cost of (17) � 2cTnN + 2mN flops,
• evaluation: cost of (19) + cost of (20) � 2cTnM + 2mM flops,

where N is the number of MPX cubature points, m ¼ dimðP2
nÞ, and cT denotes the average evaluation cost of a

single Chebyshev polynomial via its trigonometric representation. Notice that N � n2/2 � m, already for mod-
erate values of the degree n (cf. (8), (10) and (11)).

The hyperinterpolation polynomial can also be computed via (4), by using the compact trigonometric
formula for the reproducing kernel obtained by Xu (cf. [16]) and adopted in the Fortran implementation of [6].
In practice, such a formula is severely ill-conditioned and has to be stabilized, as shown in [2]. After
stabilization, for degrees up to the hundreds its final pointwise evaluation complexity (excluding evaluation of
f at the MPX points) is of the order of 24csinN flops, that is linear in the number of MPX points. Here csin

denotes the average cost of the sine function. Thus the implementation (14)–(22) in terms of flops is more
convenient than the stabilized Xu formula on a large number of evaluation points, say M	 N, since
2m
 24csinN. This happens in many applications, like quality plotting or data compression (see, e.g. [3]).

It is also worth noticing, however, that in practice, due to internal Matlab/Octave optimizations of matrix
operations, for M	 N the bulk is given by the computation of (19), and thus the CPU times turn out to
increase linearly instead of quadratically in the degree (see the numerical tables in the last section). In these
cases, our present implementation is still more convenient than that based on the stabilized Xu formula for the
reproducing kernel, since 2cTn
 24csinN already for relatively small values of n.

Remark 2. The implementation (14)–(22) could be easily extended to the construction and evaluation of the
Lagrange interpolation polynomial at the MPX points. The interpolation formula, however, involves two
sums like (4), one with Kn and another with Kn+1, see [16]. Even if optimized, the resulting algorithm is more
expensive than that for hyperinterpolation. Since hyperinterpolation errors are very close to interpolation
errors (see [6]), the former should be preferred as an approximation tool whenever the interpolation property
is not a strict requirement.

Remark 3. We discuss here the construction of a practical a posteriori error estimate, that could be useful in
several applications of hyperinterpolation. Going back to the meaning of hyperinterpolation as a discretized
truncated Fourier series (l-orthogonal projection on P2

n), i.e. to the fact that Lnf(x) � Snf(x), since {ca} are the
Fourier coefficients discretized by cubature at MPX points, we can write the following chain of estimates
kf � Lnf k1 � kf � Snf k1 6 2
X1

k¼n�2

X
jaj¼k

Z
X

P aðyÞf ðyÞdlðyÞ
����

����
� 2

Xn

k¼n�2

X
jaj¼k

Z
X

P aðyÞf ðyÞdlðyÞ
����

���� � 2
Xn

k¼n�2

X
jaj¼k

jcaj; ð23Þ
where the bound jPa(x)j 6 2 has been used (cf. (13)). The passage from the first to the second row in (23) is
somehow empirical, but reminiscent of popular error estimates for one-dimensional Chebyshev series, based
on the last two or three coefficients (cf., e.g. [1]). In fact, here we use just the coefficients corresponding to the
last three values of k, namely k = n � 2, n � 1, n. The practical behavior of (23) has been satisfactory in almost
all our numerical tests; see the last section.
3. Matlab/Octave code

Here, we report the Matlab/Octave code of the main functions for the hyperinterpolation on rectangles. A
Matlab/Octave interface based on this code can be downloaded from [7].

The function hypcoeffs (Table 1) builds the matrix B0(N, f � r) in (22), via the mapping r in (21).
The function MPXpts (Table 2) called in hypcoeffs provides the MPX points and weights for cubature

of exactness degree 2n � 1 (corresponding to the subspace Vn of n-degree polynomials, cf. [16]) without using



Table 1
Function hypcoeffs

function [B0]=hypcoeffs(n,a,b,c,d)

[xi1,xi2,wxi]=MPXpts(n + 1)

Txi1=T(n,xi1);

Txi2=T(n,xi2);

fxi=f(((b � a)*xi1+(b + a))/2,((d � c)*xi2+(d + c))/2)));
B0=Txi1.*repmat(wxi.*fxi,n + 1,1)*Txi2’;
B0=fliplr(triu(fliplr(B0)));

Table 2
Function MPXpts

function [xi1,xi2,wxi]=MPXpts(n)

if (mod(n,2)==0)

m=n/2;

xi1=repmat(z(2:2:n),1,m + 1);

wxi=[ones(1,m) repmat(2*ones(1,m),1,m-1) ones(1,m)];

xi1=[xi1 reshape(repmat(z(1:2:n + 1),m,1),1,m*(m + 1))];
wxi=[wxi ones(1,m) 2*ones(1,m*(m-1)) ones(1,m)];

xi2=xi1([m*(m + 1)+1:2*m*(m + 1),1:m*(m + 1)]);
else

m=(n-1)/2;

xi1=repmat(z(1:2:n),1,m + 1);

wxi=[0.5 ones(1,m) repmat([1 2*ones(1,m)],1,m)];
xi1=[xi1 reshape(repmat(z(n + 1:�2:2),m + 1,1),1,(m + 1)^2)];
wxi=[wxi 0.5 ones(1,m) repmat([1 2*ones(1,m)],1,m)];
xi2=�xi1([(m + 1)^2 + 1:2*(m + 1)

^
2,1:(m + 1)

^
2]);

end

wxi=wxi/n
^
2;
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iteration loops, via the Matlab/Octave functions repmat and reshape. Clearly, in order to hyperinterpolate
at degree n, it has to be called with the input argument set to n + 1, since exactness degree at least 2n is needed.

The function hypval (Table 3) computes the vector Lnf(X) in (22) via the inverse mapping r�1. Notice that
it computes the diagonal of the matrix specified in (22) without performing the two whole matrix products.

The function T (Table 4), called by hypcoeffs and hypval, computes the normalized Chebyshev poly-
nomials arrays T(i) in (15). Notice that, due to roundoff errors, the input s of T, when called by hypval, could
lie out of [�1,1], and in these cases is set to the nearest endpoint.
Table 3
Function hypval

function [Lnfx]=hypval(B0,n,a,b,c,d,x1,x2)

Tx1=T(n,(2*x1�(b + a))/(b � a));

Tx2=T(n,(2*x2�(d + c))/(d � c));

Lnfx=sum((Tx1’*B0).*Tx2’,2)’;

Table 4
Function T

function t=T(n,s)

t=cos([0:n]’*acos(max(min(s,1),�1));
t(2:n + 1,:)=sqrt(2)*t(2:n + 1,:);
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4. Numerical tests

Hyperinterpolation of degree n at the MPX points possesses two important features, that make it a good
approximation tool in the uniform norm, for functions that can be sampled without restrictions on rectangles.

The first is that its Lebesgue constant increases very slowly, as that of near-optimal interpolation points on
the square (cf. [4,5]). Indeed, as proved in [6], it can be rigorously bounded by
 0.0
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2

p
logðnþ 1Þ þ 5: ð24Þ
However, the factor 8 in (24) is an overestimate. Indeed, a wide set of numerical experiments on the maximi-
zation of the Lebesgue function up to degree n = 1000 (not reported for brevity), lead to the following:

• conjecture: Kn 6 Bn � c 2
p log n
� �2

; with c < 3
2
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Fig. 1. Franke’s test functions.
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In addition, with the implementation (14)–(20) the average pointwise complexity over a large number of
target points, say M	 N points, is of the order of 2m � n2 flops (see Remark 1), that is linear in the dimension
of the polynomial space and quadratic in the degree.

In this section we show the hyperinterpolation errors in the max-norm normalized to the max deviation of
the function from its mean, at a sequence of degrees, n = 10,20, . . . , 60, on a well-known test functions suite by
Franke–Renka (cf. [9,14]). These 10 functions, termed F1, . . . ,F10, are plotted in Figs. 1 and 2 below. The
corresponding ‘‘true’’ errors, reported in Tables 5 and 6, have been computed on a 100 · 100 uniform control
grid. In the tables we report also (in parenthesis) the a posteriori empirical error estimate given by the last term
of (23), normalized as above.

The last four functions, proposed by Renka in [14], are considered more challenging for the testing of inter-
polation methods at scattered points, due to their multiple features and abrupt transitions. Here, we can see in
Tables 5 and 6 that only F10, and much less severely F2, are really ‘‘difficult’’ for hyperinterpolation at MPX
points. In all the other cases the approximation behavior of the hyperinterpolation polynomial is quite satis-
factory. With the smoothest functions, like F4 and F6, the error stabilizes rapidly around machine precision. It
is interesting to observe that with the oscillating function F7(x1,x2) = 2cos(10x1)sin(10x2) + sin(10x1x2), the
error starts decaying rapidly as soon as the degree n allows to recover the oscillations. On the other hand,
the troubles with F10 are natural, since it has a gradient discontinuity in the center of the square, whereas
the MPXpoints cluster at the boundary.

As for the empirical error estimates, we can see that they tend to overestimate in almost all the cases, except
for F2 and F10, where they underestimate the true errors. The worst overestimate arises with F4 for n = 20
(estimate/error �158), whereas the worst underestimate concerns the less smooth test function F10 for
n = 60 (estimate/error �0.18). In general, we can consider the behavior of the (normalized) a posteriori esti-
mate (23) satisfactory enough, even though this topic needs further investigations.
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Fig. 2. Renka’s additional test functions.



Table 5
‘‘True’’ and estimated (in parenthesis) hyperinterpolation errors for the Franke’s test functions in Fig. 1, in the max-norm normalized to
the max deviation of each function from its mean

n

10 20 30 40 50 60

N

72 242 512 882 1352 1922

F1 7.3E�2 4.4E�3 1.6E�4 1.2E�6 8.6E�9 2.4E�11
(1.5E�1) (1.5E�2) (5.3E�4) (9.0E�6) (5.8E�8) (1.7E�10)

F2 2.9E�1 6.3E�2 1.2E�2 2.1E�3 3.9E�4 6.6E�5
(1.4E�1) (2.1E�2) (3.3E�3) (5.7E�4) (1.0E�4) (1.7E�5)

F3 3.7E�3 5.7E�6 1.0E�8 1.6E�11 4.0E�14 3.3E�14
(4.3E�2) (6.7E�5) (1.0E�7) (1.8E�10) (2.9E�13) (7.7E�15)

F4 2.1E�4 4.0E�10 1.0E�14 1.1E�14 1.0E�14 1.5E�14
(1.0E�2) (6.3E�8) (2.8E�14) (5.7E�15) (6.7E�15) (3.7E�15)

F5 3.7E�2 5.3E�5 9.7E�9 4.0E�13 7.3E�15 9.0E�15
(2.3E�1) (8.0E�4) (2.6E�7) (1.7E�11) (2.7E�15) (2.0E�16)

F6 2.1E�5 8.0E�9 4.0E�12 4.0E�15 5.1E�15 5.9E�15
(3.3E�4) (8.6E�8) (4.0E�11) (2.4E�14) (3.3E�15) (1.6E�15)

Table 6
As in Table 4 for the additional test functions in Fig. 2

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60

F7 2.1E�1 4.0E�6 3.3E�13 9.0E�15 1.9E�14 1.4E�14
(7.3E�1) (1.6E�4) (2.6E�11) (7.0E�15) (6.0E�15) (7.0E�15)

F8 1.2E�1 2.3E�3 1.7E�5 4.3E�8 4.0E�11 2.1E�14
(2.4E�1) (1.1E�2) (1.3E�4) (4.8E�7) (6.1E�10) (3.0E�13)

F9 3.3E�1 4.6E�3 2.0E�5 5.3E�8 8.9E�11 1.1E�13
(9.8E�1) (3.7E�2) (2.5E�4) (7.0E�7) (1.1E�9) (1.6E�12)

F10 5.5E�1 1.2E�1 6.4E�2 4.0E�2 2.8E�2 2.0E�2
(8.7E�1) (7.0E�2) (1.9E�2) (9.1E�3) (5.4E�3) (3.7E�3)
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We stress that hyperinterpolation at MPX points is very stable. Indeed, we could hyperinterpolate at much
higher degrees without drawbacks. For example, we can take n = 300 (N = 45,602 MPX points), obtaining an
error of 3.6 · 10�12 for the test function F2.

Finally, in Table 7 we report the CPU times for construction and evaluation of the hyperinterpolation
polynomial at the M = 10,000 target points belonging to the control grid. The tests have been performed with
Matlab 6.5 on a AMD Athlon 2800+ processor machine. As expected from the complexity analysis in Remark
1 since M	 N, the evaluation time is clearly dominant. It is worth noticing that the increase of the evaluation
(and of the total) CPU time is linear in the degree, and not quadratic as expected from the flops estimates. This
can be ascribed to the fact that, due to internal Matlab/Octave optimizations of matrix operations (see, e.g.
[11]), the dominant execution time is given by the computation of the Chebyshev polynomials arrays at the
target points in (19).
Table 7
CPU times (s) for construction (excluding evaluation of f) and evaluation of the hyperinterpolation polynomial at M = 10,000 target
points; cf. Remark 1

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60

Constr. time 0.0015 0.0095 0.011 0.03 0.06 0.1
Eval. time 0.17 0.29 0.44 0.59 0.75 0.89
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