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Abstract

We implement a second-order exponential integrator for semidiscretized advection–diffusion–reaction equations, obtained by
coupling exponential-like Euler and Midpoint integrators, and computing the relevant matrix exponentials by polynomial inter-
polation at Leja points. Numerical tests on 2D models discretized in space by finite differences or finite elements, show that the
Leja–Euler–Midpoint (LEM) exponential integrator can be up to 5 times faster than a classical second-order implicit solver.
© 2006 Published by Elsevier B.V.
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1. Semidiscretization of ADR models

In this paper we are concerned with the numerical solution of semilinear parabolic equations of the advection–
diffusion–reaction (ADR) type⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�c

�t
= div(D(x, t)∇c) − div(c�v(x, t)) + f (c, x, t), x ∈ �, t > 0,

c(x, t) = gD(x, t), x ∈ �D, t > 0,

〈D∇c(x, t), �〉 = gN(x, t), x ∈ �N, t > 0,

c(x, 0) = u0(x), x ∈ �,

(1)

with mixed (possibly time dependent) Dirichlet and Neumann boundary conditions on �D ∪ �N = ��, � ⊂ Rd ,
d = 1, 2, 3. In (1), D(x, t) is the d × d (cross-) diffusion matrix, �v(x, t) ∈ Rd the velocity field, and f resembles
reaction as well as source and sinks terms; see, e.g., [14].
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Finite difference (FD) or finite element (FE) spatial discretization of (1) produces a large-scale linear system of
ODEs like{

P ż = H(t)z + f(z, t) + q(t), t > 0,

z(0) = u0,
(2)

where P is the symmetric positive-definite mass matrix (the identity matrix in the case of FD) and H(t) the (nonsymmet-
ric) stiffness matrix of dimensionN×N , z=[z1(t), . . . , zN(t)]T, the vector field f(z, t) is generated by semidiscretization
of f (c, x, t), the vector q(t) by the Neumann boundary conditions, and u0 = [u0(x1), . . . , u0(xN)]T, {xj } being the
nodes (internal plus boundary) of the mesh or of the grid. Inclusion of boundary nodes is unusual with FD, but allows a
unified treatment, which is particularly convenient in the framework of exponential integrators. As it is known, standard
Galerkin FE discretization or second-order central FD make sense numerically only on sufficiently fine grids (small
Peclét numbers). Otherwise, special stabilization techniques should be adopted, like Petrov–Galerkin upwinding for
FE or third-order upwind biased differences for FD; see [14] and references therein.

System (2) can be rewritten in the form ż = P −1[H(t)z + f(z, t) + q(t)], which is suitable for the application of
exponential integrators (cf. [8,21,11]). Clearly, availability of the mass matrix P −1 is a computationally expensive task
in FE instances. However, we can apply the well-known mass-lumping technique (sum on the diagonal of all the row
elements) to P in order to obtain a diagonal matrix PL (and, immediately, P −1

L ); cf. [14]. In order to impose the lacking
Dirichlet boundary conditions, if xi ∈ �D, we can perform the following steps: replace the ith row of P −1

L with ei (the
ith canonical basis vector); make vanishing the ith row of H(t); replace fi(z, t) with �gD(xi, t)/�t ; replace u0i with
gD(xi, 0). In practice, the system above is modified into{

ċ = �(c, t) = P̂ −1
L [Ĥ (t)c + f̂(c, t) + q(t)], t > 0,

c(0) = û0.
(3)

The semilinear system of ODEs (3) is now the discrete approximation of the PDE (1), where the Dirichlet boundary
condition have been artificially imposed also to the initial data.

2. The exponential Euler–Midpoint integrator

We consider the following second-order exponential time-marching scheme for the semilinear system of ODEs (3):{ck+1 = ck + �tk�(�tkJ (ck, tk+1/2))�(ck, tk+1/2), k = 0, 1, 2, . . . ,

c0 = û0,
(4)

where �(z) is the entire function �(z) = (ez − 1)/z if z 
= 0, �(0) = 1, and J (c, t) is the Jacobian matrix defined by

J (c, t) = �c�(c, t) = P̂ −1
L [Ĥ (t) + �c f̂(c, t)]. (5)

We observe that (4) is obtained by coupling the exponentially fitted Euler integrator (see, e.g., [11]) with the exponential
Midpoint integrator (see, e.g., [21,10,9]). Indeed, as in the construction of the exponentially fitted Euler method we
first linearize (3) locally in time{ u̇ = �(ck, t) + �c�(ck, t)(u − ck), t ∈ [tk, tk+1],

u(tk) = ck,
(6)

with a local error O((�tk)
3). Then, we apply to the nonautonomous linear system (6) the basic Magnus-like integrator,

i.e., the Midpoint exponential rule [10], which again is locally of the third order. It is worth stressing that the resulting
second-order exponential integrator (4) coincides with the exponential Midpoint rule in the linear case, and with
the exponentially fitted Euler method in autonomous instances. In particular, it is an exact integrator in the linear
autonomous case.

A possible difficulty with the scheme (4), is that it involves computation of Jacobians, differently from other recent
exponential integrators for semilinear problems (cf., e.g., [7,12,22]). Nevertheless, in our applications this is not a
real drawback, since we deal with single ADR equations, and with the discretizations adopted the Jacobian of f̂ is a
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diagonal matrix, immediately computable when the derivative �f/�c of the reaction is explicitly known (see below). In
addition, using the Jacobian of the whole semilinear vector field �, we have at hand an explicit exponential integrator
which naturally works with stiff reaction terms, cf. [11]. For example, with FD (trivially), or with FE when using an
approximate projection like 〈f (c(x, t), x, t), �i〉 ≈ ∑

j f (c(xj , t), xj , t) 〈�i , �j 〉, where {�i} are the FE trial and test
functions, we have that f(c, t) = P {f (cj , xj , t)}j , where P = {〈�i , �j 〉} is the symmetric mass matrix. Thus,

P −1�c f(c, t) = �cP
−1f(c, t) = diag

{
�f

�c
(cj , xj , t)

}
j

, (7)

with the easy adaptation that P̂ −1
L �c f̂(c, t) is the same diagonal matrix, with zero entries on the diagonal correspondingly

to Dirichlet boundary nodes.
An important comment on the construction of f̂ at boundary nodes has to be made. Instead of using the definition

f̂i (c, t) = �gD(xi, t)/�t , xi being a Dirichlet boundary node, we can impose directly the exact time evolution of
the boundary conditions, by setting f̂i (c, t) = (gD(xi, tk+1) − gD(xi, tk))/�tk . The latter is the second-order central
difference of gD(xi, t) in t = tk+1/2. In fact, by recursion, the ith component of scheme (4) becomes

(ck+1)i = gD(xi, tk) + �tk
gD(xi, tk+1) − gD(xi, tk)

�tk
= gD(xi, tk+1),

since the ith row of J is the zero vector, and the ith row of �(�tkJ ) is ei (� being analytical).

3. The real Leja points method (ReLPM)

The practical application of (4) rests on the possibility of approximating efficiently the exponential propagator
�(�tJ )v, where J is a Jacobian matrix as in (5), and v ∈ RN . To this aim, two classes of polynomial methods are
currently used. We have Krylov-like methods, which are based on the idea of projecting the propagator on a “small”
Krylov subspace of the matrix via the Arnoldi process, and typically involve long-term recurrences in the nonsymmetric
case; see, e.g., [8,11]. The second class consists of methods based on polynomial interpolation or series expansion of the
entire function � on a suitable compact subset containing the spectrum (or in general the field of values) of the matrix.
They typically require some preliminary estimate of the underlying spectral structure, but, despite of this preprocessing
stage, this second class of methods turned out to be competitive with polynomial Krylov-based approaches, especially
on very large nonsymmetric matrices, cf., e.g., [4,3,17,18].

In this work we adopt the Real Leja Points Method (ReLPM), recently proposed in the framework of FD spatial
discretization of advection–diffusion equations [6], and extended to FE in [5]. For the reader’s convenience, we briefly
recall the definition and properties of Leja points.

Sequences of Leja points {�j }∞j=0 for the compact K are defined recursively as follows [16]: if �0 is an arbitrary fixed
point in K (usually such as |�0| = max�∈K |�|, cf. [20]), the �j are chosen in such a way that

j−1∏
k=0

|�j − �k| = max
�∈K

j−1∏
k=0

|� − �k|, j = 1, 2, . . . . (8)

By the maximum principle, Leja points for K lie on �K; an efficient algorithm for computing a sequence of Leja points,
the so-called “Fast Leja points”, has been proposed in [1].

Given a matrix A and a vector v, the ReLPM approximates the exponential propagator as

�(A)v ≈ pm(A)v, pm(A) =
m∑

j=0

dj

j−1∏
k=0

(A − �kI ), m = 1, 2, . . . , (9)

with pm(z) Newton interpolating polynomial of �(z) at a sequence of Leja points {�k}, in a compact subset of the
complex plane containing the spectrum (or the field of values) of the matrix A. As it is well known, Leja points give
a stable interpolant [20], superlinearly convergent to entire matrix functions due to the analogous scalar property
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Table 1
Algorithm ReLPM (real Leja points method)

• INPUT: J, v, �t , tol
• Estimate the “spectral” focal interval [�,�] for �tJ by Gershgorin’s theorem, and compute a sequence of fast Leja points {�j } in [�,�] as in [1]
• d0 := �(�0), w0 := v, p0 := d0w0, m := 0

• WHILE e
Leja
m := |dm| · ‖wm‖2 > tol

◦ z := Jwm, wm+1 := �tz − �mwm

◦ m := m + 1; compute the next divided difference dm = �[�0, . . . , �m]
◦ pm := pm−1 + dmwm

• OUTPUT: the vector pm : ‖pm − �(�tJ )v‖2 ≈ e
Leja
m � tol

[24,20,6], i.e.,

lim sup
m→∞

‖f (A)v − pm(A)v‖1/m
2 = 0. (10)

Following [6,5], we can simply interpolate � at a sequence of Leja points on the focal interval, say [�, �], of a
suitable ellipse containing the spectrum of A = �tJ . From complex approximation theory [24], we get maximal and
thus superlinear convergence on such an ellipse. This entails that the corresponding sequence of matrix polynomial
operators converges superlinearly to �(�tJ )v, and that we can work with real arithmetic. Clearly, a key step in this
procedure is given by estimating at low cost the reference focal interval for the spectrum of �tJ . As in [21,6,5], we
adopt the simplest estimate given directly by Gershgorin’s theorem [23].

The algorithm for real Leja points interpolation (ReLPM) of the advection–diffusion propagator �(�tJ )v is sketched
in Table 1. In practice, the implementation is slightly more refined. A problem is that convergence may not take place
when the estimated focal interval is too large, due to the effect of significant cancellation errors in the computation of
the divided differences. In such cases, it is necessary to subdivide a posteriori the time step. For this and other nontrivial
implementation details we refer to [6].

The ReLPM algorithm turns out to be quite simple and efficient. Indeed, being based on two-term vector recurrences
in real arithmetic, its storage occupancy and computational cost are very small, and it results more efficient than Krylov
method on large-scale problems [3]. In addition, ReLPM is very well structured for a parallel implementation, as it has
been shown in [2].

4. Numerical examples

The main purpose of this paper is to make a first test of the performance of the ReLPM polynomial approximation
method, in the context of exponential integrators for large-scale systems of ODEs generated by spatial discretization of
multidimensional semilinear parabolic PDEs. To this aim, albeit in the recent literature several high order exponential
integrators have been proposed (cf., e.g., [7,11,12,15]), we have chosen the exponential Euler–Midpoint integrator,
one of the simplest when dealing with single semidiscretized ADR equations where the diagonal Jacobian generated
by the reaction term is analytically known (cf. (7)). Among second-order exponential integrators, Euler–Midpoint has
a low computational cost, since other methods as [7,12,22] require computing at least three matrix exponential-like
functions, and it is stable even with stiff reaction terms (see [11]).

In order to test the efficiency of the Leja–Euler–Midpoint (LEM) exponential integrator, we compared it with a
classical second-order method like Crank–Nicolson (CN). Although CN might not be considered the best choice for
time integration of ADR problems, it is an efficient and robust method still widely used on stiff large-scale problems
in engineering applications, and a sound baseline benchmark for an advection–diffusion solver (cf. [19]). In the case
of the relevant ODEs system (2) it writes as(

P − �tk

2
H(tk+1)

)
uk+1 − �tk

2
f(uk+1, tk+1)

=
(

P + �tk

2
H(tk)

)
uk + �tk

2
f(uk, tk) + �tk

2
(q(tk+1) + q(tk)), k = 0, 1, 2 . . . , (11)
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where the nonlinear vector field f is constructed as in (7). In our applications we solved the nonlinear system (11) by
Newton method, with BiCGStab preconditioned by ILU(0) as internal linear solver (imposing the Dirichlet boundary
conditions at this stage).

4.1. Example 1: FD discretization of a 2D semilinear problem with a travelling wave solution

We now discuss in detail the autonomous advective Fisher equation (cf. [13])

�c

�t
= 	∇2c − div(c�v) + 
c2(1 − c), x = (x1, x2) ∈ � = (0, 1)2, t > 0, (12)

where �v= (�, �), �=−1. Initial and Dirichlet (time-dependent) boundary conditions are prescribed so as to correspond
to the exact “travelling wave” solution c(x1, x2, t)= (1 + exp(a(x1 + x2 − bt)+p))−1, with a =√


/4	, b = 2�+√

	

and p=a(b−1). We chose, as in [13], 	=0.001 and 
=100, which give solutions with a steep gradient. Nonoscillatory
spatial discretization is obtained by third-order upwind-biased differences for the advection (cf. [14]), and by standard
second-order central differences for the diffusion, on a uniform 160 × 160 grid.

In Table 2 we compare the CN and LEM integrators (Fortran77 codes) for Eq. (12) at a sequence of decreasing
time stepsizes, �t = �x, �x/2, �x/4, �x/8, on the time window [0, 1]. The exit tolerances of ReLPM inside LEM,
and of Newton method inside CN have been set to (�x)2/4, while that of BiCGStab inside Newton is 10 times
smaller.

First, we observe the L2-errors with respect to the exact solution at final time are very close, as expected dealing with
two second-order methods. Moreover, decreasing �t , they tend to stabilize around the size of the underlying spatial
discretization error. It is curious that linear iterations of Crank–Nicolson at the smaller time stepsizes are less than
nonlinear iterations, that is the BiCGStab sometimes exits on the initial guess without iterating. This phenomenon is
due to the fact that up to a certain time the wave front (see Fig. 1) has not developed, and the solution is practically
constant. Observe also that Crank–Nicolson performs about one linear iteration per nonlinear iteration (from 1.4 for
�t = �x to 0.8 for �t = �x/8).

On the other hand, the number of iterations per time step of ReLPM decreases with �t , as expected from the
reduction of the capacity of the ellipse estimating the spectrum of �tJ (see the theoretical convergence as estimated in
[6]). In Fig. 2 we illustrate how the spectrum of the Jacobian matrix in (5) on a smaller 40 × 40 grid, computed with
the dgeev LAPACK subroutine, is deformed with respect to the pure advection–diffusion case (
 = 0) and evolves
in time.

In Table 2 we also report the overall CPU times in seconds on an Alpha Station 600, and the corresponding speed-ups.
It is worth stressing that the LEM integrator is around 5 times faster than CN, despite of the fact that it performs a
larger average number of linear iterations per time step (ReLPM vs. BiCGStab). This is not surprising, even if we
have used optimized linear algebra subroutines (DXML library), taking into account that the preconditioned BiCGStab
performs the equivalent of four matrix–vector products per iteration plus several vector operations, and many memory
allocations for auxiliary vectors. On the contrary, ReLPM performs only one matrix–vector product and two DAXPYs
per iteration, and allocates only four auxiliary vectors.

Table 2
Comparison of the CN and LEM integrators for Eq. (12) at different time stepsizes

�t CN LEM SU

Newt BiCGS CPU(s) Et=1 ReLPM CPU(s) Et=1

�x 2.8 4.0 103.5 8E − 2 12.0 19.8 8E − 2 5.2
�x/2 2.2 2.2 150.3 3E − 2 9.6 32.1 3E − 2 4.7
�x/4 2.2 1.9 270.5 2E − 2 8.3 55.4 2E − 2 4.9
�x/8 2.2 1.9 477.9 2E − 2 7.5 101.9 2E − 2 4.7

Newt: average Newton its. per time step, BiCGS: average BiCGStab its. per time step, Et=1: L2-error at the final time t = 1, ReLPM: average
ReLPM its. per time step, SU: speed-up = (CPU of CN)/(CPU of LEM).
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Fig. 1. Plot of the computed solution (travelling wave) at t = 0.9.
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Fig. 2. Computed eigenvalues of the advection–diffusion–reaction Jacobian matrices (40 × 40 spatial grid) in the Euler–Midpoint exponential
integrator applied to (12). First from the top: no reaction (
 = 0). Second, third and fourth: with reaction (
 = 100), at the times t = 0, t = 0.5, t = 1.

4.2. Example 2: FE discretization of a 2D advection–dispersion–reaction model with linear reaction

In this example we adopt the standard Galerkin FE discretization (linear basis functions) of a simplified linear model
for transport of a reactive solute in groundwater flow (advection–dispersion–reaction, cf., e.g., [25])

�c

�t
= div(D∇c) − div(c�v) − kc, x ∈ �, t > 0, (13)

with initial and Dirichlet (�� = �D) boundary conditions as in (1). Here, c is the solute concentration, D the hy-
drodynamic dispersion tensor, Dij = �T|�v|�ij + (�L − �T)vivj /|�v|, 1� i, j �d (�L and �T being the longitudinal
and the transverse dispersivity, respectively), �v the average linear velocity of groundwater flow. We consider the case
of a first-order reaction f (c) = −kc with decay rate k. The domain � is the unit circle with a mesh consisting of
N = 35 313 nodes and M = 70 030 triangular elements (maximum edges length h= 0.0054), constructed by a standard
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Fig. 3. Left: decay behavior of the solution for different reaction rates k. Right: solution L2-norm with CN and LEM integrators at different time
stepsizes, k = 1000.

Table 3
Comparison of the CN and LEM integrators for Eq. (13) with k = 1000 at different time stepsizes, up to steady state (t = 2.7 × 10−2)

�t CN LEM SU

BiCGS CPU(s) ReLPM CPU(s)

h 1.0 2.5 14.4 1.4 1.8
h/4 1.0 9.0 8.9 9.1 1.0
h/16 1.0 36.2 7.1 16.9 2.1

BiCGS: average BiCGStab iterations per time step, ReLPM: average ReLPM iterations per time step, SU: speed-up = (CPU of CN)/(CPU of LEM).

Delaunay triangulator. Dirichlet boundary condition gD ≡ 1 are imposed on the whole boundary. The velocity is
�v = (v1, v2) = (1, 1), and �L = �T = 0.00625; moreover, u0 ≡ 1.

We have considered three values of the reaction rate k with increasing stiffness (see Fig. 3, left). In Table 3, we
compare the integrators for Eq. (13) with the stiffest value k = 1000, up to the final time t = 0.027 where the solution
is at the steady state, at the decreasing time stepsizes �t = h, h/4, h/16. The exit tolerances of ReLPM inside LEM,
and of BiCGStab inside CN have been set to h2/4.

Notice that, due to truncation errors, CN is as accurate as LEM only for the smallest time stepsize (see Fig. 3, right),
where LEM performs more than twice faster. In addition, LEM is “exact” and can be already used for �t = h/4 with
no loss of accuracy with respect to �t = h/16: in this case, it still provides an acceptable tracking of the transient state
and is 4 times faster than CN.
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