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Abstract. We provide some numerical computations for the soliton dynamics of the

nonlinear Schrödinger equation with an external potential. After computing the ground

state solution r of a related elliptic equation we show that, in the semi-classical regime,

the center of mass of the solution with initial datum modelled on r is driven by the

solution of ẍ = −∇V (x). Finally, we provide some examples and analyze the numerical

errors in the two dimensional case when V is an harmonic potential.

1. Introduction

1.1. Soliton dynamics behaviour. The goal of this paper is to provide a numerical

investigation of the so-called soliton dynamics behaviour for the nonlinear Schrödinger

equation with an external time independent smooth potential V

(P )







iε∂tφε = −ε2

2
∆φε + V (x)φε − |φε|2pφε, x ∈ R

N , t > 0,

φε(x, 0) = φ0(x), x ∈ R
N ,

that is the qualitative behaviour of the solution φε(t) in the semi-classical regime, namely

for ε (which of course plays the rôle of Planck’s constant) going to zero, by taking as

initial datum a (bump like) function of the form

(I) φ0(x) = r
(x − x0

ε

)

e
i

ε
x·ξ0, x ∈ R

N .

We shall assume that N ≥ 1, 0 < p < 2/N , i is the imaginary unit and r ∈ H1 ∩C2(RN)

is the unique [Kwo] (up to translations) positive and radially symmetric solution of the

elliptic problem

(E) − 1

2
∆r + λr = r2p+1 in R

N ,

for some value λ > 0. Finally, x0 and ξ0 are given vectors in R
N that should be conveniently

thought (in the transition from quantum to classical mechanics) as corresponding to the

initial position and initial velocity respectively of a point particle.
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In this framework, since (P ) has a conservative nature, the typical expected behaviour

is that the solution travels with the shape of r((x−x(t))/ε) (hence its support shrinks, as

ε gets small) along a suitable concentration line x(t) merely depending on the potential

V and starting at x0 with initial slope ξ0.

On the basis of the analytical results currently available in literature (see the discussion

in Section 1.2), we believe that providing some numerical study is useful to complete

the overall picture of this phenomenon and furnish some practical machinery for the

computation of the solutions of (E) and, in turn, of (P )-(I). The authors are not aware

of any other contribution in the literature on this issue. For the linear Schrödinger, some

results can be found in [JY].

1.2. Facts from the theory. It is well-known that, given a positive real number m, the

afore mentioned (ground state) solution r of (E) (where the value of λ depends on m)

can obtained through the following variational characterization on the sphere of L2(RN)

(1.1) E(r) = inf{E(u) : u ∈ H1(RN), ‖u‖2
L2 = m},

where E : H1(RN) → R is the C2 energy functional

(1.2) E(u) =
1

2

∫

RN

|∇u|2dx − 1

p + 1

∫

RN

|u|2p+2dx.

Furthermore, there exists a suitable choice of m yielding λ = 1 as eigenvalue in equa-

tion (E). The restriction to the values of p below 2/N is strictly related to the global

well-posedness of (P ) for any choice of initial data φ0 in H1. If p is larger than or

equal to 2/N , then the solution can blow-up in finite time (see e.g. the monograph by T.

Cazenave [Caz]). In particular, in the two dimensional case, p will be picked in (0, 1).

From the analytical side, it has been rigorously known since 2000 that the solution

φε(t) of (P ) remains close to the ground state r, in the sense stated here below, locally

uniformly in time, as ε is pushed to zero. As we said, this dynamical behaviour is typically

known as soliton dynamics (for a recent general survey on solitons and their stability, see

the work of T. Tao [Tao]).

For the nonlinear equation (P ), rigorous results about the soliton dynamics were ob-

tained in various papers by J.C. Bronski, R.L. Jerrard [BJ] and S. Keraani [Kee, Kee1].

We also refer to [Squ] for a complete study of the problem with the additional presence

of an external time independent magnetic vector potential A : R
N → R

N , and to [MPS]

for a study of a system of two coupled nonlinear Schrödinger equations, a topic which

is rapidly spreading in the last few years. The arguments are mainly based upon the

following ingredients: the energy convexity estimates proved by M. Weinstein [Wei, Wei1]

to get the so called modulational stability, the use of conservation laws (mass and energy)

satisfied by the equation and by the associated Hamiltonian system in R
N built upon the
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guiding external potential V , that is the classical Newton law

(1.3)











ẍ(t) = −∇V (x(t)),

x(0) = x0,

ẋ(0) = ξ0.

Under reasonable assumptions on V (e.g. uniform boundedness of the second order partial

derivatives), equation (1.3) admits a unique global solution (x(t), ξ(t)) which satisfies the

following conservation law

H(t) =
1

2
|ξ(t)|2 + V (x(t)), H(t) = H(0), t ≥ 0.

Let us now define a suitable scaling of the standard norm of H1(RN)

‖φ‖2
Hε

= ε2−N‖∇φ‖2
L2 + ε−N‖φ‖2

L2, ε > 0.

The precise statement of the soliton dynamics reads as follows

Analytical Property 1.1 (Cf. e.g. [BJ, Kee1]). Let φε(t) be the solution to problem (P )

corresponding to the initial datum (I). Then there exists a family of shifts θε : R
+ →

[0, 2π) such that, as ε goes to zero, φε(x, t) is equal to the function

(1.4) φr
ε(x, t) = r

(x − x(t)

ε

)

e
i

ε
[x·ẋ(t)+θε(t)], x ∈ R

N , t > 0,

up to an error function ωε(x, t) such that ‖ωε(t)‖Hε
≤ O(ε), locally uniformly in time.

It is important to stress that, in the particular case of standing wave solutions of (P ),

namely special solutions of (P ) of the form

φε(x, t) = uε(x)e−
i

ε
θt, x ∈ R

N , t ∈ R
+, (θ ∈ R),

where uε is a real-valued function, there is an enormous literature regarding the semi-

classical limit for the corresponding elliptic equation

−ε2

2
∆uε + V (x)uε = |uε|2puε, x ∈ R

N .

See the recent book [AM] by A. Ambrosetti and A. Malchiodi and the references therein.

To this regard notice that, if ξ0 = 0 (null initial velocity) and x0 is a critical point of the

potential V , as equation (1.3) admits the trivial solution x(t) = x0 and ẋ(t) = 0 for all

t ∈ R
+, formula (1.4) reduces to

φr
ε(x, t) = r

(x − x0

ε

)

e
i

ε
θε(t), x ∈ R

N , t > 0,

so that the concentration of φε(t) is static and takes place at x0, instead occurring along a

smooth concentration curve in R
N . This is consistent with the literature for the standing

wave solutions mentioned above.

For other achievements about the full dynamics of (P ), see also [GSS, GSS1] (in the

framework of orbital stability of standing waves) as well as [KN, KM] (in the framework

of non-integrable perturbation of integrable systems). Similar results were investigated
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in geometric optics by a different technique (WKB method), namely writing formally the

solution as uε = Uε(x, t)eiθ(x,t)/ε, with Uε = U0 + εU1 + ε2U2 · · · , where θ and Uj are

solutions, respectively, of a Hamilton-Jacobi type equation (the eikonal equation) and of

a system of transport equations. In presence of a constant external potential, the orbital

stability issue for problem (P ) was investigated by T. Cazenave and P.L. Lions [CL], and

by M. Weinstein in [Wei, Wei1]. Then, A. Soffer and M. Weinstein proved in [SW] the

asymptotic stability of nonlinear ground states of (P ). See also the following important

contributions: V. Buslaev and G. Perelman [BP], V. Buslaev and C. Sulem [BS], J.

Fröhlich, S. Gustafson, L. Jonsson, I.M. Sigal, T.-P. Tsai and H.-T. Yau [FGJS, FTY,

ASFS], J. Holmer and Zworski [HZ1], A. Soffer and M. Weinstein [SW1, SW2], T.-P. Tsai

and H.-T. Yau [TY].

Another interesting problem concerns the case where the initial datum is multibump (for

simplicity two bumps), say,

(1.5) φ0(x) = r1

(x − x0

ε

)

e
i

ε
x·ξ0 + r2

(x − y0

ε

)

e
i

ε
x·η0 , x ∈ R

N .

where ri are solutions to the problem

E(ri) = inf{E(u) : u ∈ H1(RN), ‖u‖2
L2 = mi},

for some fixed mi > 0, i = 1, 2 and x0, y0, ξ0, η0 are taken as initial data for

(1.6)











ẍ(t) = −∇V (x(t)),

x(0) = x0,

ẋ(0) = ξ0.











ÿ(t) = −∇V (y(t)),

y(0) = y0,

ẏ(0) = η0.

Then we state the following

Analytical Property 1.2 (Cf. e.g. [ASFS]). Let φε(t) be the solution to (P ) correspond-

ing to the initial datum (1.5). Then there exist two families of shifts θi
ε : R

+ → [0, 2π)

such that, as ε goes to zero, φε(x, t) is equal to the function

(1.7) φr
ε(x, t) = r1

(x − x(t)

ε

)

e
i

ε [x·ẋ(t)+θ1
ε (t)] + r2

(x − y(t)

ε

)

e
i

ε [x·ẏ(t)+θ2
ε (t)],

up to an error function ωε(x, t) depending both on ε and on the initial relative velocity

v = |ξ0 − η0| (the larger is v the smaller is the error), locally uniformly in time.

See figure 3 in the final section for a movie showing this behaviour.

2. Numerical computation of the soliton dynamics

In the numerical simulations included in the last section of the paper, we shall consider

the two dimensional case. On the other hand, here we consider the general case.
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2.1. Overview of the method. Our purpose is to solve the Schrödinger equation

(2.1)







iε∂tφε(x, t) = −ε2

2
∆φε(x, t) + V (x)φε(x, t) − |φε(x, t)|2pφε(x, t), x ∈ R

N ,

φε(x, 0) = rε(x − x0), x ∈ R
N ,

where rε(x) = u(x/ε), so that φ(x, t) = u(x)e−iλt is the solution of

(2.2) i∂tφ(x, t) = −1

2
∆φ(x, t) − |φ(x, t)|2pφ(x, t)

being u real, positive and minimizing the energy (1.2) under the constraint ‖u‖2
L2 = m.

Instead of a direct minimization of the energy (see, e.g., [BT, CORT]), here we consider

the following parabolic differential equation

(2.3)







∂tr(x, t) =
1

2
∆r(x, t) + r2p+1(x, t) + λ(r(x, t))r(x, t), x ∈ R

N , t > 0

r(x, 0) = r0(x), ‖r0‖2
L2 = m, x ∈ R

N

with vanishing boundary conditions, where the map t 7→ λ(r(·, t)) is defined by

λ(r(x, t)) =
1
2

∫

RN |∇r(x, t)|2dx −
∫

RN |r(x, t)|2p+2dx

‖r‖2
L2

This approach is similar to the imaginary time method (see, e.g., [BD]), based on the

propagation of the Schrödinger equation along imaginary time −it and projection to the

L2 sphere of radius
√

m. In equation (2.3), projection is not necessary and the energy

decreases: in fact, if we multiply equation (2.3) by r(x, t) and integrate over R
N , we easily

get
1

2

d

dt
‖r(·, t)‖2

L2 =

∫

RN

r(x, t)∂tr(x, t)dx = 0

and if we multiply equation (2.3) by ∂tr(x, t) and integrate over R
N , we get

1

2

d

dt
E(r(·, t)) = −

∫

RN

|∂tr(x, t)|2dx + λ(r(x, t))

∫

RN

r(x, t)∂tr(x, t)dx

= −
∫

RN

|∂tr(x, t)|2dx ≤ 0

Hence, the steady-state solution r∞(x) = r(x, t → ∞) of (2.3) satisfies ‖r∞‖2
L2 = m

and has a minimal energy. In fact, notice that by the results of [Kwo], for any λ > 0

there exists a unique (up to translations) positive and radially symmetric solution r = rλ

of (E). In turn, given λ1, λ2 > 0, if r1, r2 : R
N → R denote, respectively, the positive

radial solutions of the equations

−1

2
∆r1 + λ1r1 = r2p+1

1 , −1

2
∆r2 + λ2r2 = r2p+1

2 ,

then it is readily verified that

r2(x) = µr1(γx), γ =

(

λ2

λ1

)
1

2

, µ =

(

λ2

λ1

)
1

2p

,
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Figure 1. The positive, radially symmetric and radially decreasing ground

state solution r∞ of (1.1) with m = 1 and p = 0.2. Of course, in the compu-

tation of r∞, there is a spurious imaginary part of maximum value around

10−16, since the complex FFT algorithm is involved. The corresponding

value of λ∞ is λ∞ = −0.37921.

which tells us that that, up to a scaling, the solution corresponding to different values of

λ is unique. Notice now that, due to the choice of the bump like initial datum (Gaussian

like, see (2.6)) in the iterations to compute r∞ (see the discussion below), it turns out

that λ∞, defined as λ(r∞), is negative and r∞ is positive, radially symmetric (see figure 1)

and solves

−1

2
∆r∞ + λ̂∞r∞ = r2p+1

∞ ,

where λ̂∞ = −λ∞ > 0. If rm denotes the ground state solution (with the corresponding

positive eigenvalue denoted by λm), then we have

(2.4) rm(x) = µr∞(γx), γ =

(

λm

λ∞

)
1

2

, µ =

(

λm

λ∞

)
1

2p

.

On the other hand, by construction, we have

m = ‖rm‖2
L2 =

∫

RN

r2
m(x)dx = µ2γ−N

∫

RN

r2
∞(x)dx = mµ2γ−N ,

namely µ2γ−N = 1. Finally, by the definition of γ and µ in (2.4), we get λm = λ̂∞ and

γ = µ = 1, yielding from (2.4) the desired conclusion, that is

r∞ = rm.

Moreover, r∞(x)e−iλ(r∞(x))t is a solution of (2.2). We will take rε(x − x0) = r∞((x −
x0)/ε) as our candidate initial condition for the time-dependent nonlinear Schrödinger

equation (2.1). From a numerical point of view, it is convenient to compute directly

r∞(x/ε) instead of r∞(x) and to apply the change of variable Φ(X, t) =
4
√

εNφε(x, t),√
εX = x, to the nonlinear Schrödinger equation (2.1), and hence to equation (2.3).
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Altogether, we need to solve

(2.5)







∂tR(X, t) =
ε

2
∆R(X, t) + ε−Np/2R(X, t)2p+1 + Λ(R(X, t))R(X, t), X ∈ R

N

R(X, 0) = R0(X), ‖R0‖2
L2 = mεN , X ∈ R

N

with

Λ(R(X, t)) =
ε
2

∫

RN |∇R(X, t)|2dX − ε−Np/2
∫

RN |R(X, t)|2p+2dX

‖R‖2
L2

where R(X, t) = r(x/ε, t)
4
√

εN . Since it is not possible to numerically integrate the

equation up to an infinite time, we will consider R(X, t̄) the steady-state as soon as

E(R(X, t̄)) is stabilized within a prescribed tolerance. The initial condition R0(X) can

be arbitrarily chosen (in the class of bump like functions), but an initial solution with

small energy will shorten the “steady-state” time t̄. Among the family of the Gaussian

functions parameterized by σ

(2.6) Rσ(X) =
√

mσN/2e−|σX/
√

ε|2/2 4

√

( ε

π

)N

with ‖Rσ‖2
L2 = mεN it is possible to choose the one with minimal energy. In fact

E(Rσ) = σ2 ε

2

∫

RN

|∇R1(X)|2dX − σNpε−Np/2

p + 1

∫

RN

|R1(X)|2p+2dX

If we define

A =
ε

2

∫

RN

|∇R1(X)|2dX, B =
ε−Np/2

p + 1

∫

RN

|R1(X)|2p+2dX

the minimum for E(Rσ) is attained for

σ =

(

BNp

2A

)
1

2−Np

The quantities A and B can be analytically computed and give

A =



























mε

4
N = 1

mε2

2
N = 2

3mε3

4
N = 3

, B =
mp+1εN

πNp/2(p + 1)1+N/2

2.2. Numerical discretization. With the normalization introduced above, the nonlin-

ear Schrödinger equation to solve is

(2.7)











i∂tΦ(X, t) = −1

2
∆Φ(X, t) +

V (
√

εX)

ε
Φ(X, t) − |Φ(X, t)|2p

√
ε2+Np

Φ(X, t), X ∈ R
N

Φ(X, 0) = R(X − X0, t̄), X ∈ R
N

A well-established numerical method for the cubic Schrödinger equation (focusing or de-

focusing case) is the Strang splitting [BJM, BJM, CNT]. It is based on a split of the



8 M. CALIARI AND M. SQUASSINA

full equation into two parts, in which the first is spectrally discretized in space and then

exactly solved in time and the second has an analytical solution. We used the Strang

splitting method as well. The first part is

(2.8a) i∂tΦ1(X, t) = −1

2
∆Φ1(X, t)

Thus, the Fourier coefficients of Φ1(X, t) restricted to a sufficiently large space domain

satisfy a linear and diagonal system of ODEs, which can be exactly solved. The second

part is

(2.8b) i∂tΦ2(X, t) =
V (

√
εX)

ε
Φ2(X, t) − |Φ2(X, t)|2p

√
ε2+Np

Φ2(X, t)

It is easy to show that the quantity |Φ2(X, t)|2p is constant in time for this equation.

Then it has an analytical solution. Given the approximated solution Φn(X) ≈ Φ(X, tn)

of equation (2.7), a single time step of the Strang splitting Fourier spectral method can

be summarized in

(1) take Φn(X) as initial solution at time tn for (2.8a) and solve for a time step k/2,

obtaining Φ1(X, tn + k/2);

(2) take Φ1(X, tn + k/2) as initial solution at time tn for (2.8b) and solve for a time

step k, obtaining Φ2(X, tn + k);

(3) take Φ2(X, tn + k) as initial solution for (2.8a) and solve for a time step k/2,

obtaining Φn+1(X).

The result Φn+1(X) is an approximation of Φ(X, tn + k). Since the solutions of the first

part and the second part are trivial to compute in the spectral space and in the real

space, respectively, it is necessary to transform the solution from spectral space to real

and from real space to spectral before and after step (2) above, respectively. All the

transformations can be carried out by the FFT algorithm. The method turns out to be

spectrally accurate in space and of the second order in time.

Therefore, we used the Fourier spectral decomposition for the solution of equation (2.5),

too. Together with the Galerkin method, it yields a nonlinear system of ODEs

(2.9)







R̂′(t) =
ε

2
DR̂(t) + f(R̂(t)), t > 0,

R̂(0) = R̂0,

where R̂ is the vector of Fourier coefficients, D the diagonal matrix of the eigenvalues of

the Laplace operator and f the truncated Fourier expansion of the whole nonlinear part

of equation (2.5). For the solution of equation (2.9) we used an exponential Runge–Kutta

method of order two (see, e.g., [HO]), with the embedded exponential Euler method.

Given the approximation R̂n ≈ R̂(tn), a single time step of the method is

(1) set An+1 = kn+1
ε
2
D and Rn1 = Rn;

(2) compute R̂n2 = exp(An+1)R̂n1 +kn+1ϕ1(An+1)f(R̂n1) (exponential Euler method);

(3) compute R̂n+1 = R̂n2 + kn+1ϕ2(An+1)(−f(R̂n1) + f(R̂n2))
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where ϕ1(z) and ϕ2(z) are the analytic functions

ϕ1(z) =
ez − 1

z
, z 6= 0, ϕ2(z) =

ez − 1 − z

z2
, z 6= 0,

ϕ1(0) = 1, ϕ2(0) =
1

2
.

The result is an approximation of R̂(tn + kn+1). Exponential integrators are explicit and

do not suffer of time step restrictions. However, they require the computation of matrix

functions. In our case, the matrices involved An+1 are diagonal and the computation of

the matrix functions exp(An+1), ϕ1(An+1) and ϕ2(An+1) is trivial. In order to compute

the terms f(R̂n1) and f(R̂n2), it is necessary to recover the functions in the real space

corresponding to the Fourier spectral coefficients R̂n1 and R̂n2, respectively, then compute

the nonlinear part of equation (2.5) and finally to compute its Fourier transform. All the

transformations can be carried out by the FFT algorithm. The term R̂n+1−R̂n2 in step (3)

above can be used as an error estimate for R(tn+1)−Rn+1 and then it is possible to derive

a variable time step integrator. This is particularly useful for our aim of computing the

steady-state of the equation: in fact, we expect that the as soon as the solution approaches

the steady-state it is possible to enlarge the time step, thus reducing the computational

cost. The method turns out to be spectrally accurate in space and of the second order in

time.

3. Two dimensional examples and error analysis

In this section, in order to provide some examples, we reduce to the two dimensional

setting and focus on the physically relevant case of harmonic potential

V (x, y) = ω2
1x

2 + ω2
2y

2, ω1, ω2 > 0,

well-established in the theory of Bose-Einstein condensates. In the two movies starting

from figure 2 we show the dynamics of the solitary wave along two Lissajous curves,

periodic in the left side and ergodic for the right side. In the movie starting from figure 3

we report the soliton dynamics in the case of an initial datum exhibiting a double bump

behaviour (with a sufficiently large distance between the centers) up to the collision time.

It is important to stress that in these figures the paths have an analytic expression and are

plotted before the dynamics starts. The movies will then show that the centers of mass of

the solitons follow adherently these curves up to the final computation time. An analysis

of the error (in the single bump case) arising when the modulus of the solution |φε(x, t)|
is replaced by the modulus of the expression in the representation formula (1.4), namely

r((x − x(t))/ε), is indicated in figure 4. As predicted by the analytical property 1.1, the

error in the ‖ · ‖Hε
is below the order O(ε).
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y

x

-4-3-2
-101
234

-4 -3 -2 -1 0 1 2 3 4
y

x

-4-3-2
-101
234

-4 -3 -2 -1 0 1 2 3 4
Figure 2. In both simulation movies we set ε = 0.01, p = 0.02, m = 1,

(x0, y0) = (−3.0,−3.0), v0 = (0, 0). In the left movie, we chose ω1 = 1.4

and ω2 = 1 (rational ratio). In the right movie, we chose ω1 =
√

2 and

ω2 = 1 (irrational ratio). Notice that, although the ratios ω2/ω1 are very

close in the two examples, the soliton dynamics is ergodic in the right movie.

Of course the figures refer to the (squared modulus of the) solution at the

time t = 0 and contain the concentration paths (admitting an analytic

expression) that the soliton is going to travel on.

y

x

-4-3-2
-101
234

-4 -3 -2 -1 0 1 2 3 4
Figure 3. In the simulation movie, we set ε = 0.01, p = 0.02, m = 1,

(x1
0, y

1
0) = (−3,−3), (x2

0, y
2
0) = (1, 1), v1

0 = (2, 0), v2
0 = (0, 0), ω1 = 1.1 and

ω2 = 1.
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ε

Figure 4. For the error analysis, we set p = 0.02, (x0, y0) = (−0.5,−0.5),

m = 1, ω = (2, 1) and a final time t = π. With the change of variable

we used,
√

εX = x and U(X) =
√

εu(x), we have ‖u‖2
L2 = ‖U‖2

L2 and

‖∇xu‖2
L2 = 1

ε
‖∇XU‖2

L2 . Hence, the numerical error is computed through

formula (written for the 2D case) ‖u‖Hε
=

√

ε−1‖∇XU‖2
L2 + ε−2‖U‖2

L2 . As

predicted by the analytical property 1.1, the error in the ‖ · ‖Hε
is below the

order O(ε).
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