
Implementation of exponential

Rosenbrock-type integrators

Marco Caliari a,b , Alexander Ostermann b,∗

aDepartment of Pure and Applied Mathematics, University of Padua,

Via Trieste 63, I-35121 Padova, Italy

bDepartment of Mathematics, University of Innsbruck,

Technikerstraße 13, A-6020 Innsbruck, Austria

Abstract

In this paper, we present a variable step size implementation of exponential Rosen-
brock-type methods of orders 2, 3 and 4. These integrators require the evaluation
of exponential and related functions of the Jacobian matrix. To this aim, the Real
Leja Points Method is used. It is shown that the properties of this method combine
well with the particular requirements of Rosenbrock-type integrators. We verify
our implementation with some numerical experiments in Matlab, where we solve
semilinear parabolic PDEs in one and two space dimensions. We further present
some numerical experiments in Fortran, where we compare our method with other
methods from literature. We find a great potential of our method for non-normal
matrices. Such matrices typically arise in parabolic problems with large advection
in combination with moderate diffusion and mildly stiff reactions.

Key words: exponential integrators, Rosenbrock-type methods, real Leja points,
Newton interpolation, parabolic evolution equations, implementation

1 Introduction

Exponential integrators have a long history in numerical analysis. First pro-
totypes have been constructed already more than 50 years ago. Nevertheless,
they did not play a prominent role in applications for quite a long time. The

∗ Corresponding author.
Email addresses: mcaliari@math.unipd.it (Marco Caliari),

alexander.ostermann@uibk.ac.at (Alexander Ostermann).

Preprint submitted to Elsevier version of 30 December 2006

main problem was that exponential integrators make explicit use of the expo-
nential and related functions of (large) matrices. Their efficient implementa-
tion was therefore considered to be difficult or even impossible.

This view changed in the last years when very promising experiments with
semilinear evolution equations where reported in literature. These experiments
gave on the one hand the impetus for a rigour error and convergence analysis
for stiff evolution equations, see [6, 11]. On the other hand they led to the
construction of several new classes of exponential integrators, see, e.g., [13, 16].

In this paper we are concerned with exponential Rosenbrock-type methods
that rely on the full Jacobian of the problem [13]. In general, this matrix
has no particular structure, and it changes continuously from step to step.
Therefore, standard techniques for evaluating the exponential are not very
efficient. In particular, methods based on fast Fourier techniques can not be
used. Recent progress in numerical linear algebra suggests Krylov subspace
methods and methods based on direct polynomial interpolation as attractive
alternatives. Our approach here is based on the latter.

For a given function ϕ, a square matrix J and a vector v, we approximate
ϕ(J)v by an interpolation polynomial, based on real Leja points. This in-
terpolation procedure was first proposed in [5] in the context of exponential
integrators. It is computationally attractive because it has modest storage re-
quirements and involves matrix-vector multiplications only. We recall that Leja
points are roughly distributed like Chebyshev points. This reduces the sensi-
tivity of the interpolation polynomial with respect to perturbations. Moreover,
the recursive definition of Leja points is an attractive feature in combination
with Newton-type interpolation.

The main purpose of the paper is to show that exponential Rosenbrock-type
methods can be implemented efficiently in that way, and that the resulting
programs are competitive with existing methods for solving certain reaction-
diffusion-advection equations.

An outline of the paper is as follows: In Section 2, we state our problem class
and recall the definition of exponential Rosenbrock-type methods from [13].
In Section 3, we give two embedded pairs of methods of orders 3 and 4, re-
spectively, and we provide the exponential Rosenbrock–Euler scheme with an
appropriate error estimate. In Section 4 we introduce the Real Leja Points

Method for approximating the exponential and related functions, and we ex-
plain some issues of implementation. Section 5 is devoted to numerical ex-
periments in MATLAB and FORTRAN. Finally, we draw some conclusions in
Section 6.

2

2 Problem class and numerical methods

In this paper we are concerned with the time discretisation of autonomous
evolution equations of the form

u′(t) = f(u(t)) = Au(t) + g(u(t)), u(t0) = u0. (2.1)

A possible extension to non-autonomous problems will be discussed at the end
of this section. Equation (2.1) will be considered as an abstract differential
equation in a Banach space framework of sectorial operators. In particular,
we assume that the operator A generates an analytic semigroup and that
the nonlinearity g is relatively bounded with respect to A, see [9] for details.
This framework is sufficiently general to cover interesting examples such as
reaction-diffusion-advection equations.

For the solution of (2.1), we consider exponential one-step methods which
define numerical approximations un to the exact solution u(tn) at discrete
times tn. The methods rely on a linearisation of (2.1) at each step

u′(t) = Jnu(t) + gn(u(t)), tn ≤ t ≤ tn+1, (2.2a)

where Jn denotes the Fréchet derivative of f and gn the remainder

Jn = Duf(un), gn(u(t)) = f(u(t)) − Jnu(t). (2.2b)

Applying the exponential Euler method with step size hn = tn+1 − tn to prob-
lem (2.2) results in the numerical scheme

un+1 = exp(hnJn)un + hnϕ1(hnJn)gn(un)

= un + hnϕ1(hnJn)f(un),
(2.3)

which we will call exponential Rosenbrock–Euler method henceforth. Recall
that exponential integrators are built on the exponential function and on the
related entire functions

ϕk(z) =
∫ 1

0
e(1−τ)z τ j−1

(j − 1)!
dτ, k ≥ 1. (2.4)

This integral representation shows that the ϕ-functions are well-defined for
sectorial operators as arguments as well.

More generally, we consider in this paper the class of s-stage exponential

3

Rosenbrock-type methods

Uni = exp(cihnJn)un + hn

i−1∑

j=1

aij(hnJn)gn(Unj), (2.5a)

un+1 = exp(hnJn)un + hn

s∑

i=1

bi(hnJn)gn(Uni). (2.5b)

These methods were introduced and fully analysed in [12, 13]. The exponential
Rosenbrock–Euler method is a particular case with one stage, and with weight
b1(hJ) = ϕ1(hJ). We always employ the simplifying assumptions

s∑

i=1

bi(hJ) = ϕ1(hJ),
i−1∑

j=1

aij(hJ) = ciϕ1(cihJ), i = 1, . . . , s (2.6)

which can be seen as natural extensions of the well-known B(1) and C(1)
conditions for Runge–Kutta methods. As a consequence, all methods possess
the node c1 = 0.

Remark. We briefly sketch how exponential Rosenbrock-type methods can
be applied to non-autonomous problems

u′(t) = f(t, u(t)), u(t0) = u0. (2.7)

The key step is to rewrite (2.7) in autonomous form by adding the equation
t′ = 1, and to linearise at (tn, un). This yields

[
t′

u′(t)

]
=

[
0 0

Dtf(tn, un) Duf(tn, un)

] [
t

u(t)

]
+

[
1

gn(t, u(t))

]
(2.8)

with

gn(t, u(t)) = f(t, u(t)) − Dtf(tn, un) t − Duf(tn, un) u(t).

The exponential Rosenbrock method (2.5) is then applied to this augmented
system. For an efficient implementation, one uses the following result.

Lemma 1 Let J be a real N × N matrix and w a vector in R
N . Then

ϕk

([
0 0
w J

])
=

[
ϕk(0) 0

ϕk+1(J)w ϕk(J)

]
. (2.9)

Proof. From (2.4) we see that

ϕk

([
0 0
w J

]) [
α
β

]

4

is the solution of the problem

x′(t) =
tk−1

(k − 1)!
α, x(0) = 0,

y′(t) = w x(t) + Jy(t) +
tk−1

(k − 1)!
β, y(0) = 0,

(2.10)

at t = 1. From

x(t) =
tk

k!
α, x(1) = ϕk(0) α,

we obtain

y(1) = ϕk+1(J)wα + ϕk(J)β

by using once more (2.4). This finally proves the result. 2

3 Embedded methods of orders two, three and four

The construction of high-order integrators is usually based on order condi-
tions. We are mainly interested here in the stiff case, requiring our methods to
converge uniformly with respect to the stiffness. For exponential Rosenbrock-
type methods, the corresponding order conditions were derived in [12, 13],
where also embedded pairs of orders 3 and 4 were constructed. We summarise
the order conditions in Table 1, and we recall some simple methods below.

Since we require exponential Rosenbrock-type methods to satisfy the simpli-
fying assumptions (2.6), all considered methods are of order two at least.

Order 2. The exponential Rosenbrock–Euler method (2.3) is computationally
attractive since it achieves second order with one stage only. For the purpose
of local error estimation, we consider also

ũn+1 = exp(hnJn)un + hnϕ1(hnJn)gn(un+1). (3.1)

Table 1
Order conditions for exponential Rosenbrock-type methods up to order 4.

order order condition

1
∑s

i=1 bi(hJ) = ϕ1(hJ)

2
∑i−1

j=1 aij(hJ) = ciϕ1(cihJ), 2 ≤ i ≤ s

3
∑s

i=2 bi(hJ)c2
i = 2ϕ3(hJ)

4
∑s

i=2 bi(hJ)c3
i = 6ϕ4(hJ)

5

The dominating term in the error control

ũn+1 − un+1 = hnϕ1(hnJn)
(
gn(un+1) − gn(un)

)

= hnϕ1(hnJn)
(

1

2

∂2f

∂u2
(un)(un+1 − un)2 + . . .

) (3.2)

is of third order (under reasonable smoothness assumptions). The exponential
Rosenbrock–Euler method with the above error estimate will be called erow2

henceforth.

Order 3. With two stages, it is possible to construct a third-order method
with coefficients

c1

c2 a21

b1 b2

=

0
1 ϕ1

ϕ1 − 2ϕ3 2ϕ3

For error control, we employ the exponential Rosenbrock–Euler method. The
resulting embedded pair will be called erow32 henceforth.

Order 4. The method erow43 is a fourth-order method with a third-order
error estimator. Its coefficients are

c1

c2 a21

c3 a31 a32

b1 b2 b3

b̃1 b̃2 b̃3

=

0
1
2

1
2
ϕ1

(
1
2
·
)

1 0 ϕ1

ϕ1 − 14ϕ3 + 36ϕ4 16ϕ3 − 48ϕ4 −2ϕ3 + 12ϕ4

ϕ1 − 14ϕ3 16ϕ3 −2ϕ3

where b̃i are the corresponding weights of the embedded method

ũn+1 = exp(hnJn)un + hn

s∑

i=1

b̃i(hnJn)gn(Uni). (3.3)

Note that the internal stages of all considered methods are exponential Rosen-
brock–Euler steps.

A competitive implementation of exponential integrators strongly relies on
an efficient computation of the involved ϕ-functions. Our approach, to be
described in the next section, is based on direct interpolation.

4 Newton interpolation at Leja points

Let J be a real N×N matrix, h > 0 and v a vector in R
N . In order to compute

ϕk(hJ)v, we use the Real Leja Points Method, first proposed in [5] for ϕ1. This

6

method has shown very attractive computational features. It is based on the
interpolation in the Newton form of the scalar function ϕk(hz) at a sequence
of Leja points {zi} on a real focal interval, say [a, b], of a family of confocal
ellipses in the complex plane.

A sequence of Leja points {zi} is defined recursively, usually starting from
|z0| = max{|a|, |b|}, in such a way that the (m + 1)-th point satisfies

m−1∏

i=0

|zm − zi| = max
z∈[a,b]

m−1∏

i=0

|z − zi|.

In practice, Leja points can be extracted from a sufficiently dense set of uni-
formly distributed points on [a, b]. From the definition, it is clear that it is
possible to increase the interpolation degree just by adding new nodes of the
same sequence.

The use of Leja points is suggested, besides the optimal properties in the
Newton interpolation form (cf. [17]), by the fact that they guarantee max-
imal and superlinear convergence of the interpolant on every ellipse of the
confocal family. Therefore, they also guarantee superlinear convergence of the
corresponding matrix polynomials, provided that the spectrum (or the field of
values) of the matrix in contained in one of the above ellipses.

A key step in the approximation procedure consists in estimating cheaply
the real focal interval [a, b] such that the “minimal” ellipse of the confocal
family containing the spectrum has a moderate capacity. We recall that the
capacity of an ellipse is the half sum of its semi-axes. The numerical experience
with matrices arising from stable spatial discretisations of parabolic equations,
which are the main target of the method, has shown that good results can be
obtained at a very low cost simply by intersecting the Gerschgorin’s disks of
the matrix with the real axis.

In order to avoid underflow or overflow problems with the computation of
divided differences (cf. [20]), it is convenient to interpolate the scaled and
shifted function ϕk(h(c + γξ)), [a, b] = [c− 2γ, c + 2γ] at the Leja points {ξi},
ξ0 = 2, of the reference interval [−2, 2]. The latter can be computed once and
for all. The matrix Newton polynomial of degree m is then

pm(hJ)v = pm−1(hJ)v + dmqm ,

qm =
(
(J − cI)/γ − ξm−1I

)
qm−1,

(4.1a)

where
p0(hJ)v = d0q0, q0 = v, (4.1b)

and {di}
m
i=0 are the divided differences of the function ϕk(h(c + γξ)) at the

points {ξi}. Notice that in the practical implementation of (4.1) it is sufficient
to use a vector q = qm−1 and update it at each iteration. The degree of

7

approximation is not known a priori and depends on the accuracy required for
the approximation of ϕk(hJ)v. A practical estimate of the interpolation error
is given by

‖em‖ = ‖pm+1(hJ)v − pm(hJ)v‖ = |dm+1| · ‖qm+1‖ ≈

≈ ‖pm(hJ)v − ϕk(hJ)v‖.
(4.2)

In order to filter possible oscillations in the error estimate, the average on
the last five values ‖em‖, . . . , ‖em−4‖ is used instead as the error estimate at
degree m.

The attractive computational features of the method are clear: there is no
Krylov subspace to store and the complexity of the two-term recurrence (4.1a)
is linear and not quadratic in m, as the long-term recurrence in the standard
Krylov method for nonsymmetric matrices hJ , see, e.g., [7, 10, 3]. Moreover,
it is not required to solve real or complex linear systems, as in rational Krylov
approximations [15, 21] or Carathéodory–Fejér and contour integrals approx-
imations [18]. Finally, the Real Leja Points Method is very well structured for
a parallel implementation, as shown in [2, 14] for the ϕ1-function.

When the expected degree m for convergence is too large, the original time
step h has to be split into a certain number of substeps, say L and the approx-
imation of ϕk(hJ)v is recovered from ϕk(τhJ)v with τ = 1/L. It is possible
to use a variant of the scaling and squaring approach as suggested in [4]. This
approach, however, is restricted to not too large matrices, since it requires
the explicit computation of some ϕi(hJ), i ≤ k. Here we prefer to consider
ϕk(hJ)v as the solution of a ODE system at time t = 1 and to use an exact
integrator for the system. Let K = hJ and consider

y′(t) = Ky(t) +
tk−1

(k − 1)!
v, y(0) = 0 (4.3)

for k > 0. We set y0 = 0 and τ` = `τ . Applying the variation-of-constants
formula to this problem, we get

y(τ`+1) = y`+1 = exp(τK)y` +
∫ τ`+1

τ`

exp((τ`+1 − s)K)
sk−1

(k − 1)!
v ds

= exp(τK)y` +
∫ τ

0
exp((τ − ζ)K)

(ζ + τ`)
k−1

(k − 1)!
v dζ.

(4.4)

8

The last integral can be rewritten as

∫ τ

0
exp((τ − ζ)K)

(ζ + τ`)
k−1

(k − 1)!
v dζ

=
k−1∑

i=0

(
k − 1

i

)∫ τ

0
exp((τ − ζ)K)

ζ iτk−1−i
`

(k − 1)!
v dζ

=
k−1∑

i=0

(k − 1)!

(k − 1 − i)!(k − 1)!

∫ τ

0
exp((τ − ζ)K)

ζ iτk−1−i
`

i!
v dζ

=
k−1∑

i=0

τk−1−i
` τ i+1

(k − 1 − i)!
ϕi+1(τK)v,

(4.5)

where the last equality holds since

τkϕk(τz) =
∫ τ

0
e(τ−ζ)z ζk−1

(k − 1)!
dζ.

Inserting (4.5) into (4.4) finally gives

y`+1 = exp(τK)y` + τ k
k−1∑

i=0

`k−1−i

(k − 1 − i)!
ϕi+1(τK)v, ` = 0, . . . , L − 1. (4.6)

The computation of (4.6) requires k evaluations of a matrix function for ` = 0.
When increasing ` by one, only one additional evaluation, namely that of
exp(τK)y` is required. The other terms are scalar multiples of the previous
evaluations, which have to be stored.

Remark. It is worth noting that, using recursively the relation

ϕk−1(z) =
1

(k − 1)!
+ ϕk(z)z, k > 0, (4.7)

it is possible to express all appearing ϕ-functions in (4.6) by ϕk. For example,
for k = 2, we have

y`+1 = y` + τKy` + `τ 2v + τ 2ϕ2(τK)(K2y` + v + `τKv)

This approach is computationally more convenient for k > 1 and small L,
since it requires only one matrix function evaluation for ` = 0, too. However,
since powers of K are involved in the formula, severe cancellation errors might
appear, destroying the stability of the integrator (4.6).

9

5 Numerical comparisons and implementation issues

Exponential Rosenbrock-type methods are explicit time stepping schemes.
Their implementation is therefore quite standard, apart from the calculation
of the exponential and related functions, which has been described above.

Our variable step size implementations of erow2, erow32 and erow43 are based
on a reliable control of the local error

v = un+1 − ũn+1,

where ũn+1 is the result of the embedded method, see Section 3. When stepping
from un to un+1, errors are measured in the weighted and scaled norm

‖v‖E =

√√√√ 1

N

N∑

i=1

(
vi

scali

)2

, scali = tola + tolr · max{|un,i|, |un+1,i|}, (5.1)

with the absolute tolerance tola and the relative tolerance tolr, see [8, Chap. IV.8].
The result of the step is accepted whenever

‖v‖E ≤ 1.

In the evaluation of the ϕ-functions, the degree of approximation m has to
be determined by accuracy requirements. The estimated approximation error
(4.2) is again measured in the norm (5.1), but using a slightly modified scaling
factor

scali = tola + tolr · ‖un‖∞. (5.2)

As stopping criterium, we take

sf · ‖em‖E ≤ 1, (5.3)

where sf denotes a security factor. Our numerical tests gave best results for
sf = 10p with p denoting the order of the method, see Figure 3.

5.1 Numerical experiments in MATLAB

As a first numerical example, we consider the semilinear reaction-diffusion-
advection equation

∂tu = ε(∂xxu + ∂yyu) − α(∂xu + ∂yu) + γ u(u − 1
2
)(1 − u) (5.4a)

on the unit square Ω = [0, 1]2, subject to homogeneous Neumann boundary
conditions. We choose ε = 1/20, α = −1, γ = 1, and take as initial condition

u(t = 0, x, y) = 0.3 + 256
(
x(1 − x)y(1 − y)

)2
. (5.4b)

10

100 101 102
10−8

10−7

10−6

10−5

10−4

10−3

10−2
Traveling Wave

number of accepted steps

re
la

tiv
e

er
ro

r i
n

2−
no

rm
erow2
erow32
erow43

102 103
10−8

10−7

10−6

10−5

10−4

10−3

10−2
Traveling Wave

number of matrix−vector products

re
la

tiv
e

er
ro

r i
n

2−
no

rm

erow2
erow32
erow43

Fig. 1. Achieved accuracy vs. number of steps (left) and number of matrix-vector
multiplications (right) for the exponential Rosenbrock methods erow2, erow32, and
erow43, when applied to (5.4). The symbols mark the results, obtained for the
prescribed tolerances tola = tolr = 10−2, 10−3, 10−4, 10−5, and 10−6, respectively.

We discretise this problem in space by standard finite differences with mesh-
width ∆x = ∆y = 0.05. This gives a mildly stiff system of ODEs of size
N = 441, which is integrated in time up to T = 0.3. (A much finer discretisa-
tion, leading to a stiffer system, will be discussed in Section 5.2 below). The
numerical results are displayed in Figure 1. The left figure clearly shows the
expected orders of convergence of our variable step size implementations. The
right figure indicates that the methods erow2, erow32 and erow43 are most
efficient for low, middle and high accuracies, respectively.

101 102
10−7

10−6

10−5

10−4

10−3

10−2

10−1
Allan Cahn

number of accepted steps

re
la

tiv
e

er
ro

r i
n

2−
no

rm

erow2
erow32
erow43

102 103 104
10−7

10−6

10−5

10−4

10−3

10−2

10−1
Allan Cahn

number of matrix−vector products

re
la

tiv
e

er
ro

r i
n

2−
no

rm

erow2
erow32
erow43

Fig. 2. Achieved accuracy vs. number of steps (left) and number of matrix-vector
multiplications (right) for the exponential Rosenbrock methods erow2, erow32, and
erow43, when applied to (5.5). The symbols mark the results, obtained for the
prescribed tolerances tola = tolr = 10−2, 10−3, 10−4, 10−5, and 10−6, respectively.

11

As a second example, we consider the Allen–Cahn equation

∂tu = ε∂xxu + (u + x) − (u + x)3 (5.5a)

on the interval Ω = [−1, 1], subject to homogeneous Dirichlet boundary con-
ditions. We choose ε = 0.01 and take as initial condition

u(t = 0, x) = 0.53 x + 0.47 sin(− 3
2
πx) − x, (5.5b)

which is compatible with the boundary conditions. We discretise this problem
in space with a standard Chebyshev spectral method. This gives a stiff ODE

system of size N = 30, which is integrated in time up to T = 3. The left figure
again clearly shows the expected orders of convergence of our variable step
size implementations. The right figure indicates that erow2 is most efficient
for low and middle accuracies, whereas erow32 is superior for higher ones.

The choice of the security factor sf in (5.3) strongly influences the achieved
accuracy of the overall integration. We illustrate this with a numerical ex-
periment. We integrated once more the Allan–Cahn equation with erow32,
but this time for various choices of the security factor. The obtained results
are displayed in Figure 3. The outcome of this and many further experiments
motivated us to choose sf = 10p with p denoting the order of the method.

101 102
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
Allen Cahn (with erow32)

number of accepted steps

re
la

tiv
e

er
ro

r i
n

2−
no

rm

sf=1e1
sf=1e2
sf=1e3
sf=1e4

103
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
Allen Cahn (with erow32)

number of matrix−vector products

re
la

tiv
e

er
ro

r i
n

2−
no

rm

sf=1e1
sf=1e2
sf=1e3
sf=1e4

Fig. 3. Achieved accuracy vs. number of steps (left) and number of matrix-vector
multiplications (right) for the exponential Rosenbrock method erow32 when ap-
plied to (5.5). We chose as security factors sf = 10, 100, 1000, and 10000, re-
spectively. The symbols mark the results, obtained for the prescribed tolerances
tola = tolr = 10−2, 10−3, 10−4, 10−5, and 10−6, respectively.

5.2 Numerical experiments in FORTRAN

The exponential Rosenbrock method of order two has been implemented also
in Fortran, using the Real Leja Points Method as described in Section 4. The

12

resulting code is called erow2l. We further implemented the same Rosenbrock
integrator with a standard Krylov subspace method for approximating the
matrix functions. To this aim, we used the phipro Fortran code by Saad
(cf. [7]). The resulting code is called erow2k.

As numerical example, we consider once more the semilinear reaction-diffusion-
advection equation (5.4). This time, we discretise the problem in space by
standard finite differences with meshwidth ∆x = ∆y = 0.005. This results in
a stiff system of ODEs of size N = 40401, which is integrated up to T = 0.3.

Regarding the phipro code, the dimension of the Krylov subspace m is an
input parameter: the time step h is automatically subdivided into smaller
substeps τ in order to compute ϕ1(τhJ)v within the maximum number of
iterations m. In our experiments, m was chosen equal to 10 for γ = 100 and
equal to 15 for γ = 1. The reason for this choice is that smaller time steps are
expected for the stiffer reaction.

The above methods have been compared with three other second-order meth-
ods, namely the explicit Runge–Kutta–Chebyshev method rkc [19], the ex-
plicit Orthogonal Runge–Kutta–Chebyshev method rock2 [1], and the clas-
sical implicit Crank–Nicolson scheme cn. For the latter, an inexact Newton
scheme has been used (the Jacobian was computed only at the first iteration),
with the absolute error estimate at iteration r (cf. [8, Chap. IV.8])

‖er‖E = ηr‖u
r
n+1 − ur−1

n+1‖E, ηr =
θr

1 − θr

, θr =
‖ur

n+1 − ur−1
n+1‖E

‖ur−1
n+1 − ur−2

n+1‖E

. (5.6)

The linear systems inside the Newton iterations have been solved by the
BiCGStab method, preconditioned by the ILU factorisation with no fill-in.
For estimating the local truncation error and step size control, we have used
a stabilised finite-difference approximation of the third derivatives. The sta-
bilisation was achieved by solving an additional linear system involving the
same Jacobian as in the Newton process. A similar idea has been used in [8,
Chap. IV.8].

From our numerical experiments, we draw the following conclusions. First of
all, it can be seen from Tables 2–4 that erow2l performs better (in almost
all cases) than erow2k in terms of total CPU time. The maximum speed up
is about 2.1, see Table 3, tola = tolr = 1E-4, ε = 1, where both methods are
much more precise than the prescribed accuracy, with erow2k slightly better
in terms of achieved accuracy. The dimension of the Krylov subspace m could
be tuned in order to improve the performance and to reduce the extra accuracy
that erow2k sometimes reaches (see, e.g., Table 3, tola = tolr = 1E-5, ε = 1 or
Table 4, tola = tolr = 1E-4, α = −5). Nevertheless, the optimal choice of the
Krylov subspace is not known a priori and it highly depends on the parameters
of the problem, the spatial discretisation and the prescribed accuracy.

13

Table 2
CPU time in seconds (CPU), number of time steps (nts) and relative error in 2-norm
(err.) for various methods when applied to (5.4) with α = −1 and γ = 1, and the
value of ε and the prescribed tolerances as reported.

tola = tolr = 1E-4

ε = 0.05 ε = 0.1 ε = 1
method CPU nts err. CPU nts err. CPU nts err.

rkc 1.92 22 5.2E-4 2.63 22 5.1E-4 8.52 32 9.4E-5
rock2 2.10 39 1.5E-4 2.89 39 1.2E-4 9.07 52 4.6E-5
erow2k 7.21 12 4.2E-4 11.40 11 3.1E-4 81.34 9 6.8E-5
erow2l 4.40 12 4.3E-4 7.71 12 3.4E-4 55.10 10 7.7E-4
cn 15.20 17 1.1E-3 21.57 18 9.4E-4 66.77 29 2.2E-3

tola = tolr = 1E-5

ε = 0.05 ε = 0.1 ε = 1
method CPU nts err. CPU nts err. CPU nts err.

rkc 2.66 40 1.5E-4 3.61 40 1.2E-4 12.16 63 2.5E-5
rock2 3.83 118 1.5E-5 5.17 115 1.3E-5 15.55 153 6.2E-6
erow2k 7.43 21 9.2E-5 11.98 20 7.0E-5 91.93 14 1.9E-5
erow2l 5.05 21 9.2E-5 9.14 20 6.8E-5 68.41 15 3.2E-4
cn 22.21 33 4.0E-4 31.40 33 3.6E-4 114.13 53 7.8E-5

tola = tolr = 1E-6

ε = 0.05 ε = 0.1 ε = 1
method CPU nts err. CPU nts err. CPU nts err.

rkc 4.07 83 3.3E-5 5.49 84 2.5E-5 18.24 130 5.3E-6
rock2 7.55 381 1.6E-6 9.79 366 1.3E-6 27.93 472 6.9E-7
erow2k 8.93 41 2.1E-5 13.35 38 1.6E-5 95.22 25 5.1E-6
erow2l 7.60 41 2.2E-5 10.90 38 1.6E-5 76.50 26 6.0E-6
cn 33.54 66 4.2E-4 50.08 67 3.2E-4 165.75 107 1.8E-5

1 2 4 8 16 32
CPU seconds

10-6

10-5

10-4

10-3

10-2

re
la

tiv
e

er
ro

r i
n

2-
no

rm

rkc
rock2
erow2k
erow2l

Fig. 4. Achieved accuracy vs. CPU time for various methods when applied to (5.4)
with ε = 0.1, α = −1 and γ = 1. The symbols mark the results, obtained for the
prescribed tolerances tola = tolr = 10−3, 10−3.5, 10−4, 10−4.5, 10−5, 10−5.5, and 10−6.

14

Table 3
CPU time in seconds (CPU), number of time steps (nts) and relative error in 2-norm
(err.) for various methods when applied to (5.4) with α = −1 and γ = 100, and the
value of ε and the prescribed tolerances as reported.

tola = tolr = 1E-4

ε = 0.05 ε = 0.1 ε = 1
method CPU nts err. CPU nts err. CPU nts err.

rkc 3.16 54 1.4E-3 4.05 49 1.2E-3 10.66 43 2.4E-5
rock2 3.57 105 3.4E-4 4.56 92 2.7E-4 11.59 72 1.7E-5
erow2k 11.79 72 4.5E-4 17.07 66 4.5E-4 78.21 44 1.2E-6
erow2l 9.35 73 5.0E-4 10.96 68 4.5E-4 37.08 45 6.0E-6

cn 27.79 43 2.6E-3 39.09 38 2.1E-3 74.99 35 1.1E-5

tola = tolr = 1E-5

ε = 0.05 ε = 0.1 ε = 1
method CPU nts err. CPU nts err. CPU nts err.

rkc 4.93 115 3.2E-4 6.17 102 2.7E-4 15.53 87 5.5E-6
rock2 7.00 337 3.5E-5 8.64 289 2.7E-5 20.01 215 2.9E-6
erow2k 16.42 155 1.1E-4 19.97 141 1.1E-4 82.56 89 3.0E-7
erow2l 17.59 155 1.1E-4 18.53 143 1.3E-4 49.18 90 2.5E-6

cn 43.77 89 6.8E-4 60.21 79 7.3E-4 136.59 69 4.5E-6

tola = tolr = 1E-6

ε = 0.05 ε = 0.1 ε = 1
method CPU nts err. CPU nts err. CPU nts err.

rkc 7.78 247 7.4E-5 9.63 217 6.0E-5 22.43 180 1.2E-6
rock2 15.14 1151 3.8E-6 17.26 953 2.8E-6 34.81 668 4.7E-7
erow2k 35.01 334 2.6E-5 32.67 303 2.4E-5 96.14 185 7.6E-8
erow2l 33.68 334 2.6E-5 37.83 304 2.4E-5 62.21 186 1.5E-6

cn 70.50 190 1.2E-3 92.90 167 1.2E-3 243.39 147 1.7E-6

2 4 8 16 32 64
CPU seconds

10-6

10-5

10-4

10-3

10-2

re
la

tiv
e

er
ro

r i
n

2-
no

rm

rkc
rock2
erow2k
erow2l

Fig. 5. Achieved accuracy vs. CPU time for various methods when applied to (5.4)
with ε = 0.1, α = −1 and γ = 100. The symbols mark the results, obtained for the
prescribed tolerances tola = tolr = 10−3, 10−3.5, 10−4, 10−4.5, 10−5, 10−5.5, and 10−6.

15

Table 4
CPU time in seconds (CPU), number of time steps (nts) and relative error in 2-norm
(err.) for various methods when applied to (5.4) with ε = 0.1 and γ = 1, and the
value of α and the prescribed tolerances as reported.

tola = tolr = 1E-4

α = −5 α = −10
method CPU nts err. CPU nts err.

rkc 6.93 123 2.3E-5 10.59 218 2.9E-5
rock2 4.56 102 7.7E-4 11.30 471 3.9E-4
erow2k 14.22 16 2.5E-7 10.97 14 5.9E-6
erow2l 8.52 17 1.4E-5 6.22 15 1.1E-5
cn 33.20 40 5.1E-5 32.45 43 1.8E-2

tola = tolr = 1E-5

α = −5 α = −10
method CPU nts err. CPU nts err.

rkc 6.00 104 7.9E-6 11.53 285 2.8E-6
rock2 7.98 295 7.1E-6 13.91 656 1.9E-5
erow2k 15.05 29 3.1E-7 14.10 26 2.4E-6
erow2l 9.25 30 1.7E-5 7.82 26 5.8E-6
cn 48.40 81 4.2E-5 56.90 90 4.0E-5

tola = tolr = 1E-6

α = −5 α = −10
method CPU nts err. CPU nts err.

rkc 8.95 215 2.3E-6 24.33 1020 3.6E-7
rock2 16.01 984 8.7E-7 21.59 1356 2.6E-6
erow2k 18.16 57 3.7E-7 16.39 51 1.5E-6
erow2l 13.53 58 3.5E-7 11.44 51 1.6E-6
cn 75.32 168 3.9E-5 86.42 185 6.0E-5

2 4 8 16 32 64
CPU seconds

10-7

10-6

10-5

10-4

10-3

10-2

re
la

tiv
e

er
ro

r i
n

2-
no

rm

rkc
rock2
erow2k
erow2l

Fig. 6. Achieved accuracy vs. CPU time for various methods when applied to (5.4)
with ε = 0.1, α = −10 and γ = 1. The symbols mark the results, obtained for the
prescribed tolerances tola = tolr = 10−3, 10−3.5, 10−4, 10−4.5, 10−5, 10−5.5, and 10−6.

16

From Tables 2–3, collecting the results for small advection α = −1, it is clear
that the rkc and rock2 perform significantly better than the other methods,
with rock2 being more reliable in reaching the prescribed accuracy (as it is also
clear from Figures 4–5). For large advection (that is, non-normal matrices), the
results of the exponential Rosenbrock methods are much closer to the results
of the Runge–Kutta–Chebyshev methods, and the former perform sometimes
even better (in particular erow2l, see Table 4, α = −10).

In any case, the implicit cn method performs very badly in comparison with
the others, both in terms of CPU time and achieved accuracy.

6 Conclusions

In this paper we have presented a variable step size implementation of ex-
ponential Rosenbrock-type methods of orders 2, 3 and 4. These integrators
require the exponential and related functions, evaluated at the Jacobian ma-
trix of the problem. In general, this matrix has no special structure and varies
continuously from step to step. For evaluating the matrix functions, the Real
Leja Points Method has been used. The properties of this method meet well
the requirements of Rosenbrock-type integrators.

For large problems, the computational work of the Real Leja Points Method
mainly consists in performing matrix-vector multiplications. In our substep-
ping implementation, the computational work grows roughly linearly with the
stiffness of the problem. For Runge–Kutta–Chebyshev methods, however, the
stability domain grows quadratically with the number of stages [8, Chap. IV.2].
The computational work thus grows with the square root of the stiffness. This
fact explains well, why Runge–Kutta–Chebyshev methods are more efficient
for pure reaction-diffusion problems, where the reaction part can be evaluated
cheaply, see Tables 2 and 3.

However, as soon as advection plays a decisive role, the picture changes, see
Table 4. We find a great potential of our methods for non-normal matrices.
A typical situation where this occurs in practice are problems with large ad-
vection in combination with diffusion and mildly stiff (and maybe expensive)
reactions.

References

[1] Abdulle, A., Medovikov, A. A., 2001. Second order Chebyshev methods
based on orthogonal polynomials. Numer. Math. 90, 1–18.

17

[2] Bergamaschi, L., Caliari, M., Mart́ınez, A., Vianello, M., 2005. A parallel
exponential integrator for large-scale discretizations of advection-diffusion
models. In: Di Martino, B. e. a. (Ed.), Recent Advances in Parallel Virtual
Machine and Message Passing Interface. Vol. 3666 of LNCS. Springer,
Berlin, Heidelberg, pp. 483–492.

[3] Bergamaschi, L., Caliari, M., Mart́ınez, A., Vianello, M., 2006. Comparing
Leja and Krylov approximations of large scale matrix exponentials. In:
Alexandrov, V. N. e. a. (Ed.), Computational Science — ICCS 2006. Vol.
3994 of LNCS. Springer, Berlin, Heidelberg, pp. 685–692.

[4] Berland, H., Skaflestad, B., Wright, W., 2006. Expint — A Matlab pack-
age for exponential integrators. ACM Trans. Math. Software, to appear.

[5] Caliari, M., Vianello, M., Bergamaschi, L., 2004. Interpolating discrete
advection-diffusion propagators at Leja sequences. J. Comput. Appl.
Math. 172, 79–99.

[6] Calvo, M. P., Palencia, C., 2006. A class of explicit multistep exponential
integrators for semilinear problems. Numer. Math. 102, 367–381.

[7] Gallopoulos, E., Saad, Y., 1992. Efficient solution of parabolic equations
by Krylov subspace methods. SIAM J. Sci. Statist. Comput. 13, 1236–
1264.

[8] Hairer, E., Wanner, G., 1996. Solving Ordinary Differential Equations II.
Stiff and Differential-Algebraic Problems, 2nd Edition. Springer, Berlin,
Heidelberg.

[9] Henry, D., 1981. Geometric Theory of Semilinear Parabolic Equations.
Vol. 840 of LMN. Springer, Berlin, Heidelberg.

[10] Hochbruck, M., Lubich, C., 1997. On Krylov subspace approximations to
the matrix exponential operator. SIAM J. Numer. Anal. 34, 1911–1925.

[11] Hochbruck, M., Ostermann, A., 2005. Explicit exponential Runge-Kutta
methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43,
1069–1090.

[12] Hochbruck, M., Ostermann, A., 2006. Exponential integrators of Rosen-
brock-type. Oberwolfach Reports 3, 1107–1110.

[13] Hochbruck, M., Ostermann, A., Schweitzer, J., 2006. Exponential Rosen-
brock-type methods. In preparation.

[14] Mart́ınez, A., Bergamaschi, L., Caliari, M., Vianello, M., 2006. Efficient
massively parallel implementation of the ReLPM exponential integrator
for advection-diffusion models. Submitted.

[15] Novati, P., Moret, I., 2004. RD-rational approximation of the matrix ex-
ponential operator. BIT 44, 595–615.

[16] Ostermann, A., Thalhammer, M., Wright, W., 2006. A class of explicit
exponential general linear methods. BIT 46, 409–431.

[17] Reichel, L., 1990. Newton interpolation at Leja points. BIT 30, 332–346.
[18] Schmelzer, T., Trefethen, L. N., 2006. Evaluating matrix functions for ex-

ponential integrators via Carathéodory-Fejér approximation and contour
integrals. Submitted to ETNA.

[19] Sommeijer, B. P., Shampine, L. F., Verwer, J. G., 1997. RKC: An explicit

18

solver for parabolic PDEs. J. Comp. Appl. Math. 88, 315–326.
[20] Tal-Ezer, H., 1991. High degree polynomial interpolation in Newton form.

SIAM J. Sci. Statist. Comput. 12, 648–667.
[21] van den Eshof, J., Hochbruck, M., 2006. Preconditioning Lanczos approx-

imations to the matrix exponential. SIAM J. Sci. Comp. 27, 1438–1457.

19

