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Abstract

As known, the problem of choosing ‘‘good’’ nodes is a central one in polynomial

interpolation. While the problem is essentially solved in one dimension (all good nodal

sequences are asymptotically equidistributed with respect to the arc-cosine metric), in

several variables it still represents a substantially open question. In this work we con-

sider new nodal sets for bivariate polynomial interpolation on the square. First, we con-

sider fast Leja points for tensor-product interpolation. On the other hand, for

interpolation in P 2
n on the square we experiment four families of points which are

(asymptotically) equidistributed with respect to the Dubiner metric, which extends to

higher dimension the arc-cosine metric. One of them, nicknamed Padua points, gives

numerically a Lebesgue constant growing like log square of the degree.
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1. Optimal and near-optimal interpolation points

Let X � Rd be compact. We call optimal polynomial interpolation points a

set X �
N � X of cardinality N, such that the Lebesgue constant

KnðXNÞ ¼ max
x2X

knðx;XN Þ; knðx;XNÞ :¼
XN
i¼1

j‘iðx;XN Þj; ð1Þ

defined for all sets XN = {x1, . . . ,xN} � X which are unisolvent for polynomial

interpolation of degree n, attains its minimum on XN ¼ X �
N . Here, kn(x;XN) is

the Lebesgue function of XN, the ‘i are the fundamental Lagrange polynomials

of degree n, and N is the dimension of the corresponding polynomial space,

i.e. N ¼ nþd
d

� �
, or N = (n + 1)d for the tensor-product case (cf. e.g. [2,4,10]).

To be more precise, the fundamental Lagrange polynomials are defined as

the ratio

‘iðx;XN Þ ¼
VDM X ðiÞ

N

� �
VDMðXN Þ

; ð2Þ

where VDM denotes the Vandermonde determinants with respect to any given

basis of the corresponding polynomial space, and where X ðiÞ
N represents the set

XN in which x replaces xi. It comes easy to see that tensor-product Lagrange

polynomials are simply the product of univariate Lagrange polynomials.

As well-known optimal points are not known explicitly, therefore in appli-

cations people consider near-optimal points, i.e. roughly speaking, points
whose Lebesgue constant increases asymptotically like the optimal one. More-

over, letting En(XN) = kf � Pnk1,X, where Pn is the interpolating polynomial of

degree 6 n on X of a given continuous function f, and E�
n ¼ kf � P �

nk1;X the

best uniform approximation error, then

EnðXN Þ6 ð1þ KnðXN ÞÞE�
n;

which represents an estimate for the interpolation error. Thus, near-optimal

nodes minimize also (asymptotically) the interpolation error.
In the one-dimensional case, as well-known, Chebyshev, Fekete, Leja as well

as the zeros of Jacobi orthogonal polynomials are near-optimal points for poly-

nomial interpolation, and their Lebesgue constants increase logarithmically in

the dimension N of the corresponding polynomial space (cf. [5,13]). All these

points have asymptotically the arc-cosine distribution, that is they are asymp-

totically equidistributed w.r.t. the arc-cosine metric. We now recall the defini-

tion of two important univariate nodal sets: it Fekete and Leja points.

Definition 1. Given XN = {x1, . . . ,xN} � [a,b] let VDMðXN Þ¼detðxN�j
i Þ16i;j6N

be the classical Vandermonde determinant. The Fekete points are the set

F = {f1, ... , fN} such that
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jVDMðF NÞj ¼ max
XN�½a;b�

jVDMðXN Þj:
Definition 2. Let k1 arbitrarily chosen in [a,b]. The points ks2 [a,b],
s = 2, . . . ,N, such that

Ys�1

k¼1

jks � kkj ¼ max
x2½a;b�

Ys�1

k¼1

jx� kkj ð3Þ

are called a Leja sequence for the interval [a,b] (cf. [12]).

The relation that makes the connection between Fekete and Leja points is

the maximization of the Vandermonde determinant VDM(XN) on a set

XN = {x1, . . . ,xN} � [a,b]. The set FN = {f1, . . . , fN} of Fekete points is the

one that globally solve the multi-dimensional optimization problem maxXN �
½a; b�jVDMðXN Þj. On the other hand, as jVDMðXNÞj ¼ jVDMðXN�1Þj �QN�1

i¼1 jxN � xij, to determine the kth point of the set LN = {x1, . . . ,xN} of Leja

points, once we have computed the x1, . . . ,xk�1, we simply solve the one-

dimensional problem maxx2½a;b�
Qk�1

i¼1 jx� xij. Both sets of points FN or LN tend
to minimize the associated Lebesgue constant, since from their definition they

reduce the size of the fundamental Lagrange polynomials. We recall that Leja

points are computationally effective for polynomial interpolation in Newton

form, since they give an increasing sequence LN�1 � LN, and they stabilize

the computation of divided differences [15].

Differently from Leja points [7], the definition of Fekete points can be imme-

diately extended to the multi-variate setting, and observing that by construc-

tion maxx2Xj‘i(x,FN)j 6 1 we obtain the rough overestimate

KnðF N Þ6N ; ð4Þ

which is valid in any dimension d. However, for d > 1 the Fekete points are not

known explicitly except for the tensor-product case (see the next section), and

their computation for a given compact set is a difficult task, as discussed for

example in the case of the triangle in [17].
2. Tensor-product Chebyshev–Lobatto and Leja points

Tensor-product interpolation is well studied and used in many applications
(cf. e.g. [6,11]). Tensor-product Fekete points have been recently studied

by Bos et al. in [4], where it has been proved that the n-dimensional tensor-

products of Gauss–Lobatto quadrature points are also Fekete points for the

cube.
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Here we consider two sets of tensor-product nodes in the square

[a,b] · [a,b], i.e. the tensor-product Chebyshev–Lobatto and tensor-product Leja

points, which have the same asymptotic distribution of the tensor-product Fek-

ete points. Tensor-product Leja points are generated by using the so-called

Fast Leja Points, introduced by Baglama et al. in [1]. Fast Leja points are ob-

tained by maximization over adaptive discretization of the interval [a,b]. This
method allows to compute m Leja points with a complexity of roughly 1

2
m2

flops.

In Fig. 1 we compare the growth of Lebesgue constants for tensor-product

Chebyshev–Lobatto points (shortly TPC) and tensor-product fast Leja points

(shortly TPL) with the theoretical bound (1 + 2/p log(n + 1))2 for near-optimal

points (tensor-product Chebyshev points) (cf. [5]). In fact, it is immediate to see

that the Lebesgue constant for tensor-product interpolation points is the

square of the univariate constant. In practice, we have estimated the Lebesgue
constants by maximizing the Lebesgue function (cf. (1)) on a grid of 101 · 101

equally spaced points on the reference square. In Tables 1–3 we then show the

errors of tensor-product interpolation with degrees n = 24,34,44,54, corre-

sponding to three test functions with different degree of regularity: the well-

known Franke function

f1ðx1; x2Þ ¼
3

4
e�

1
4
ðð9x1�2Þ2þð9x2�2Þ2Þ þ 3

4
e�

1
49
ðð9x1�2Þ2� 1

10
ð9x2�2Þ2Þ

þ 1

2
e�

1
4
ðð9x1�7Þ2þð9x2�3Þ2Þ � 1

5
e�ðð9x1�4Þ2þð9x2�7Þ2Þ
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Fig. 1. Lebesgue constants for tensor-product Chebyshev–Lobatto (TPC) and Leja (TPL) points

up to degree 60, compared with the theoretical bound for TPC and with a least-square fitting for

TPL.



Table 2

Tensor-product interpolation errors for the function f2ðx1; x2Þ ¼ ðx21 þ x22Þ
5=2

N

252 352 452 552

TPC on [�1,1]2 6.0 · 10�5 8.2 · 10�6 1.8 · 10�6 5.4 · 10�7

TPC on [0,2]2 8.5 · 10�9 1.7 · 10�10 1.4 · 10�11 1.1 · 10�11

TPL on [�1,1]2 8.4 · 10�5 1.6 · 10�5 9.4 · 10�6 8.3 · 10�7

TPL on [0,2]2 2.3 · 10�8 6.3 · 10�10 1.4 · 10�11 1.8 · 10�11

Table 3

Tensor-product interpolation errors for the function f3ðx1; x2Þ ¼ ðx21 þ x22Þ
1=2

N

252 352 452 552

TPC on [�1,1]2 2.1 · 10�1 1.1 · 10�1 6.8 · 10�2 4.6 · 10�2

TPC on [0,2]2 2.8 · 10�3 5.8 · 10�4 1.1 · 10�4 8.9 · 10�5

TPL on [�1,1]2 5.7 · 10�1 5.6 · 10�1 6.2 · 10�1 1.1 · 10�1

TPL on [0,2]2 3.9 · 10�3 1.2 · 10�3 5.8 · 10�5 2.8 · 10�5

Table 1

Tensor-product interpolation errors for the Franke function

N

252 352 452 552

TPC 1.2 · 10�3 2.3 · 10�6 1.5 · 10�9 1.9 · 10�13

TPL 2.5 · 10�3 6.4 · 10�6 8.9 · 10�9 1.4 · 10�12
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considered as usual on [0,1]2, f2ðx1; x2Þ ¼ ðx21 þ x22Þ
5=2

and f3ðx1; x2Þ ¼
ðx21 þ x22Þ

1=2
. Observe that f2 and f3 are not regular at the origin, in particular

f2 is C
4 with lipschitzian fourth partial derivatives and fifth partial derivatives

discontinuous at the origin, while f3 is lipschitzian with first partial derivatives

discontinuous at the origin.

Even if the behavior of TPL Lebesgue constant is worse than that of TPC
(see again Fig. 1), in the numerical tests the TPL approximation errors turn

out to be closer to TPC errors than predicted by the ratio of Lebesgue con-

stants (the errors have been computed on the same uniform control grid used

to estimate the Lebesgue constant). Moreover, one can notice that the approx-

imation performs better when the singularity is located at a corner of the

square, since both TPC and TPL cluster by construction at the sides and

especially at the corners.
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3. Bivariate interpolation and Dubiner metric

3.1. Generalized arc-cosine metric

In [9], Dubiner proposed a metric which encapsulates the local properties of

polynomial spaces on a given multi-variate compact set, and in one dimension
coincides with the arc-cosine metric:

l½�1;1�ðx; yÞ :¼ jcos�1ðxÞ � cos�1ðyÞj 8x; y 2 ½�1; 1�:

Following [9], it can be proven by means of the van der Corput-Schaake ine-

quality [20] (cf. [3,7] for details) that
l½�1;1�ðx; yÞ ¼ sup
jjP jj1;½�1;1� 6 1

ðdeg P Þ�1jcos�1ðPðxÞÞ � cos�1ðP ðyÞÞj; ð5Þ
where P varies in Pð½�1; 1�Þ. By generalizing, define
lXðx; yÞ ¼ sup
jjP jj1;X 6 1

ðdeg P Þ�1jcos�1ðP ðxÞÞ � cos�1ðP ðyÞÞj; x; y 2 X � Rd ;

ð6Þ

where P varies in PðXÞ, which is the Dubiner metric on the compact X.
In view of the properties of such a metric (cf. [9]), one may state [3] the

following

• conjecture: nearly optimal interpolation points on a compact X are asymptot-

ically equidistributed with respect to the Dubiner metric on X.

This suggests a general way to produce candidates to be good interpolation

points, once we know the Dubiner metric for the compact set X. Unfortunately

the Dubiner metric is explicitly known only in very few cases, for d = 2 namely

the square and the circle

• X = [�1,1]2, x = (x1,x2), y = (y1,y2):
lXðx; yÞ ¼ maxfjcos�1ðx1Þ � cos�1ðy1Þj; jcos�1ðx2Þ � cos�1ðy2Þjg:
• X = {x : jxj 6 1}, x = (x1,x2), y = (y1,y2):

lXðx; yÞ ¼ cos�1 x1x2 þ y1y2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x21 � y21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x22 � y22

q� �����
����:
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In the following subsections we test the conjecture above on four sets of points

on the square which are (asymptotically) equidistributed with respect to the

Dubiner metric. The first one is obtained numerically using a reasonable

definition of asymptotic equidistribution in a given metric. The other three are

given by explicit formulas and are exactly equidistributed in the Dubiner metric.

3.2. Quasi-uniform points in the Dubiner metric

Following [8] we can construct a sequence of points which are asymptoti-

cally equidistributed in a compact X with respect to a given metric m, by means

of the following geometric greedy algorithm:

• Let X be a compact set in Rd , and consider X0 = {x0} where x02oX.
• If Xj � X is finite and consisting of j points, choose xjþ1 2 X n X j so that its

distance to Xj is maximal and form Xj+1 := Xj [ {xj+1}.
Remarks
• For numerical purposes X must be finite with cardinality CX (i.e. a discreti-
zation of X). Then, each step of the algorithm can be carried out in OðCXÞ
operations, since for each x 2 X n X j we should compute the distance to its

nearest neighbor within Xj. To update this array of length CX requires firstly

to calculate the CX � j values m(x,xi), i = 1, . . . , j and then taking the compo-

nentwise minimum within the ith array of distances. The next point xj+1 is

then easily found by picking the maximum of the array of minima.

• It is worth noticing that the construction technique in the geometric greedy

algorithm, is conceptually similar to that used in generating univariate Leja
sequences. Indeed, in both approaches we maximize a function of dis-

tances from already computed points (in practice, on a suitable discretiza-

tion of X).

Defining the separation distance

qj :¼
1

2
min
x;y2X j
x6¼y

mðx; yÞ;

and the fill distance

hj :¼ max
x2X

min
y2X j

mðx; yÞ ¼ min
y2X j

mðxjþ1; yÞ;

by a generalization to an arbitrary metric m of the proof in [8], it can be shown

that:
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Proposition 3. The geometric greedy algorithm produces sequences which are

quasi-uniform in the metric m, that is

hj P qj P
1

2
hj�1 P

1

2
hj 8jP 2:

In Fig. 2 we show the distribution of N = 496 (which correspond to polyno-
mial degree 30) quasi-uniform Dubiner (shortly quD) points on the square,

computed by the geometric greedy algorithm starting from a sufficiently dense

random discretization of the square. We chose a discretization with N3 random

points, in analogy with the considerations in [16] for the extraction of Leja

points from compact sets in the complex plane (see also our Remarks above).

We also show the behavior of Lebesgue constants up to degree 28 for quasi-

uniform Dubiner points, compared with quasi-uniform points in the Euclidean

metric and random points on the square [�1,1]2. Here and below, the funda-
mental Lagrange polynomials are computed by inverting the N · N Vander-

monde matrix built, for stability reasons, by using the Chebyshev basis,

{Ti(x1)Tj(x2), i + j 6 n}. As in the tensor-product case, we have estimated

numerically the Lebesgue constants by maximizing the Lebesgue function on

a suitable grid.

The comparison of the Lebesgue constants in Fig. 2 shows that the quasi-uni-

form Dubiner points are much better for polynomial interpolation than the
quasi-uniform Euclidean (shortly EUC) and the random ones (shortly RND),

since the growth of their Lebesgue constant is polynomial instead of exponential

in the degree. However, they are not still satisfactory since the growth is of order

N3/2, which is bigger than the theoretical bound of the Fekete points (cf. (4)).

This suggests that quasi-uniformity in the Dubiner metric is not sufficient for
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points.
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near-optimality of the interpolation points. This it will be confirmed by the three

sets of points that we present in the next section.

3.3. Morrow–Patterson (MP) points

Morrow and Patterson (cf. [14]), proposed for cubature purposes the follow-
ing set of nodes on the square. For n, a positive even integer, consider the

points XMP
N ¼ fðxm; ykÞg � ½�1; 1�2 given by
xm ¼ cos
mp
nþ 2

� �
; yk ¼

cos
2kp
nþ 3

� �
m odd

cos
ð2k � 1Þp
nþ 3

� �
m even

8>>><
>>>:

ð7Þ
1 6 m 6 n+1, 16 k6 n
2
þ 1. It is easily seen that these points are exactly

equally spaced w.r.t. the Dubiner metric, i.e. they have a constant pointwise

separation distance, cf. Section 3.1. This set consists of N ¼ nþ2
2

� �
points, which

is equal to dimðPnðR2ÞÞ, and is unisolvent for polynomial interpolation on the

square. In fact, in view of the Christoffel–Darboux formulas of Xu [20,21], the
fundamental Lagrange polynomials at the Morrow–Patterson points have an

explicit expression in terms of second kind Chebyshev polynomials. Hence,

the interpolation problem has a constructive solution, which implies that the

nodes give a unisolvent set and VDMðXMP
N Þ 6¼ 0.

As for the growth of the Lebesgue constant, Bos [3] proved that KMP
n ¼

Oðn6Þ. From our experiments we showed that this bound can be strongly im-

proved, since KMP
n ¼ Oðn2Þ as can be seen in Fig. 4. In particular we found that

KMP
n can be least-square fitted with the quadratic polynomial (0.7n + 1)2, which

is smaller than N, i.e. than the theoretical bound for Fekete points.
3.4. Extended Morrow–Patterson (EMP) points

In analogy with the one-dimensional setting [5], we tried to improve the

Lebesgue constant by considering the extended Morrow–Patterson points,

which correspond to using extended Chebyshev nodes in (7), i.e.

X EMP
N ¼ fðxm; ykÞg � ½�1; 1�2 given by
xm ¼ 1

an
cos

mp
nþ 2

� �
; yk ¼

1

bn
cos

2kp
nþ 3

� �
m odd

1

bn
cos

ð2k � 1Þp
nþ 3

� �
m even

8>>><
>>>:

ð8Þ
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1 6 m 6 n+1, 16 k6 n
2
þ 1, where the dilation coefficients 1/an and 1/bn corre-

spond to
an ¼ cosðp=ðnþ 2ÞÞ; bn ¼ cosðp=ðnþ 3ÞÞ:
As the Morrow–Patterson points, the EMP points are exactly equally
spaced w.r.t. the Dubiner metric. Moreover, it is not difficult to show that

these points are again insolvent for polynomial interpolation of degree n. In-

deed, the Vandermonde matrix of X EMP
N w.r.t. the canonical basis of PnðR2Þ,

is given by the Vandermonde matrix of the Morrow–Patterson points,

where each column is scaled by a suitable constant. In particular, the

column corresponding to the monomial xiyj is multiplied by a�i
n b�j

n :

hence, jVDMðX EMP
N Þj is strictly greater than jVDMðXMP

N Þj, i.e. it cannot

vanish.
In Fig. 4 we reported a least-square fitting of the Lebesgue constant KEMP

n

for n up to 60. The growth is again quadratic in the degree, that is linear in

the dimension of the polynomial space, but slower than that of the basic

Morrow–Patterson points. However, concerning the Lebesgue function, we

have numerical evidence that it is not true that knðx1; x2;XMP
N Þ <

knðx1; x2;X EMP
N Þ for every x1, x2, while KnðXMP

N Þ < KnðX EMP
N Þ.
3.5. Modified Morrow–Patterson points or Padua (PD) points

For n a positive even integer consider the points (xm,yk)2 [�1,1]2 given by

xm ¼ cos
ðm� 1Þp

n

� �
; yk ¼

cos
ð2k � 1Þp
n� 1

� �
m odd

cos
ð2k � 2Þp
n� 1

� �
m even

8>>><
>>>:

ð9Þ

1 6 m 6 n+1, 16 k6 n
2
þ 1. These are modified Morrow–Patterson points that

were firstly discussed in Padua by the authors with L. Bos and S. Waldron [19],

and so we have decided to call them Padua points (shortly PD points); again,

they are exactly equispaced w.r.t. the Dubiner metric on the square. For a

sketch of the distribution of PD points and for a comparison with MP and
EMP at small degree, see Fig. 3.

The Padua points are, to our knowledge, the best known nodes for poly-

nomial interpolation on the square. In fact, from our experiments,

KPD
n ¼ Oðlog2nÞ (see Fig. 4). Note that, the asymptotic growth of their

Lebesgue constant turns out to be exactly that of the TPC nodes, cf. Fig. 2.

Unfortunately, so far we have not even been able to prove that they are unisol-

vent, whereas we have numerical evidence of this property.
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Table 4

Interpolation errors for the Franke function

n = 34 K34 n = 48 K48 n = 62 K62 n = 76 K76

MP 1.3 · 10�3 649 2.6 · 10�6 1264 1.1 · 10�9 2082 2.0 · 10�13 3102

EMP 6.3 · 10�4 237 1.3 · 10�6 456 5.0 · 10�10 746 5.4 · 10�14 1106

PD 4.3 · 10�5 11 3.3 · 10�8 13 5.4 · 10�12 14 1.9 · 10�14 15
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Table 5

Interpolation errors for the function f2ðx1; x2Þ ¼ ðx21 þ x22Þ
5=2

n

34 48 62 76

MP on [�1,1]2 1.8 · 10�4 5.1 · 10�5 1.9 · 10�5 8.8 · 10�6

MP on [0,2]2 1.0 · 10�8 3.8 · 10�10 3.7 · 10�11 2.3 · 10�11

EMP on [�1,1]2 6.5 · 10�5 1.8 · 10�5 6.7 · 10�6 3.0 · 10�6

EMP on [0,2]2 7.2 · 10�9 2.6 · 10�10 2.4 · 10�11 8.6 · 10�12

PD on [�1,1]2 3.6 · 10�6 6.5 · 10�7 1.8 · 10�7 6.5 · 10�8

PD on [0,2]2 2.8 · 10�9 9.3 · 10�11 9.4 · 10�12 6.4 · 10�12

Table 6

Interpolation errors for the function f3ðx1; x2Þ ¼ ðx21 þ x22Þ
1=2

n

34 48 62 76

MP on [�1,1]2 4.4 · 10�1 4.4 · 10�1 4.4 · 10�1 4.4 · 10�1

MP on [0,2]2 8.8 · 10�4 2.8 · 10�4 2.6 · 10�4 1.7 · 10�5

EMP on [�1,1]2 1.4 · 10�1 1.4 · 10�1 1.4 · 10�1 1.4 · 10�1

EMP on [0,2]2 8.3 · 10�4 2.6 · 10�4 2.1 · 10�4 2.1 · 10�5

PD on [�1,1]2 3.7 · 10�2 2.7 · 10�2 2.1 · 10�2 1.7 · 10�2

PD on [0,2]2 7.3 · 10�4 3.7 · 10�4 7.0 · 10�6 4.6 · 10�6
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3.6. Numerical tests with MP, EMP and PD points

In this section we apply interpolation at MP, EMP and PD points to the

three test functions already considered in Section 2. The interpolation errors

are displayed in Tables 4–6 below (the errors have been computed on the same

uniform control grid used to estimate the Lebesgue constants). First, we ob-

serve that the interpolation degrees have been chosen in such a way that the

dimension of polynomial spaces, and thus the number of function evaluations,
is as close as possible to the dimension of the tensor-product polynomial spaces

in Tables 1–3. For example, when n = 34 we have N ¼ nþ2
2

� �
¼ 630, to be com-

pared with 252 = 625 in the tensor-product case.

At a first glance, Tables 4–6 show that the errors of MP, EMP and PD are in

decreasing order, with ratios of the size of the ratios between the corresponding

Lebesgue constants (whose values have been rounded to the nearest integer).

Moreover, by comparison with TPC we can appreciate that MP and EMP

errors are comparable with TPC errors, while PD errors are one or two orders
below. Concerning the functions f2 and f3, which have a singularity at the
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origin, again we see that interpolation performs better when the singularity is

located at a corner of the square, where all the three families of nodes cluster by

construction.
4. Conclusion

The above comparisons, together with the behavior of the Lebesgue

constants, suggest that in principle the PD points should be adopted for poly-

nomial interpolation on the square, whenever the underlying function can be

evaluated everywhere. However, there is still a lot of work to do, from both

the theoretical point of view, i.e. concerning unisolvence of the PD points

and asymptotic analysis of Lebesgue constants for MP, EMP and PD points,

and from the practical point of view, concerning efficient implementation of the
interpolant. As for the last issue, it is worth recalling that an efficient construc-

tion method of the fundamental Lagrange polynomials is known only for the

MP points, which is based on the Christoffel–Darboux formulas of Xu [20,21].
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