High-order time-splitting spectral methods for Gross–Pitaevskii systems

Mechthild Thalhammer, University of Innsbruck, Austria

Mathematical Models of Quantum Fluids
September 2009, Verona, Italy
Bose–Einstein condensation

In our laboratories temperatures are measured in micro- or nanokelvin ... In this ultracold world ... atoms move at a snail’s pace ... and behave like matter waves. Interesting and fascinating new states of quantum matter are formed and investigated in our experiments.

Grimm et al.

Practical realisation. Observation of Bose–Einstein condensation in physical experiments.

Theoretical model. Mathematical description by systems of nonlinear Schrödinger equations.

Numerical simulation. Favourable discretisations rely on time-splitting pseudospectral methods. See work by BAO, CANCÈS, DION, DU, JAKSCH, MARKOWICH, PÉREZ-GARCÍA, SHEN, TANG, TSUBOTA, TIWARI, SHUKLA, VAZQUEZ, ZHANG etc.
Discretisation of nonlinear Schrödinger equations

Theoretical model. Mathematical description of Bose–Einstein condensate by Gross–Pitaevskii equation

\[i \hbar \partial_t \psi(x, t) = \left(-\frac{\hbar^2}{2m} \Delta + U(x) + \frac{4\pi\hbar^2 aN}{m} |\psi(x, t)|^2 \right) \psi(x, t). \]

Numerical discretisation. High accuracy approximations rely on
- Hermite and Fourier spectral methods in space and
- exponential operator splitting methods in time.
Objectives

Convergence analysis.
- High-order splitting methods for nonlinear Schrödinger equations.
- Minimisation method for ground state computation.

Implementation.
- Numerical simulation of Gross–Pitaevskii systems in three space dimensions (ground state, time evolution).
Contents

- Gross–Pitaevskii equation
- Pseudospectral methods
- Exponential operator splitting methods
 - Linear evolutionary Schrödinger equations
 - Nonlinear evolutionary Schrödinger equations
 - Stability and convergence analysis
Gross–Pitaevskii equation
Nonlinear Schrödinger equation. Normalised Gross–Pitaevskii equation for $\psi : \mathbb{R}^d \times [0, \infty) \rightarrow \mathbb{C}$

$$i \partial_t \psi(x, t) = \left(-\frac{1}{2} \Delta + V(x) + \vartheta |\psi(x, t)|^2\right) \psi(x, t),$$

$$\Delta = \sum_{j=1}^{d} \partial_{x_j}^2, \quad V(x) = \frac{1}{2} V_H(x) = \frac{1}{2} \sum_{j=1}^{d} \gamma_j^4 x_j^2,$$

subject to asymptotic boundary conditions and initial condition

$$\|\psi(\cdot, 0)\|_{L^2}^2 = 1.$$

Geometric properties. Preservation of particle number $\|\psi(\cdot, t)\|_{L^2}^2$ and energy functional

$$E(\psi(\cdot, t)) = \left(\left(-\frac{1}{2} \Delta + V + \frac{1}{2} \vartheta |\psi(\cdot, t)|^2\right) \psi(\cdot, t) \right|_{L^2}.\psi(\cdot, t).$$
Nonlinear Schrödinger equation. Gross–Pitaevskii equation

\[i \partial_t \psi(x, t) = \left(-\frac{1}{2} \Delta + V(x) + \vartheta |\psi(x, t)|^2 \right) \psi(x, t). \]

Ground state. Solution of form

\[\psi(x, t) = e^{-i\mu t} \phi(x) \]

that minimises energy functional.

Spatial discretisation
Hermite pseudospectral method

Spectral decomposition. Hermite functions \((\mathcal{H}_m)_m \geq 0\) form orthonormal basis of \(L^2(\mathbb{R}^d)\) and satisfy

\[
\frac{1}{2} \left(- \Delta + V_H \right) \mathcal{H}_m = \lambda_m \mathcal{H}_m, \quad \lambda_m = \sum_{j=1}^{d} \gamma_j^2 (m_j + \frac{1}{2}) .
\]

Hermite decomposition for \(\psi(\cdot, t) \in L^2(\mathbb{R}^d)\)

\[
\psi(\cdot, t) = \sum_{m} \psi_m(t) \mathcal{H}_m, \quad \psi_m(t) = (\psi(\cdot, t) | \mathcal{H}_m)_{L^2} .
\]

Numerical approximation. Truncation of infinite sum and application of Gauss–Hermite quadrature formula

\[
\psi_M(\cdot, t) = \sum_{m} \psi_M(t) \mathcal{H}_m, \quad \psi_M(t) = \int_{\mathbb{R}^d} \psi(x, t) \mathcal{H}_m(x) \, dx \approx \sum_{k} \omega_k \, e^{\xi_k^2} \psi(\xi_k, t) \mathcal{H}_m(\xi_k) .
\]
Fourier pseudospectral method

Spectral decomposition. Let $\Omega = [-a, a]$ with $a > 0$. Fourier basis functions $(\mathcal{F}_m)_{m \in \mathbb{Z}^d}$ form orthonormal basis of $L^2(\Omega^d)$ and satisfy

$$-\frac{1}{2} \Delta \mathcal{F}_m = \lambda_m \mathcal{F}_m, \quad \lambda_m = \frac{\pi^2}{2a^2} \sum_{j=1}^{d} m_j^2.$$

Fourier decomposition for $\psi(\cdot, t) \in L^2(\Omega^d)$

$$\psi(\cdot, t) = \sum_{m} \psi_m(t) \mathcal{F}_m, \quad \psi_m(t) = \left(\psi(\cdot, t) | \mathcal{F}_m \right)_{L^2}.$$

Numerical approximation. Truncation of infinite sum and application of trapezoid quadrature formula

$$\psi_M(\cdot, t) = \sum_{m} \psi_m(t) \mathcal{F}_m,$$

$$\psi_m(t) = \int_{\Omega^d} \psi(x, t) \mathcal{F}_m(x) \, dx \approx \omega \sum_{k} \psi(\xi_k, t) \mathcal{F}_m(\xi_k).$$
Time integration
Evolutionary Schrödinger equations. Formulate nonlinear Schrödinger equations such as Gross–Pitaevskii equation

\[
i \partial_t \psi(x, t) = \left(-\frac{1}{2} \Delta + V(x) + \vartheta |\psi(x, t)|^2 \right) \psi(x, t),
\]
as abstract differential equation for \(u(t) = \psi(\cdot, t) \)

\[
u'(t) = A u(t) + B(u(t)) u(t).
\]

Choose differential operator \(A \) and multiplication operator \(B(u) \) according to spectral space discretisation

\[
i A = -\frac{1}{2} \left(\Delta - V_H \right), \quad i B(u) = V - \frac{1}{2} V_H + \vartheta |u|^2, \quad \text{(Hermite)}
\]

\[
i A = -\frac{1}{2} \Delta, \quad i B(u) = V + \vartheta |u|^2. \quad \text{(Fourier)}
\]

Abstract formulation convenient for construction and theoretical analysis of time integration methods.
Aim. For linear evolutionary Schrödinger equation

\[u'(t) = A u(t) + B u(t), \quad t \geq 0, \quad u(0) \text{ given}, \]

\[i A = -\frac{1}{2} (\Delta - V_H), \quad i B = V - \frac{1}{2} V_H, \quad \text{(Hermite)} \]

\[i A = -\frac{1}{2} \Delta, \quad i B = V, \quad \text{(Fourier)} \]

determine numerical approximation \(u_n \approx u(t_n) \) at \(t_n = nh \).

Approach. Splitting methods rely on suitable composition of

\[v'(t) = A v(t), \quad w'(t) = B w(t). \]

Spectral decomposition with respect to basis functions \((\mathcal{B}_m) \) and pointwise multiplication yields

\[v(t) = e^{tA} v(0) = \sum_m v_m e^{-i t \lambda_m} \mathcal{B}_m, \quad v(0) = \sum_m v_m \mathcal{B}_m, \]

\[(w(t))(x) = (e^{tB} w(0))(x) = e^{tB(x)}(w(0))(x). \]
Splitting methods for linear equations (Examples)

- **Lie–Trotter splitting method** yields first-order approximation

 \[u_{n+1} = e^{hB} e^{hA} u_n \approx u(t_{n+1}) = e^{h(A+B)} u(t_n). \]

- **Second-order Strang splitting method** given through

 \[u_{n+1} = e^{\frac{1}{2}hB} e^{hA} e^{\frac{1}{2}hB} u_n, \quad u_{n+1} = e^{\frac{1}{2}hA} e^{hB} e^{\frac{1}{2}hA} u_n. \]

- **Higher-order splitting methods** by BLANES AND MOAN, KAHAN AND LI, MCCLACHLAN, SUZUKI, and YOSHIDA are cast into form

 \[u_{n+1} = \prod_{j=1}^{s} e^{b_j hB} e^{a_j hA} u_n = e^{b_s hB} e^{a_s hA} \cdots e^{b_1 hB} e^{a_1 hA} u_n \]

 with real (possible negative) method coefficients \((a_j, b_j)_{j=1}^{s}\).
Situation. Exponential operator splitting methods for linear evolutionary Schrödinger equations

\[u'(t) = A u(t) + B u(t), \quad t \geq 0, \]

\[u(t_{n+1}) = e^{h(A+B)} u(t_n), \quad n \geq 0, \quad u(0) \text{ given}, \]

\[u_{n+1} = \prod_{j=1}^{s} e^{b_j hB} e^{a_j hA} u_n, \quad n \geq 0, \quad u_0 \text{ given}. \]

Objective. Derive stiff order conditions and error estimate for general exponential operator splitting method.

Convergence result

Theorem (Th. 2007, Neuhauser and Th. 2008)

Suppose that the coefficients of the splitting method fulfill the **classical order conditions** for $p \geq 1$. Then, provided that the exact solution is sufficiently regular, the following error estimate holds

$$\| u_n - u(t_n) \|_X \leq C \| u(0) - u_0 \|_X + C h^p, \quad 0 \leq nh \leq T.$$

Temporal convergence orders of various time-splitting methods for a two-dimensional linear Schrödinger equation. Error versus stepsize.
Sketch of the proof

Approach. Relate global and local error (*Lady Windermere’s Fan*)

\[
u_n - u(t_n) = S^n (u_0 - u(0)) - \sum_{j=0}^{n-1} S^{n-j-1} d_{j+1},
\]

\[
S = \prod_{j=1}^s e^{b_j h B} e^{a_j h A}, \quad d_{j+1} = u(t_{j+1}) - S u(t_j).
\]

Deduce **stability bound** for powers of splitting operator and suitable estimate for local error.

- Variation-of-constants formula
- Stepwise expansion of e^{tB}
- Quadrature formulas for multiple integrals
- Bounds for iterated commutators
- Characterise domains of unbounded operators
Splitting methods for nonlinear equations

Abstract formulation. Rewrite nonlinear Schrödinger equation

\[
\text{i} \partial_t \psi(x, t) = \left(- \frac{1}{2} \Delta + V(x) + \vartheta |\psi(x, t)|^2 \right) \psi(x, t)
\]

as abstract differential equation for \(u(t) = \psi(\cdot, t) \)

\[
u'(t) = A \psi(t) + B(\psi(t)) \psi(t).
\]

Approach. Splitting methods rely on suitable composition of

\[
v'(t) = A v(t), \quad w'(t) = B(w(t)) w(t),
\]

with \(A, B\) chosen according to spectral space discretisation

\[
i A = -\frac{1}{2} (\Delta - V_H), \quad i B(u) = V - \frac{1}{2} V_H + \vartheta |u|^2, \quad \text{(Hermite)}
\]

\[
i A = -\frac{1}{2} \Delta, \quad i B(u) = V + \vartheta |u|^2. \quad \text{(Fourier)}
\]
Splitting methods for nonlinear equations

Approach. Splitting methods rely on suitable composition of

\[v'(t) = A v(t), \quad w'(t) = B(w(t)) w(t), \]

\[i A = -\frac{1}{2} (\Delta - V_H), \quad i B(u) = V - \frac{1}{2} V_H + \vartheta |u|^2, \quad \text{(Hermite)} \]

\[i A = -\frac{1}{2} \Delta, \quad i B(u) = V + \vartheta |u|^2. \quad \text{(Fourier)} \]

Spectral decomposition with respect to basis functions \(\mathcal{B}_m \) and invariance property \(B(w(t)) = B(w(0)) \) yields

\[v(t) = e^{tA} v(0) = \sum_m v_m e^{-it\lambda_m} \mathcal{B}_m, \quad v(0) = \sum_m v_m \mathcal{B}_m, \]

\[(w(t))(x) = (e^{tB(w(0))} w(0))(x) = e^{tB(w(0))(x)} (w(0))(x). \]

Theoretical analysis. Employ formal calculus of Lie-derivatives.
Temporal convergence orders of various time-splitting Hermite (first row) and Fourier (second row) pseudospectral methods (GPE in 2d, $\vartheta = 1$, $M = 128$).
Conjecture

Suppose that the coefficients of the splitting method fulfill the classical order conditions for $p \geq 1$. Then, provided that the exact solution is sufficiently regular, the following error estimate holds

$$\| u_n - u(t_n) \|_X \leq C \| u(0) - u_0 \|_X + C h^p, \quad 0 \leq nh \leq T.$$
Conclusions

Contents. High accuracy discretisations of nonlinear Schrödinger equations by time-splitting spectral methods.

- **Convergence analysis** for linear evolutionary Schrödinger equations.
- **Numerical illustrations.**

Current research.

- Extend error analysis to **nonlinear problems** (GPS, MCTDHF equations).
- Employ different approach to study time-splitting methods for linear and nonlinear Schrödinger equations in semi-classical regime.