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I collect in these notes some facts about Sobolev spaces (see [2]). Some
very nice examples are in [1].

1 Ω ⊆ R

1.1 H1(Ω)

We can define H1(Ω) in the following way: it is the subspace of L2(Ω) of
functions u for which there exists g ∈ L2(Ω) such that

∫

Ω

uϕ′ = −

∫

Ω

gϕ ∀ϕ ∈ C∞

c (Ω)

We will denote g by u′. This definition is equivalent to the definition with
distributional derivatives.

Theorem 1. If u ∈ H1(Ω), there exists (unique) ũ ∈ C(Ω̄) such that

u = ũ almost everywhere

and

ũ(x) − ũ(y) =

∫ x

y

u′(t)dt

We will call ũ the continuous representative of the class of equivalence of
u. We will often indicate it simply by u when necessary. For instance, if we
want to write u(x0), x0 ∈ Ω. The scalar product in H1(Ω) is

(u, v) =

∫

Ω

uv +

∫

Ω

u′v′

with the inducted norm.
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1.2 Hm(Ω)

We can define Hm(Ω) in the following way: it is the subspace of L2(Ω) of
functions u for which there exists g1, g2, . . . , gm ∈ L2(Ω) such that

∫

Ω

uϕ(j) = (−1)j

∫

Ω

gjϕ ∀ϕ ∈ C∞

c (Ω)

We will denote gj by u(j) (u′, u′′, . . . , u(m)).

1.3 H1

0
(Ω)

H1
0 (Ω) is the closure of C1

c (Ω) in H1(Ω). If Ω = R, then H1
0 (R) = H1(R).

Since C∞

c (Ω) is dense in H1
0 (Ω), its closure is H1

0 (Ω) itself.

Theorem 2. If u ∈ H1(Ω), then u ∈ H1
0 (Ω) if and only if u = 0 on ∂Ω.

If Ω = (a, b), this is precisely a case in which the function u such that
u(a) = u(b) = 0 is the continuous representative (of the class of equivalence)
of u. Another way to characterize H1

0 (Ω) is the following: u ∈ H1
0 (Ω) if and

only if ū ∈ H1(R), where ū(x) = u(x) if x ∈ Ω and ū(x) = 0 if x ∈ R \ Ω.

2 Ω ⊆ R
N , N > 1

2.1 H1(Ω)

The definition is analogous, we have to replace the derivative with all the
partial derivatives. One main difference with the one-dimensional case is
that there are functions, like the following

u(x, y) =

(

log
1

√

x2 + y2

)k

, 0 < k < 1/2

that belongs to H1(Ω), Ω = B(0, 1) ⊂ R
2, but it is noway possible to find a

continuous representative ũ for it. So, Theorem 1 does not hold.

2.2 H1

0
(Ω)

H1
0 (Ω) is the closure of C1

c (Ω) in H1(Ω). If Ω = R
N , then H1

0 (RN) = H1(RN).
Since C∞

c (Ω) is dense in H1
0 (Ω), its closure is H1

0 (Ω) itself.
Now, Theorem 2 cannot be stated in the same way: in general, there is

no continuous representative which is zero at ∂Ω. Still, it is correct to think
to functions in H1

0 (Ω) as to the functions in H1(Ω) which “are zero at ∂Ω”.
Let us see in which sense.
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Theorem 3. If Ω is sufficiently regular and u ∈ H1(Ω) ∩ C(Ω̄), then u ∈
H1

0 (Ω) if and only if u = 0 on ∂Ω.

Moreover, it is possible to characterize H1
0 (Ω) as above: u ∈ H1

0 (Ω) if and
only if ū ∈ H1(RN), where ū(x) = u(x) if x ∈ Ω and ū(x) = 0 if x ∈ R \ Ω.

Theorem 4. If Ω is a bounded open subset of R
N with ∂Ω sufficiently regular,

then there exists a unique linear continuous operator T : H1(Ω) → L2(∂Ω)
such that

Tu = u|∂Ω if u ∈ H1(Ω) ∩ C(Ω̄)

‖Tu‖L(∂Ω) ≤ c‖u‖H1(Ω)

The operator T is called trace operator and the function Tu ∈ L2(∂Ω) is
called trace of u on ∂Ω.

The operator γ0 is not surjective on L2(∂Ω). The set of functions in
L2(∂Ω) which are traces of functions in H1(Ω) is a subspace of L2(∂Ω) de-
noted by H1/2(∂Ω). We have H1(∂Ω) ⊆ H1/2(∂Ω) ⊆ H0(∂Ω) = L2(∂Ω). If
u is more regular, so is u|∂Ω in the sense that

T : Hk(Ω) → Hk−1/2(∂Ω) ⊆ Hk−1(∂Ω)

Given u ∈ H1(Ω) and uD ∈ H1/2(∂Ω), if we require that “u = uD on ∂Ω”
or “u|∂Ω = uD”, we really mean that Tu = uD (almost everywhere).

Finally, we can define

H1
0 (Ω) = ker(T ) = {u ∈ H1(Ω) : Tu = 0}
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