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We consider, for semplicity, the homogeneous Dirichlet problem.

1 One-dimensional case

In the one dimensional case Ω is an open interval and X = H1
0 (Ω). We just

consider the space X2
h = {vh ∈ X : vh|Th

∈ P2(Th)}. A polynomial of degree
two on a interval is defined by three points, usually the two extreme points
and the middle point. Therefore, given an original set of nodes {yj}

m
j=1 ⊂ Ω,

we have to consider the new set of nodes {xi}
2m−1
i=1 ⊂ Ω given by







xi = y(i+1)/2, i odd

xi =
yi/2 + yi/2+1

2
, i even

and the set of basis functions

ϕi(x) ∈ X2
h, ϕi(xj) = δij, 1 ≤ i, j ≤ 2m − 1
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On the element ℓj, with endpoints ℓj,1 and ℓj,3 and middle point ℓj,2, the form
of ϕℓj,k

is
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Clearly now the basis function ϕi shares its support with ϕi−2, ϕi−1, ϕi+1, ϕi+2

and therefore the stiffness matrix, for instance, is a pentadiagonal matrix.

1.1 Error estimates

The weak formulation is

find u ∈ H1(Ω) such that a(u, v) = ℓ(v), ∀v ∈ H1(Ω)

with a SPD, bilinear, coercive, continuos and ℓ linear bounded. Therefore
we assume that u ∈ H1(Ω). Let us denote the generic triangle (edge) by K

and its length by hK . The maximum length of the triangles is h.

1.1.1 H1 norm, Xr
h space

Let be uh ∈ Xr
h. Then:

• if u ∈ Hp+1(Ω, Th) (u “piecewise regular”) and s = min{p, r}

‖uh − u‖H1(Ω) ≤ C
∑

K∈Th

(

h2s
K |u|2Hs+1(K)

)1/2

≤ Chs|u|Hs+1(Ω,Th)

• if u ∈ Hp+1(Ω) (u “regular” and therefore “piecewise regular”) and
s = min{p, r}

‖uh − u‖H1(Ω) ≤ C
∑

K∈Th

(

h2s
K |u|2Hs+1(K)

)1/2

≤ Chs|u|Hs+1(Ω)
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Of course, the seminorms on the right end sides can be overestimated by the
corresponding norms.

1.1.2 L2 norm, Xr
h space

Let be uh ∈ Xr
h. If from ℓ(v) = ℓf (v) =

∫

Ω
fv (therefore f ∈ L2(Ω)) it

follows that u ∈ H2(Ω) (it is called elliptic regularity, for instance, Poisson
problem), then

• if u ∈ Hp+1(Ω, Th) and s = min{p, r}

‖uh − u‖L2(Ω) ≤ Chs+1|u|Hs+1(Ω,Th)

• if u ∈ Hp+1(Ω) and s = min{p, r}

‖uh − u‖L2(Ω) ≤ Chs+1|u|Hs+1(Ω)

Of course, the seminorms on the right end sides can be overestimated by the
corresponding norms.

2 Two-dimensional case

In the two-dimensional case Ω is a polygon and X = H1
0 (Ω). We just consider

the space X2
h = {vh ∈ X ∩ C0(Ω̄) : vh|Th

∈ P2(Th)}. A polynomial of degree
two on a triangle is defined by six points in general position. Usually the
three vertices and the three middle points of the edges are taken. We intro-
duce the barycentric coordinates: any point x in a triangle ℓj with vertices
{x1, x2, x3} ∈ Ω can be written in a unique way as

x = λ1(x)x1 + λ2(x)x2 + λ3(x)x3, λ1(x) + λ2(x) + λ3(x) ≡ 1

We have that λk(x) coincides, on the triangle, with the piecewise linear func-
tion ϕℓj,k

(x).

Proposition. Given three non-collinear points x1, x2, x3 ∈ Ω and the corre-

sponding middle points x12, x13, x23, a polynomial p(x) of total degree two is

well defined by the values of p(x) at the six points.

Proof. It is enough to prove that if p(x1) = p(x2) = p(x3) = p(x12) =
p(x13) = p(x23) = 0, than p ≡ 0. Along the edge x2x3 p is a quadratic
polynomial in one variable which is zero at three points. Therefore it is
zero on the whole edge and we can write p(x) = λ1(x)w1(x) with w1(x) ∈
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P1. In the same way p is zero along the edge x1x3 and therefore p(x) =
λ1(x)λ2(x)w0(x) with w0(x) = γ ∈ P0. If we now take the point x12, we have

0 = p(x12) = λ1(x12)λ2(x12)γ =
1

2

1

2
γ

and therefore γ = 0.

Figure 1: m = 5, n = 3 (right) and m = 4, n = 3 (left).

Given the number m of original nodes and the number n of triangles, by
Euler’s formula we have that the number of edges is m+(n+1)−2 = m+n−1
(in Euler’s formula it has to be counted also the unbounded region outside the
triangularion). Therefore, the dimension of X2

h is m+(m+n−1) = 2m+n−1.
It is not possible, as well, to know a priori the structure of the stiffness

matrix.

2.1 Bandwidth reduction

Even in the simplest case of piecewise linear basis function, an ordering of
the nodes as in Figure 2 (left) would yield a sparsity pattern as in Figure 2
(right). The degree of a node is the number of adjacent to it. We can consider
the following heuristic algorithm, called Cuthill–McKee reordering

• Select a node i and set the first element of the array R to i.

• Put the adjacent nodes of i in the increasing order of their degree in
the array Q.

• do until Q is empty

Take the first node in Q: if it is already in R, delete it, otherwise
add it to R, delete it from Q and add to Q the adjacent nodes
of it which are not already in R, in the increasing order of their
degree,
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Figure 2: Unordered mesh and corresponding sparsity pattern.

The new label of node R(j) is j. A variant is the so called reverse Cuthill–

McKee ordering, in which the final ordering produced by the previous al-
gorithm is reversed. The ordering produced by the reverse Cuthill–McKee
algorithm with initial node 1 (a node with smallest degree) is shown in Fig-
ure 3.

2.2 Error estimates

The weak formulation is

find u ∈ H1(Ω) such that a(u, v) = ℓ(v), ∀v ∈ H1(Ω)

with a SPD, bilinear, coercive, continuos and ℓ linear bounded. Therefore
we assume that u ∈ H1(Ω). Let us denote the generic triangle by K and its
diameter by hK . The maximum diameter of the triangles is h.

2.2.1 H1 norm, Xr
h space

Let be {Th}h a family of regular triangulations and uh ∈ Xr
h. Then Let be

uh ∈ Xr
h. Then:
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Figure 3: Reverse Cuthill–McKee ordered mesh and corresponding sparsity
pattern.

• if u ∈ Hp+1(Ω, Th) (u “piecewise regular”) and s = min{p, r}

‖uh − u‖H1(Ω) ≤ C
∑

K∈Th

(

h2s
K |u|2Hs+1(K)

)1/2

≤ Chs|u|Hs+1(Ω,Th)

• if u ∈ Hp+1(Ω) (u “regular” and therefore “piecewise regular”) and
s = min{p, r}

‖uh − u‖H1(Ω) ≤ C
∑

K∈Th

(

h2s
K |u|2Hs+1(K)

)1/2

≤ Chs|u|Hs+1(Ω)

Of course, the seminorms on the right end sides can be overestimated by the
corresponding norms.

2.2.2 L2 norm, Xr
h space

Let be {Th}h a family of regular triangulations and uh ∈ Xr
h. If from ℓ(v) =

ℓf (v) =
∫

Ω
fv (therefore f ∈ L2(Ω)) and Ω convex it follows that u ∈ H2(Ω)

(it is called elliptic regularity, for instance, Poisson problem), then
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• if u ∈ Hp+1(Ω, Th) and s = min{p, r}

‖uh − u‖L2(Ω) ≤ Chs+1|u|Hs+1(Ω,Th)

• if u ∈ Hp+1(Ω) and s = min{p, r}

‖uh − u‖L2(Ω) ≤ Chs+1|u|Hs+1(Ω)

Of course, the seminorms on the right end sides can be overestimated by the
corresponding norms.
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