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We consider, for semplicity, the homogeneous Dirichlet problem.

1 One-dimensional case

In the one dimensional case ) is an open interval and X = HJ (). We just
consider the space X? = {v, € X: vy|1, € Po(T})}. A polynomial of degree
two on a interval is defined by three points, usually the two extreme points
and the middle point. Therefore, given an original set of nodes {y;}7~, C €,

we have to consider the new set of nodes {x;}2™,"! C Q given by

Ti = Y(i+1)/2; i odd
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i ==, teven

and the set of basis functions



On the element ¢;, with endpoints ¢;; and ¢; 3 and middle point ¢; 5, the form
of vy, is
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Clearly now the basis function ¢; shares its support with ; o, ©; 1, ©it1, Qito
and therefore the stiffness matrix, for instance, is a pentadiagonal matrix.

1.1 Error estimates
The weak formulation is

find u € H*(Q) such that a(u,v) = £(v), Yo € H*(Q)
with a SPD, bilinear, coercive, continuos and ¢ linear bounded. Therefore
we assume that u € H'(Q). Let us denote the generic triangle (edge) by K
and its length by hx. The maximum length of the triangles is h.
1.1.1 H! norm, X] space
Let be uj, € X;. Then:

o if u € HP™(Q,7;,) (u “piecewise regular”) and s = min{p, r}

1/2
Hs+1 > S Chs|u

lun =l < €Y (HEIul

KeT),

Hs+1(Q,T3)
o if u € HP*(Q) (u “regular” and therefore “piecewise regular”) and
s = min{p, r}

lun =l < € Y (WElul?

KeT,

1/2
Hs+H1(K ) < Ch‘s]u Hs+1(Q)



Of course, the seminorms on the right end sides can be overestimated by the
corresponding norms.

1.1.2 L? norm, X space

Let be w, € Xj. If from {(v) = {;(v) = [, fv (therefore f € L*(Q)) it
follows that v € H?(Q) (it is called elliptic regularity, for instance, Poisson
problem), then

o if u € HP™(Q,7;,) and s = min{p, r}
Huh - UHL2(Q) < Chs+1|u|Hs+1(Q%)
o if u e HP*(Q) and s = min{p,r}

Huh — UHL2(Q) S Chsﬂ\u

Hs+1 (Q)

Of course, the seminorms on the right end sides can be overestimated by the
corresponding norms.

2 Two-dimensional case

In the two-dimensional case € is a polygon and X = Hj(£2). We just consider
the space X2 = {v, € X NC%Q): vp|r, € Po(Th)}. A polynomial of degree
two on a triangle is defined by six points in general position. Usually the
three vertices and the three middle points of the edges are taken. We intro-
duce the barycentric coordinates: any point x in a triangle ¢; with vertices
{1, 29,23} € Q can be written in a unique way as

r =M (2)x1 + Ao(2)xe + A3(2)x3, Ai(z) + No(x) + A3(2) = 1

We have that A\;(z) coincides, on the triangle, with the piecewise linear func-
tion gpgj’k(x).

Proposition. Given three non-collinear points x1,xs, x5 € ) and the corre-
sponding middle points x12, T13, Tez, a polynomial p(x) of total degree two is
well defined by the values of p(x) at the siz points.

Proof. 1t is enough to prove that if p(x1) = p(xs) = p(z3) = p(x1) =
p(z13) = p(xa3) = 0, than p = 0. Along the edge x93 p is a quadratic
polynomial in one variable which is zero at three points. Therefore it is
zero on the whole edge and we can write p(z) = A\(x)w;(z) with w(x) €
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P;. In the same way p is zero along the edge x;x3 and therefore p(x) =

A1 () Ao (x)wo(x) with wy(z) = v € Py. If we now take the point x5, we have
11
O - p(.’]}12> — )\1(.1‘12))\2(,’,1’,’12)’}/ = 55/}/

and therefore v = 0. O

s AN

Figure 1: m =5, n = 3 (right) and m = 4, n = 3 (left).

Given the number m of original nodes and the number n of triangles, by
Euler’s formula we have that the number of edges is m+(n+1)—2 = m+n—1
(in Euler’s formula it has to be counted also the unbounded region outside the
triangularion). Therefore, the dimension of X7 is m+(m+n—1) = 2m+n—1.

It is not possible, as well, to know a priori the structure of the stiffness
matrix.

2.1 Bandwidth reduction

Even in the simplest case of piecewise linear basis function, an ordering of
the nodes as in Figure 2! (left) would yield a sparsity pattern as in Figure 2]
(right). The degree of a node is the number of adjacent to it. We can consider
the following heuristic algorithm, called Cuthill-McKee reordering

e Select a node ¢ and set the first element of the array R to .

e Put the adjacent nodes of i in the increasing order of their degree in
the array Q.

e DO UNTIL () is empty

Take the first node in @: if it is already in R, delete it, otherwise
add it to R, delete it from ) and add to () the adjacent nodes
of it which are not already in R, in the increasing order of their
degree,
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Figure 2: Unordered mesh and corresponding sparsity pattern.

The new label of node R(j) is j. A variant is the so called reverse Cuthill-
McKee ordering, in which the final ordering produced by the previous al-
gorithm is reversed. The ordering produced by the reverse Cuthill-McKee
algorithm with initial node 1 (a node with smallest degree) is shown in Fig-
ure (3.

2.2 Error estimates

The weak formulation is
find u € H'(Q) such that a(u,v) = £(v), Vv € H(Q)

with a SPD, bilinear, coercive, continuos and ¢ linear bounded. Therefore
we assume that u € H*(2). Let us denote the generic triangle by K and its
diameter by hx. The maximum diameter of the triangles is h.

2.2.1 H' norm, X space

Let be {74} a family of regular triangulations and w, € Xj. Then Let be
up € Xj. Then:
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Figure 3: Reverse Cuthill-McKee ordered mesh and corresponding sparsity
pattern.

o if ue HP(Q,7,) (u “piecewise regular”) and s = min{p, r}

lun =l < € Y (HEIul

KeT),

1/2
Hs+1 > S Chs|u

H4(Q,T5)
o if u € HP'(Q) (u “regular” and therefore “piecewise regular”) and
s = min{p, r}

lun =l < €Y (WElul?

KeTy,

1/2
Hs+1(K ) S C'hs|u

Hs+1(Q)

Of course, the seminorms on the right end sides can be overestimated by the
corresponding norms.
2.2.2 [? norm, X] space

Let be {71}n a family of regular triangulations and u, € Xj. If from ¢(v) =
lr(v) = [, fv (therefore f € L?(Q)) and Q convex it follows that u € H*(Q)
(it is called elliptic reqularity, for instance, Poisson problem), then
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o if ue HP*(Q,7,) and s = min{p,r}

Jun — ull 22y < CR*u

Hs+t1(Q,73,)
o if ue HP*(Q) and s = min{p,r}
||uh — u||L2(Q) S C’h5+1|u|Hs+1(Q)

Of course, the seminorms on the right end sides can be overestimated by the
corresponding norms.
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