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From disjoint to nondisjoint theories

I Satisfiability of quantifier-free formulas

I In a union of theories

I Standard hypothesis: the theories are disjoint
I Not true in general, e.g.: length of arrays

I Two arrays are equal if they have the same length n and the
same elements at all indices between 0 and n − 1

I It forces the indices to be integers
I It forces arrays and integer arithmetic to share symbols

I Length is a bridging function

I Bridging functions make theories nondisjoint
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The CDSAT paradigm

I CDSAT: Conflict-Driven SATisfiability in a union of theories

I It orchestrates theory modules in a conflict-driven search

I Theory modules are inference systems, one per theory

I Propositional logic is one of the theories: no hierarchy btw
Boolean reasoning and theory reasoning

I Assignments of values to terms: both Boolean and first-order

I Input first-order assignments: satisfiability modulo assignment

I Sound, terminating, and complete for disjoint theories

I How about nondisjoint theories?
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An abstract approach that minimizes sharing

I ArrL: theory of arrays with abstract length

I Length is an integer ; can be but does not have to

I Index within bounds ; admissible index

I Shared predicate Adm with index and length as arguments

I Adm uninterpreted in ArrL

I Adm interpreted in another theory (e.g., LIA)

I Minimum sharing: Adm, sort of indices, sort of lengths
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Example: integers still covered

I Theories: ArrL and LIA

I LIA interprets both lengths and indices as integers

I LIA defines Adm by Adm(i , n)↔ 0 ≤ i < n

I The set of admissible indices is the interval [0, n)
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More general example: admissibility as membership

I Theories: ArrL and T
I T interprets the sort of indices as a set S

I T interprets the sort of lengths as the powerset P(S)

I T defines Adm by Adm(i , n)↔ i ∈ n

I n ∈ P(S) is a set of admissible indices

I n does not have to be an interval nor even an ordered set

I Indices are not necessarily numbers
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More concrete example: length with start address

I Theories: ArrL and T
I T interprets indices as integers and lengths as pairs (addr , n)

I addr : binary number representing the start address in memory

I n: integer representing the number of admissible indices

I T defines Adm by Adm(i , (addr , n))↔ 0 ≤ i < n

I Arrays a and b with the same set of admissible indices but
different start addresses are different
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The theory ArrL of arrays with abstract length: sorts

I Basic sorts including the sort prop of Booleans

I Sorts I of indices, V of elements, L of lengths

I Array sort constructor ⇒
I I

L⇒ V : sort of arrays with
indices of sort I
elements of sort V
lengths of sort L
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The theory ArrL of arrays with abstract length: symbols

I select : (I
L⇒ V )× I → V

I store : (I
L⇒ V )× I × V → (I

L⇒ V )

I len : (I
L⇒ V )→ L

I Adm: I × L→ prop
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The theory ArrL of arrays with abstract length: axioms

I Congruence axioms for select, store, len, and Adm
I Select-over-store axioms:

I ∀a, v , i , j . i 6' j → select(store(a, i , v), j)' select(a, j)
I ∀a, v , i . Adm(i , len(a))→ select(store(a, i , v), i)' v

I Store does not change length:
∀a, i , v . len(store(a, i , v))' len(a)

I A store at an inadmissible index has no effect

I Extensionality takes length into account:
∀a, b. [len(a)' len(b) ∧ (∀i . Adm(i , len(a))→
select(a, i)' select(b, i))]→ a' b
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Alternative choices yield other theories

I What if a store at an inadmissible index i makes it admissible?
I We get other theories:

I Maps
I Vectors or dynamic arrays
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A theory of maps

I Congruence axioms for select, store, len, and Adm
I Select-over-store axioms do not use Adm:

I ∀a, v , i , j . i 6' j → select(store(a, i , v), j)' select(a, j)
I ∀a, v , i . select(store(a, i , v), i)' v

I Store does not change length if the index is admissible:
∀a, i , v . Adm(i , len(a))→ len(store(a, i , v))' len(a)

I Store at an inadmissible index adds only that index to the
admissible set:
∀a, j , i , v . Adm(j , len(store(a, i , v)))↔ (Adm(j , len(a))∨ j ' i)

I Extensionality remains unchanged:
∀a, b. [len(a)' len(b) ∧ (∀i . Adm(i , len(a))→
select(a, i)' select(b, i))]→ a' b
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A theory of vectors or dynamic arrays

I Congruence axioms for select, store, len, and Adm
I Select-over-store axioms:

I ∀a, v , i , j . i 6' j → select(store(a, i , v), j)' select(a, j)
I ∀a, v , i . select(store(a, i , v), i)' v

I Store at an admissible index does not change length:
∀a, i , v . Adm(i , len(a))→ len(store(a, i , v))' len(a)

I Store at an inadmissible index makes that index and those in
between (requires an ordering) admissible:
∀a, j , i , v . Adm(j , len(store(a, i , v)))↔ (Adm(j , len(a))∨j ≤ i)

I Extensionality:
∀a, b. [len(a)' len(b) ∧ (∀i . Adm(i , len(a))→
select(a, i)' select(b, i))]→ a' b
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A theory module IArrL for ArrL

Every CDSAT T-module has equality inference rules:

I ` t1' t1 (reflexivity)

I t1' t2 ` t2' t1 (symmetry)

I t1' t2, t2' t3 ` t1' t3 (transitivity)

I t1←c, t2←c ` t1' t2 (c is a T-value)

I t1←c1, t2←c2 ` t1 6' t2 (c1 and c2 are T-values, c1 6=c2)

and then adds its own theory-specific rules
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A theory module IArrL for ArrL

Rules corresponding to congruence axioms:

I a' b, i ' j , select(a, i) 6' select(b, j) `ArrL ⊥
I a' b, i ' j , u' v , store(a, i , u) 6' store(b, j , v) `ArrL ⊥
I a' b `ArrL len(a)' len(b)

I n'm, i ' j , Adm(i , n), ¬Adm(j ,m) `ArrL ⊥

Some rules generate ⊥ (conflict detection) and others do not:
balancing finite basis design and completeness
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A theory module IArrL for ArrL

For the select-over-store axioms

I ∀a, v , i , j . i 6' j → select(store(a, i , v), j)' select(a, j)

I ∀a, v , i . Adm(i , len(a))→ select(store(a, i , v), i)' v

the rules are:

i 6' j , k ' j , b' store(a, i , v), a' c , select(b, k) 6' select(c , j) `ArrL ⊥
i ' j , len(a)' n, Adm(i , n), b' store(a, i , v), select(b, j) 6' v `ArrL ⊥

where the premises are flattened:
it suffices to have b' store(a, i , v) and select(b, j) 6' v
not necessarily select(store(a, i , v), j) 6' v

(that the equality rules do not infer: no replacement rule for basis

finiteness)
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A theory module IArrL for ArrL

For the axiom saying that store does not change length:

∀a, i , v . len(store(a, i , v))' len(a)

the rule is

len(store(a, i , v)) 6' len(a) `ArrL ⊥
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A theory module IArrL for ArrL: extensionality

Reduce to clausal form

∀a, b. [len(a)' len(b) ∧ (∀i . Adm(i , len(a))→
select(a, i)' select(b, i))]→ a' b

Two clauses with Skolem function symbol diff that maps two
arrays to an index where they differ:

a 6' b, len(a)' len(b) `ArrL select(a, diff(a, b)) 6' select(b, diff(a, b))

a 6' b, len(a)' len(b) `ArrL Adm(diff(a, b), len(a))

A congruence rule also for the Skolem symbol diff :

a' c , b' d , diff(a, b) 6' diff(c , d) `ArrL ⊥
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Soundness, termination, and completeness of CDSAT

I Soundness: whenever a derivation reaches unsat, the input is
unsatisfiable
It suffices that the theory modules are sound (unchanged wrt the

disjoint case)

I Termination: every derivation is guaranteed to halt
It suffices that there exists a finite global basis containing all input

terms (unchanged wrt the disjoint case)

I Completeness: whenever a derivation halts in a state other
than unsat, there exists a T +

∞ -model of the trail (and hence of
the input) (re-proved for the predicate-sharing case)
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Sufficient conditions for completeness

I Predicate-sharing union T∞ of theories T1, . . . , Tn:
I Disjoint or sharing predicate symbols
I Leading theory T1 that has all sorts and all shared symbols

I Complete collection of theory modules I1, . . . , In:
I Module I1 is complete for T1: if it cannot expand its view ΓT1

of trail Γ, there exists a T +
1 -model M1 of ΓT1

I For all k, 2 ≤ k ≤ n, module Ik is leading-theory-complete:
if it cannot expand ΓTk

, there exists a T +
k -model Mk of ΓTk

that agrees with M1 on the interpretation of shared predicates
and on the cardinalities of shared sorts
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How ArrL fits in predicate-sharing completeness

The interpretation of arrays:

I Array: updatable function

I Updatable function set: every function obtained by a finite
number of updates to a member is a member

I Array sort I ⇒ V : updatable function set

With abstract length:

I Array: partial updatable function
Domain of definition: the set of admissible indices

I Array sort I
L⇒ V : a collection of updatable function sets,

one for every value in the interpretation of L
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How ArrL fits in predicate-sharing completeness

I Module IArrL is leading-theory-complete for all ArrL-suitable
leading theories

I A leading theory T1 is ArrL-suitable if
I T1 has all the sorts of ArrL
I T1 shares with ArrL only the symbol Adm (and equality)

I For all T1-models M1 and sorts I
L⇒ V there exists a collection

of updatable function sets (Xn)n∈LM1 such that

|(I L⇒ V )M1 | = |
⊎

n∈LM1

Xn|

for all n ∈ LM1 : Xn is the set of partial updatable functions
with domain In = {i | i ∈ IM1 ∧ AdmM1 (i , n)} and codomain
VM1 used to interpret the arrays of length n
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Example with ArrL and LIA revisited

I LIA interprets L and I as Z
I LIA defines Adm by Adm(i , n)↔ 0 ≤ i < n

I Suppose ArrL interprets also V as Z
I T1 interpreting L, I , and Adm like LIA, and V like ArrL is

ArrL-suitable:
for all n ∈ Z, In = {i | i ∈ Z ∧ 0 ≤ i < n}
for all n, n > 0, Xn is countably infinite

Cardinality of the interpretation of I
L⇒ V : countably infinite

I A theory interpreting I
L⇒ V as being finite: not ArrL-suitable
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Example with ArrL and bitvectors

I BV interprets I as BV[1], L as BV[2]
Adm as true everywhere except (0, 00), (1, 00), and (1, 01)

I Suppose that ArrL and BV share also V
and BV interprets it as BV[1]

I T1 interpreting L, I , Adm, and V like BV is ArrL-suitable:
I00 = ∅, I01 = {0}, and I10 = I11 = {0, 1}
|X00| = 20 = 1, |X01| = 21 = 2, and |X10| = |X11| = 22 = 4

Cardinality of the interpretation of I
L⇒ V : 11

I A theory interpreting I
L⇒ V as countably infinite: not

ArrL-suitable
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Current and future work

I Develop this abstract approach to nondisjointness due to
bridging functions for

I A version of theory ArrL enriched with concatenation
I The theory of finite maps
I The theory of vectors or dynamic arrays
I Lists with length (generalized to recursive data structures)

I Implementation of CDSAT in Rust
(by Xavier Denis)

I Extend CDSAT with quantifier reasoning
(with Christophe Vauthier)
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