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Università degli Studi di Verona

Verona, Italy, EU

Talk given at Microsoft Research, Redmond, Washington, USA

12 April 2016

1Joint work with David A. Plaisted
Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method



Outline
Motivation

SGGS: model representation
SGGS: inferences

Completeness
Discussion

Motivation

SGGS: model representation

SGGS: inferences

Completeness

Discussion

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method



Outline
Motivation

SGGS: model representation
SGGS: inferences

Completeness
Discussion

Big picture: Model-based reasoning

I Derivation state includes candidate partial model

I Inference and search for model guide each other

I Inference as model transformation

I E.g., SAT-solving, SMT-solving, MBTC, MCsat, Model-based
projections ....
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Example: the CDCL procedure for PL

I Propositional logic

I A set of clauses S to be satisfied or refuted

I Model representation: trail of literals

I Search for model: decision, backjumping

I Inference: clausal propagation, explanation, learning
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Semantics in first-order reasoning

I Semantic resolution

I Hyperresolution

I Resolution with set of support

I Model elimination and tableaux-based methods: an open
branch is a candidate model

I Instance-based methods where instance generation is model
driven

I ....
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SGGS: Semantically-Guided Goal-Sensitive reasoning

I Model-based: It lifts CDCL to first-order logic

I Also semantically guided, goal sensitive, proof confluent

I Refutationally complete: S unsatisfiable, SGGS gets ⊥
I Explicit model construction: S is satisfiable, the limit of the

derivation is a model
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Model representation in PL

I Propositional logic

I Propositional variable P is either true or false

I 2n interpretations for n propositional variables

I Guess P (or ¬P)
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Model representation in FOL

I First-order logic

I Clausal form, Herbrand interpretations

I P(x) has infinitely many ground instances: P(a), P(f (a)),
P(f (f (a))) ... infinite Herbrand base

I Infinitely many interpretations where each ground instance is
either true or false: powerset of the Herbrand base

I What do we guess?! How do we get started?!

I Answer: Semantic guidance
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Semantic guidance

I Take I with all positive ground literals true

I S : set of clauses to be satisfied or refuted

I I |= S : done! I 6|= S : modify I to satisfy S

I How? Flipping literals from positive to negative

I SGGS discovers which negative literals are needed

I Initial interpretation I: starting point in the search for a
model and default interpretation
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SGGS basics

I Set S of clauses to refute or satisfy
I Initial fixed Herbrand interpretation I, e.g.:

I All negative (as in positive hyperresolution)
I All positive (as in negative hyperresolution)
I I 6|= SOS , I |= T (as in resolution with set of support)
I Other (e.g., I satisfies the axioms of a theory T and we have a

model constructing T -solver acting as oracle)

I I |= S : problem solved

I Otherwise: modify I to satisfy S

I How to represent this modified interpretation?
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Uniform falsity

I Propositional logic: if P is true (e.g., it is in the trail), ¬P is
false; if P is false, ¬P is true

I First-order logic: if P(x) is true, ¬P(x) is false, but if P(x) is
false, we only know that there is a ground instance P(t) such
that P(t) is false and ¬P(t) is true

I Uniform falsity: Literal L is uniformly false in an interpretation
J if all ground instances of L are false in J

I If P(x) is true in J , ¬P(x) is uniformly false in J
If P(x) is uniformly false in J , ¬P(x) is true in J
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Truth and uniform falsity in the initial interpretation

I I-true: true in I
I I-false: uniformly false in I
I If L is I-true, ¬L is I-false

if L is I-false, ¬L is I-true

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method



Outline
Motivation

SGGS: model representation
SGGS: inferences

Completeness
Discussion

SGGS clause sequence

I Γ: sequence of clauses
where every literal is either I-true or I-false (invariant)

I In every clause in Γ a literal is selected:
C = L1 ∨ L2 ∨ . . . ∨ L ∨ . . . ∨ Ln denoted C [L]

I I-false literals are preferred for selection (to change I)

I An I-true literal is selected only in a clause whose literals are
all I-true: I-all-true clause
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Examples

I I: all negative

I A sequence of unit clauses:
[P(a, x)], [P(b, y)], [¬P(z , z)], [P(u, v)]

I A sequence of non-unit clauses:
[P(x)], ¬P(f (y))∨[Q(y)], ¬P(f (z)) ∨ ¬Q(g(z))∨[R(f (z), g(z))]

I A sequence of constrained clauses:
[P(x)], top(y) 6= g � [Q(y)], z 6≡ c � [Q(g(z))]

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method



Outline
Motivation

SGGS: model representation
SGGS: inferences

Completeness
Discussion

Candidate partial model represented by Γ

I Get a partial model Ip(Γ) by consulting Γ from left to right

I Have each clause Ci [Li ] contribute the ground instances of Li
that satisfy ground instances of Ci not satisfied thus far

I Such ground instances are called proper

I Literal selection in SGGS corresponds to decision in CDCL
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Candidate partial model represented by Γ

I If Γ is empty, Ip(Γ) is empty
I If Γ = C1[L1], . . . ,Ci [Li ], and Ip(Γ|i−1) is the partial model

represented by C1[L1], . . . ,Ci−1[Li−1], then Ip(Γ) is Ip(Γ|i−1)
plus the ground instances Liσ such that
I Ciσ is ground
I Ip(Γ|i−1) 6|= Ciσ
I ¬Liσ 6∈ Ip(Γ|i−1)

Liσ is a proper ground instance
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Example

I Sequence Γ: [P(a, x)], [P(b, y)], [¬P(z , z)], [P(u, v)]

I Partial model Ip(Γ):
Ip(Γ) |= P(a, t) for all ground terms t
Ip(Γ) |= P(b, t) for all ground terms t
Ip(Γ) |= ¬P(t, t) for t other than a and b
Ip(Γ) |= P(s, t) for all distinct ground terms s and t
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Model represented by Γ

Consult first Ip(Γ) then I:

I Ground literal L
I Determine whether I[Γ] |= L:

I If Ip(Γ) determines the truth value of L:
I[Γ] |= L iff Ip(Γ) |= L

I Otherwise: I[Γ] |= L iff I |= L

I I[Γ] is I modified to try to satisfy the clauses in Γ by
satisfying the proper ground instances of their selected literals

I I-false selected literals makes the difference
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Example

I I: all negative

I Sequence Γ: [P(a, x)], [P(b, y)], [¬P(z , z)], [P(u, v)]

I Represented model I[Γ]:
I[Γ] |= P(a, t) for all ground terms t
I[Γ] |= P(b, t) for all ground terms t
I[Γ] |= ¬P(t, t) for t other than a and b
I[Γ] |= P(s, t) for all distinct ground terms s and t
I[Γ] 6|= L for all other positive literals L
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Disjoint prefix

The disjoint prefix dp(Γ) of Γ is

I The longest prefix of Γ where every selected literal contributes
to I[Γ] all its ground instances

I That is, where all ground instances are proper

I No two selected literals in the disjoint prefix intersect

I Intuitively, a polished portion of Γ
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Examples

[P(a, x)], [P(b, y)], [¬P(z , z)], [P(u, v)]:
the disjoint prefix is [P(a, x)], [P(b, y)]

[P(x)], ¬P(f (y))∨[Q(y)], ¬P(f (z)) ∨ ¬Q(g(z))∨[R(f (z), g(z))]:
the disjoint prefix is the whole sequence

[P(x)], top(y) 6= g � [Q(y)], z 6≡ c � [Q(g(z))]:
the disjoint prefix is the whole sequence
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Propositional clausal propagation

I Conflict clause:
L1 ∨ L2 ∨ . . . ∨ Ln
for all literals the complement is in the trail

I Unit clause:
C = L1 ∨ L2 ∨ . . . ∨ Lj ∨ . . . ∨ Ln
for all literals but one (Lj) the complement is in the trail

I Implied literal: add Lj to trail with C as justification
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First-order clausal propagation

I Consider a literal M selected in clause Cj in Γ, and a literal L
in Ci , i > j :
. . . , . . . ∨ [M] ∨ . . . , . . . , . . . ∨ L ∨ . . . , . . .
If all ground instances of L appear negated among the proper
ground instances of M, L is uniformly false in I[Γ]

I L depends on M, like ¬L depends on L in propositional clausal
propagation when L is in the trail

I Since every literal in Γ is either I-true or I-false, M will be
one and L the other
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Example

I I: all negative

I Sequence Γ:
[P(x)], ¬P(f (y))∨[Q(y)], ¬P(f (z)) ∨ ¬Q(g(z))∨[R(f (z), g(z))]

I ¬P(f (y)) depends on [P(x)]

I ¬P(f (z)) depends on [P(x)]

I ¬Q(g(z)) depends on [Q(y)]

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method



Outline
Motivation

SGGS: model representation
SGGS: inferences

Completeness
Discussion

First-order clausal propagation

I Conflict clause:
L1 ∨ L2 ∨ . . . ∨ Ln
all literals are uniformly false in I[Γ]

I Unit clause:
C = L1 ∨ L2 ∨ . . . ∨ Lj ∨ . . . ∨ Ln
all literals but one (Lj) are uniformly false in I[Γ]

I Implied literal: Lj with C [Lj ] as justification
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Semantically-guided first-order clausal propagation

I SGGS employs assignments to keep track of the dependences
of I-true literals on selected I-false literals

I Non-selected I-true literals are assigned (invariant)

I Selected I-true literals are assigned if possible

I I-all-true clauses in Γ are either conflict clauses or
justifications with their selected literal as implied literal

I All justifications are in the disjoint prefix
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SGGS-derivation

I Set S of clauses to refute or satisfy

I Initial interpretation I
I (S ; I; Γ0) ` (S ; I; Γ1) ` . . . (S ; I; Γi ) ` (S ; I; Γi+1) ` . . .
I Γ0 ` Γ1 ` . . . Γi ` Γi+1 ` . . .

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method
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How does SGGS build clause sequences?

I Main inference rule: SGGS-extension

I I[Γ] 6|= C for some clause C ∈ S

I I[Γ] 6|= C ′ for some ground instance C ′ of C
I Then SGGS-extension uses Γ and C to generate a (possibly

constrained) clause A� E such that
I E is an instance of C
I C ′ is a ground instance of A� E

and adds it to Γ to get Γ′

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method
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How can a ground clause be false I

I[Γ] 6|= C ′

For each literal L of C ′:

I Either L is I-true and it depends on an I-false selected literal
in Γ

I Or L is I-false and it depends on an I-true selected literal in Γ

I Or L is I-false and not interpreted by Ip(Γ)

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method
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The SGGS-extension inference scheme

I Clause C ∈ S : main premise

I Unify literals L1, . . . , Ln (n ≥ 1) of C with I-false selected
literals M1, . . . ,Mn of opposite sign in dp(Γ):
most general unifier α

I Clauses where the M1, . . . ,Mn are selected: side premises

I Generate instance Cα

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method
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The SGGS-extension inference scheme

I The L1α, . . . , Lnα are I-true

I The M1, . . . ,Mn are those that make the I-true literals of C ′

false in I[Γ]

I The M1, . . . ,Mn are I-false but true in I[Γ]:
instance generation is guided by the current model I[Γ]
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Semantic falsifier

I ϑ semantic falsifier for C : all literals in Cϑ are I-false

I Most general semantic falsifier
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The SGGS-extension inference scheme

I β most general semantic falsifier of (C \ {L1, . . . , Ln})α
I Generate instance Cαβ where the L1αβ, . . . , Lnαβ are I-true

and all other literals are I-false

I Assign the I-true literals of Cαβ to the side premises

I Cαβ is called extension clause

β not-empty only for I not based on sign

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method
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Examples

I S contains {P(a),¬P(x) ∨ Q(f (y)),¬P(x) ∨ ¬Q(z)}
I I: all negative

I Γ0 is empty
I[Γ0] = I 6|= P(a)

I Γ1 = [P(a)] with α and β empty

I I[Γ1] 6|= ¬P(x) ∨ Q(f (y))

I Γ2 = [P(a)], ¬P(a) ∨ [Q(f (y))]
with α = {x ← a} and β empty
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How can a ground clause be false II

I[Γ] 6|= C ′:

I Either C ′ is I-all-true: all its literals are assigned and depend
on selected I-false literals in Γ;
C ′ is instance of an I-all-true conflict clause

I Or C ′ has I-false literals and all of them depend on selected
I-true literals in Γ;
C ′ is instance of a non-I-all-true conflict clause

I Or C ′ has I-false literals and at least one of them is not
interpreted by Ip(Γ): C ′ is a proper ground instance of some
clause

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method
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Three kinds of SGGS-extension

The extension clause is

I Either an I-all-true conflict clause

I Or a non-I-all-true conflict clause

I Or a clause that is not in conflict and extends I[Γ] into I[Γ′]
by adding the proper ground instances of its selected literal
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SGGS-extension with I-all-true conflict clause

The extension clause E = Cαβ is an I-all-true conflict clause:

Γ

ΓA� E [L]

I Constraints may be inherited from the side premises

I L is the literal assigned to the side premise of largest index:
the selected literal in an I-all-true conflict clause is assigned
rightmost
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SGGS-extension with non-I-all-true conflict clause

All I -false literals in the extension clause E = Cαβ intersect I-true
selected literals in dp(Γ):

Γ

ΓAλ� E [L]λ

I Extension substitution λ: most general substitution that let
the I -false literals in the extension clause depend on I -true
selected literals in dp(Γ); in practice: most general unifier

I L is an arbitrary I-false literal: heuristic choice
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Non-conflicting SGGS-extension

The extension clause E = Cαβ has I-false literals with proper
ground instances w.r.t. Γ:

Γ

ΓA� E [L]

I L is an arbitrary I-false literal with proper ground instances:
heuristic choice
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Non-conflicting SGGS-extension

The extension clause E = Cαβ has an I -false literal L with proper
ground instances w.r.t. a prefix Γ1 of Γ:

Γ1J � N[O]Γ2

Γ1A� E [L]Γ2

I A� E [L] has smaller proper ground instances than J � N[O]
in a total well-founded ordering on ground literals that
extends the size ordering

I All side premises are in Γ1

I Γ1 is the shortest such prefix
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Lifting theorem for SGGS-extension

If I[Γ] 6|= C for some clause C ∈ S
(I[Γ] 6|= C ′ for C ′ ground instance of C )
then there is a (possibly constrained) clause A� E such that

I E is an instance of C

I C ′ is a ground instance of A� E

I A� E can be added to Γ by SGGS-extension to get Γ′
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Example

I S contains {P(a),¬P(x) ∨ Q(f (y)),¬P(x) ∨ ¬Q(z)}
I I: all negative

I After two non-conflicting SGGS-extensions:
Γ2 = [P(a)], ¬P(a) ∨ [Q(f (y))]

I I[Γ2] 6|= ¬P(x) ∨ ¬Q(z)

I Γ3 = [P(a)], ¬P(a) ∨ [Q(f (y))], ¬P(a) ∨ [¬Q(f (w))] with
α = {x ← a, z ← f (y)} plus renaming

I Conflict! with I-all-true conflict clause

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method
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CDCL

I Conflict-driven clause learning

I Explanation: conflict clause A ∨ B ∨ C and ¬A in the trail
with justification ¬A ∨ D: resolve them

I Resolvent D ∨ B ∨ C is new conflict clause

I Any resolvent is a logical consequence and can be kept: how
many? Heuristic

I Backjump: undoes at least a guess, jumps back as far as
possible to state where learnt resolvent can be satisfied

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method
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Conflict handling in SGGS

The conflict clause is

I I-all-true: solve the conflict

I Non-I-all-true: explain and solve the conflict
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First-order conflict explanation: SGGS-resolution

I It resolves a non-I-all-true conflict clause E with a
justification D[M]

I The literals resolved upon are an I-false literal L of E and the
I-true selected literal M that L depends on
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First-order conflict explanation: SGGS-resolution

I Each resolvent is still a conflict clause and it replaces the
previous conflict clause in Γ

I It continues until all I-false literals in the conflict clause have
been resolved away (thanks to extension substitution) and it
gets either 2 or an I-all-true conflict clause

I If 2 arises, S is unsatisfiable

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method
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First-order conflict-solving: SGGS-move

I It moves the I-all-true conflict clause E [L] to the left of the
clause D[M] such that L depends on M

I It does not bother other assignments because L was assigned
rightmost

I It flips at once from false to true the truth value in I[Γ] of all
ground instances of L

I The conflict is solved, L is implied, E [L] is satisfied, it
becomes the justification of L and it enters the disjoint prefix
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Example (continued)

I S contains {P(a),¬P(x) ∨ Q(f (y)),¬P(x) ∨ ¬Q(z)}
I Γ3 = [P(a)], ¬P(a) ∨ [Q(f (y))], ¬P(a) ∨ [¬Q(f (w))]

I Γ4 = [P(a)], ¬P(a) ∨ [¬Q(f (w))], ¬P(a) ∨ [Q(f (y))]

I Γ5 = [P(a)], ¬P(a) ∨ [¬Q(f (w))], [¬P(a)]

I Γ6 = [¬P(a)], [P(a)], ¬P(a) ∨ [¬Q(f (w))]

I Γ7 = [¬P(a)], 2, ¬P(a) ∨ [¬Q(f (w))]

I Refutation!
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Bundled derivation

All conflicting SGGS-extension are followed by (bundled with)
explanation by SGGS-resolution and conflict solving by SGGS-move
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Further elements

I There’s more to SGGS: first-order literals may intersect having
ground instances with the same atom

I SGGS uses splitting inference rules to partition clauses and
isolate intersections that can then be removed by
SGGS-resolution (different sign) or SGGS-deletion (same sign)

I Splitting introduces constraints that are a kind of Herbrand
constraints (e.g., x 6≡ y � P(x , y), top(y) 6= g � Q(y))

I SGGS works with constrained clauses
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SGGS makes progress

For all states (S , I ; Γ):

I If I[Γ] 6|= C for some clause C ∈ S and Γ = dp(Γ),
SGGS-extension applies to Γ

I If Γ 6= dp(Γ), an SGGS inference rule other than
SGGS-extension applies to Γ
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Refutational completeness and goal-sensitivity

SGGS is

I Refutationally complete, regardless of the choice of I
I Goal sensitive if I 6|= SOS and I |= T for S = T ] SOS
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Refutational completeness

I S : input set of clauses

I S unsatisfiable: any fair SGGS-derivation terminates
with refutation

I S satisfiable: derivation may be infinite;
its limiting sequence represents a model
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Proof of refutational completeness: building blocks

I A convergence ordering >c on clause sequences: ensures that
there is no infinite descending chain of sequences of bounded
length

I A notion of fairness for SGGS-derivations: ensures that the
procedure does not ignore inferences on shorter prefixes to
work on longer ones

I A notion of limiting sequence for SGGS-derivations: every
prefix stabilizes eventually
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Convergence ordering I

I Quasi-orderings ≥i and equivalence relations ≈i on clause
sequences of length up to i

I Convergence ordering >c : lexicographic combination of >i ’s

I Equivalence relation ≈c : same length and all prefixes in the
≈i ’s
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Convergence ordering II

Theorem:
>i is well-founded on clause sequences of length at least i

Corollary:
Descending chain Γ1 >c Γ2 >c . . . Γj >c Γj+1 >c . . .
of sequences of bounded length (for all j , |Γj | ≤ n) is finite

No infinite descending chain of sequences of bounded length
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Fairness I

I Index of inference Γ ` Γ′:
the shortest prefix that gets reduced
the smallest i such that Γ|i >c Γ′|i

I Index(Γ): minimum index of any inference applicable to Γ
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Fairness II

Fair derivation Γ0 ` Γ1 ` . . . Γj ` . . .:
∀i , i > 0, if for infinitely many Γj ’s index(Γj) ≤ i
for infinitely many Γj ’s the applied inference has index ≤ i

Any SGGS-inference that is infinitely often possible is eventually
done

The minimal index SGGS-strategy that always selects an inference
of minimal index is fair
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Limiting sequence

I Derivation Γ0 ` Γ1 ` . . . ` Γj ` . . . admits limit
if there exists a Γ (limit)
such that for all lengths i , i ≤ |Γ|
there is an integer ni
such that for all indices j ≥ ni in the derivation
if |Γj | ≥ i then Γj |i ≈c Γ|i

I Every prefix stabilizes eventually

I The longest such sequence Γ∞ is the limiting sequence

I Both derivation and Γ∞ may be finite or infinite
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Convergence and descending chain theorems

I Convergence theorem:
A derivation that is a non-ascending chain admits limiting
sequence

I Descending chain theorem:
A bundled derivation forms a descending chain
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Completeness theorem

Theorem:
For all initial interpretations I and sets S of first-order clauses,
if S is unsatisfiable, any fair bundled SGGS-derivation is a
refutation

Idea of proof:
If not, infinitely many SGGS-extensions apply;
infinite derivation with infinite limiting sequence Γ∞;
Γj gets reduced in >c in a finite prefix (Γj)|n that had already
converged ((Γj)|n = (Γ∞)|n): contradiction
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Summary

SGGS is possibly unique in being simultaneously

I First order

I Model based à la CDCL

I Semantically guided

I Refutationally complete

I Goal sensitive (when deemed desirable)

I Proof confluent
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Future work on SGGS

I Implementation: algorithms and strategies

I Heuristic choices: literal selection, assignments

I Simpler SGGS?

I Initial interpretations not based on sign

I Extension to equality?

I SGGS for model building?

I SGGS for decision procedures for decidable fragments?

Towards a semantically-oriented style of theorem proving
that may pay off for hard problems or new domains
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