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Motivation

Big picture: Model-based reasoning

» Derivation state includes candidate partial model
» Inference and search for model guide each other
» Inference as model transformation

> E.g., SAT-solving, SMT-solving, MBTC, MCsat, Model-based
projections ....
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Motivation

Example: the CDCL procedure for PL

Propositional logic

A set of clauses S to be satisfied or refuted

>

>

» Model representation: trail of literals

> Search for model: decision, backjumping
>

Inference: clausal propagation, explanation, learning
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Motivation

Semantics in first-order reasoning

Semantic resolution
Hyperresolution

Resolution with set of support

vvyyypy

Model elimination and tableaux-based methods: an open
branch is a candidate model

v

Instance-based methods where instance generation is model
driven
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Motivation

SGGS: Semantically-Guided Goal-Sensitive reasoning

» Model-based: It lifts CDCL to first-order logic
> Also semantically guided, goal sensitive, proof confluent
» Refutationally complete: S unsatisfiable, SGGS gets L

> Explicit model construction: S is satisfiable, the limit of the
derivation is a model
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SGGS: model representation

Model representation in PL

» Propositional logic

» Propositional variable P is either true or false
> 27 interpretations for n propositional variables
» Guess P (or —P)
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SGGS: model representation

representation in FOL

First-order logic
Clausal form, Herbrand interpretations

P(x) has infinitely many ground instances: P(a), P(f(a)),
P(f(f(a))) ... infinite Herbrand base

Infinitely many interpretations where each ground instance is
either true or false: powerset of the Herbrand base

What do we guess?! How do we get started?!

Answer: Semantic guidance
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SGGS: model representation

Semantic guidance

Take Z with all positive ground literals true

S: set of clauses to be satisfied or refuted

Z = S: done! Z |~ S: modify 7 to satisfy S
How? Flipping literals from positive to negative
SGGS discovers which negative literals are needed

Initial interpretation Z: starting point in the search for a
model and default interpretation
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SGGS: model representation

SGGS basics

> Set S of clauses to refute or satisfy
> Initial fixed Herbrand interpretation Z, e.g.:

> All negative (as in positive hyperresolution)

» All positive (as in negative hyperresolution)

> T~ SOS, Tk T (asin resolution with set of support)

» Other (e.g., Z satisfies the axioms of a theory 7 and we have a
model constructing 7 -solver acting as oracle)

» 7 |=S: problem solved
» Otherwise: modify 7 to satisfy S

» How to represent this modified interpretation?
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SGGS: model representation

Uniform falsity

» Propositional logic: if P is true (e.g., it is in the trail), =P is
false; if P is false, =P is true

» First-order logic: if P(x) is true, =P(x) is false, but if P(x) is
false, we only know that there is a ground instance P(t) such
that P(t) is false and —P(t) is true

» Uniform falsity: Literal L is uniformly false in an interpretation
J if all ground instances of L are false in J

> If P(x) is true in J, =P(x) is uniformly false in J
If P(x) is uniformly false in 7, =P(x) is true in J
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SGGS: model representation

Truth and uniform falsity in the initial interpretation

> 7-true: true in Z
» 7-false: uniformly false in 7

» If Lis Z-true, =L is Z-false
if Lis Z-false, =L is Z-true

Maria Paola Bonacina
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SGGS: model representation

SGGS clause sequence

> [: sequence of clauses
where every literal is either Z-true or Z-false (invariant)

P In every clause in I a literal is selected:
C=LiVIVv...VLV...VL,denoted C[L]

> 7-false literals are preferred for selection (to change 7)

» An Z-true literal is selected only in a clause whose literals are
all Z-true: Z-all-true clause
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SGGS: model representation

Examples

> 7. all negative
> A sequence of unit clauses:
[P(a,x)], ['D(va)]v [_"D(Z>Z)]7 [P(U> V)]
> A sequence of non-unit clauses:
[PCIL, =P(F(y)VIQRW)], =P(f(2)) v = Q(g(2))VIR((2), &(2))]
» A sequence of constrained clauses:

[P(x)], top(y) # g > [Qy)], z # c > [Q(g(2))]
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SGGS: model representation

Candidate partial model represented by I

> Get a partial model ZP(I") by consulting I from left to right

» Have each clause C;[L;] contribute the ground instances of L;
that satisfy ground instances of C; not satisfied thus far

» Such ground instances are called proper
> Literal selection in SGGS corresponds to decision in CDCL
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SGGS: model representation

Candidate partial model represented by I

» If I is empty, ZP(I") is empty
> If = G[Li],..., G[L;], and ZP(T|;~1) is the partial model
represented by Cl[[—l], ce C,'_l[L,'_l], then IP(F) is IP(F],-_l)
plus the ground instances L;o such that
» (Cio is ground
> IP(Mji-1) b= Gio
> —|L,'O' QIP(”;_l)
Lio is a proper ground instance
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SGGS: model representation

Example

» Sequence I: [P(a,x)],[P(b,y)],[7P(z,z2)],[P(u, v)]
» Partial model ZP(I"):
IP(I') = P(a, t) for all ground terms t
ZP(T) k= P(b, t) for all ground terms t
Ip(l') = —P(t,t) for t other than a and b
ZP(T) k= P(s, t) for all distinct ground terms s and t
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SGGS: model representation

Model represented by I

Consult first ZP(I') then Z:

» Ground literal L
» Determine whether Z[] = L:
» If ZP(T") determines the truth value of L:
I[N ELIffZPT) EL
> Otherwise: Z[N = LIffTEL
» Z[I is Z modified to try to satisfy the clauses in [ by
satisfying the proper ground instances of their selected literals

> 7-false selected literals makes the difference
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SGGS: model representation

Example

> 7: all negative
> Sequence I': [P(a, x)], [P(b,y)], [~P(z,2)], [P(u, v)]
> Represented model Z[I]:
Z[l'l = P(a, t) for all ground terms t
Z[l] = P(b, t) for all ground terms t
Z[l'] = —P(t, t) for t other than a and b
T[T | P(s, t) for all distinct ground terms s and t
Z[I'] ¥ L for all other positive literals L

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method



SGGS: model representation

Disjoint prefix

The disjoint prefix dp(I") of I is

» The longest prefix of I where every selected literal contributes
to Z[I] all its ground instances

» That is, where all ground instances are proper
> No two selected literals in the disjoint prefix intersect
» Intuitively, a polished portion of '
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SGGS: model representation

Examples

[P(a, )], [P(b, y)), [P(z, 2)], [P(u, v)]:
the disjoint prefix is [P(a, x)], [P(b, y)]

[POI], ~P(F)VIRW)], ~P(f(2)) v ~Q(g(2))VIR(#(2), &(2))]:

the disjoint prefix is the whole sequence

[P(X)], top(y) # & > [Q(y)], z# ¢ > [Q(g(2))]:

the disjoint prefix is the whole sequence
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SGGS: model representation

Propositional clausal propagation

» Conflict clause:
LiVI,V...VL,
for all literals the complement is in the trail

> Unit clause:
C:Ll\/Lg\/...\/Lj\/...\/Ln
for all literals but one (L;) the complement is in the trail

» Implied literal: add L; to trail with C as justification

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method



SGGS: model representation

First-order clausal propagation

» Consider a literal M selected in clause C; in I', and a literal L
in G, i >
ceese VMV VLV
If all ground instances of L appear negated among the proper
ground instances of M, L is uniformly false in Z[I]

» [ depends on M, like =L depends on L in propositional clausal
propagation when L is in the trail

> Since every literal in [ is either Z-true or Z-false, M will be
one and L the other
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SGGS: model representation

Example

P> 7: all negative
> Sequence I':
[PCOL —~PF())VIQ(Y)], —P(f(2)) v —~Q(g(2))V[R(f(2), 8(2))]
» —P(f(y)) depends on [P(x)]
—P(f(z)) depends on [P(x)]
> —Q(g(z)) depends on [Q(y)]

v
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SGGS: model representation

First-order clausal propagation

> Conflict clause:
LiVI,V...VL,
all literals are uniformly false in Z[I]
> Unit clause:
C:Ll\/Lg\/...\/Lj\/...\/Ln
all literals but one (L;) are uniformly false in Z[I]

» Implied literal: L; with C[L;] as justification
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SGGS: model representation

Semantically-guided first-order clausal propagation

» SGGS employs assignments to keep track of the dependences
of Z-true literals on selected Z-false literals

» Non-selected Z-true literals are assigned (invariant)
> Selected Z-true literals are assigned if possible

» 7-all-true clauses in [ are either conflict clauses or
justifications with their selected literal as implied literal

> All justifications are in the disjoint prefix
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SGGS: inferences

SGGS-derivation

> Set S of clauses to refute or satisfy

> Initial interpretation Z

> (S;ZT)F(S; T (SSTTHE(S T Tiv) F e
> ToFT .. TiFETi oL

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method



SGGS: inferences

How does SGGS build clause sequences?

» Main inference rule: SGGS-extension
» T[] = C for some clause C € S

» T[] = C' for some ground instance C’ of C

» Then SGGS-extension uses I and C to generate a (possibly
constrained) clause A > E such that

> E is an instance of C
» (' is a ground instance of Ap> E

and adds it to I to get I’
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SGGS: inferences

How can a ground clause be false |

I EC
For each literal L of C’:
» Either L is Z-true and it depends on an Z-false selected literal
inl
» Or L is Z-false and it depends on an Z-true selected literal in [’

» Or L is Z-false and not interpreted by ZP(I")
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SGGS: inferences

The SGGS-extension inference scheme

» Clause C € S: main premise

» Unify literals Ly,...,L, (n > 1) of C with Z-false selected
literals My, ..., M, of opposite sign in dp(I):
most general unifier «

» Clauses where the My, ..., M, are selected: side premises

» Generate instance Co
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SGGS: inferences

The SGGS-extension inference scheme

» The Lia,...,Lya are Z-true
» The Mq,..., M, are those that make the Z-true literals of C’
false in Z[I]

» The My,..., M, are Z-false but true in Z[I]:
instance generation is guided by the current model Z[I']
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SGGS: inferences

Semantic falsifier

» ¢ semantic falsifier for C: all literals in C are Z-false

> Most general semantic falsifier
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SGGS: inferences

The SGGS-extension inference scheme

» 3 most general semantic falsifier of (C \ {L1,...,Ln})

» Generate instance Caf3 where the Liaf3, ..., Lyaf are Z-true
and all other literals are Z-false

» Assign the Z-true literals of Caf to the side premises

> Caf is called extension clause

B not-empty only for Z not based on sign
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SGGS: inferences

Examples

» S contains {P(a),=P(x) V Q(f(y)), ~P(x) vV -Q(z)}
> 7: all negative

> [ is empty
I[No] =1 ¥ P(a)

» 1 = [P(a)] with @ and § empty
> Z[M] = =P(x) vV Q(f(y))
> 2 =[P(a)], ~P(a) v [Q(f(¥))]

with o = {x « a} and § empty
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SGGS: inferences

How can a ground clause be false Il

) B~

» Either C’ is Z-all-true: all its literals are assigned and depend
on selected Z-false literals in I';
C’ is instance of an Z-all-true conflict clause

» Or C’ has Z-false literals and all of them depend on selected
Z-true literals in I';
C’ is instance of a non-Z-all-true conflict clause

» Or C’ has Z-false literals and at least one of them is not
interpreted by ZP(I"): C’ is a proper ground instance of some
clause
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SGGS: inferences

Three kinds of SGGS-extension

The extension clause is
» Either an Z-all-true conflict clause
» Or a non-Z-all-true conflict clause

» Or a clause that is not in conflict and extends Z[[] into Z["]
by adding the proper ground instances of its selected literal
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SGGS: inferences

SGGS-extension with Z-all-true conflict clause

The extension clause E = Caf is an Z-all-true conflict clause:

_r
FA> E[L]

» Constraints may be inherited from the side premises

> [ is the literal assigned to the side premise of largest index:
the selected literal in an Z-all-true conflict clause is assigned
rightmost
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SGGS: inferences

SGGS-extension with non-Z-all-true conflict clause

All /-false literals in the extension clause E = Ca/f3 intersect Z-true
selected literals in dp(I):

-
FAN > E[L]A

> Extension substitution A: most general substitution that let
the /-false literals in the extension clause depend on /-true
selected literals in dp(I'); in practice: most general unifier

» [ is an arbitrary Z-false literal: heuristic choice

SGGS: A CDCL-like first-order theorem-proving method
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SGGS: inferences

Non-conflicting SGGS-extension

The extension clause E = Caf has Z-false literals with proper
ground instances w.r.t. I

.
FA E[L]

» [ is an arbitrary Z-false literal with proper ground instances:
heuristic choice
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SGGS: inferences

Non-conflicting SGGS-extension

The extension clause E = Caf has an /-false literal L with proper
ground instances w.r.t. a prefix 't of I':

rJ N[O]r?
A E[L]r?

» A E[L] has smaller proper ground instances than J > N[O]
in a total well-founded ordering on ground literals that
extends the size ordering

» All side premises are in 't

» [ is the shortest such prefix

Maria Paola Bonacina SGGS: A CDCL-like first-order theorem-proving method



SGGS: inferences

Lifting theorem for SGGS-extension

If Z[I'] /= C for some clause C € S
(Z[r] & C' for C" ground instance of C)
then there is a (possibly constrained) clause A > E such that

» E is an instance of C
» (' is a ground instance of A> E
» A E can be added to [ by SGGS-extension to get I’
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SGGS: inferences

Example

» S contains {P(a), " P(x) V Q(f(y)), "P(x) vV -Q(z)}
Z: all negative

vy

After two non-conflicting SGGS-extensions:

M2 = [P(a)], ~P(a) V[Q(F(¥))]

I[Mo] 7= =P(x) V ~Q(2)

M3 =[P(a)], =P(a) V[Q(f(y))], ~P(a) V [~ Q(f(w))] with
a={x < a,z <+ f(y)} plus renaming

vy

» Conflict! with Z-all-true conflict clause
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SGGS: inferences

Conflict-driven clause learning

Explanation: conflict clause AV BV C and —A in the trail
with justification =A V D: resolve them

Resolvent D Vv B Vv C is new conflict clause

Any resolvent is a logical consequence and can be kept: how
many? Heuristic

Backjump: undoes at least a guess, jumps back as far as
possible to state where learnt resolvent can be satisfied
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SGGS: inferences

Conflict handling in SGGS

The conflict clause is
» 7T-all-true: solve the conflict

» Non-Z-all-true: explain and solve the conflict
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SGGS: inferences

First-order conflict explanation: SGGS-resolution

» It resolves a non-Z-all-true conflict clause E with a
justification D[M]

» The literals resolved upon are an Z-false literal L of E and the
Z-true selected literal M that L depends on
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SGGS: inferences

First-order conflict explanation: SGGS-resolution

» Each resolvent is still a conflict clause and it replaces the
previous conflict clause in [

> It continues until all Z-false literals in the conflict clause have
been resolved away (thanks to extension substitution) and it
gets either O or an Z-all-true conflict clause

> If O arises, S is unsatisfiable
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SGGS: inferences

First-order conflict-solving: SGGS-move

» |t moves the Z-all-true conflict clause E[L] to the left of the
clause D[M] such that L depends on M

P It does not bother other assignments because L was assigned
rightmost

» It flips at once from false to true the truth value in Z[[] of all
ground instances of L

» The conflict is solved, L is implied, E[L] is satisfied, it
becomes the justification of L and it enters the disjoint prefix
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SGGS: inferences

Example (continued)

» S contains {P(a), = P(x) V Q(f(y)), ~P(x) vV -Q(z)}
> I3 =[P(a)], ~P(a) V[Q(f(y))], ~P(a) V [~ Q(f(w))]
> Ty =[P(a)], ~P(a) vV [~Q(f(w))], =P(a) vV [Q(f(y))]
> I's =[P(a)], ~P(a) vV [~Q(f(w))], [-P(a)]

> e =[-P(a)l, [P(a)], ~P(a) Vv [-Q(f(w))]

> 7 =[=P(a)], O, ~P(a) V [-Q(f(w))]

> Refutation!
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SGGS: inferences

Bundled derivation

All conflicting SGGS-extension are followed by (bundled with)
explanation by SGGS-resolution and conflict solving by SGGS-move
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SGGS: inferences

Further elements

» There's more to SGGS: first-order literals may intersect having
ground instances with the same atom

> SGGS uses splitting inference rules to partition clauses and
isolate intersections that can then be removed by
SGGS-resolution (different sign) or SGGS-deletion (same sign)

» Splitting introduces constraints that are a kind of Herbrand
constraints (e.g., x Z y > P(x,y), top(y) # g > Q(¥))

» SGGS works with constrained clauses
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SGGS: inferences

SGGS makes progress

For all states (S, /;T):
» If Z[I'] B~ C for some clause C € S and ' = dp(I'),
SGGS-extension applies to '

» If [ # dp(l), an SGGS inference rule other than
SGGS-extension applies to I
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SGGS: inferences

Refutational completeness and goal-sensitivity

SGGS is

» Refutationally complete, regardless of the choice of Z
» Goal sensitive if Z = SOS and Z =T for S = T W SOS
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Completeness

Refutational completeness

> S: input set of clauses

» S unsatisfiable: any fair SGGS-derivation terminates
with refutation

> S satisfiable: derivation may be infinite;
its limiting sequence represents a model
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Completeness

Proof of refutational completeness: building blocks

> A convergence ordering > on clause sequences: ensures that
there is no infinite descending chain of sequences of bounded
length

» A notion of fairness for SGGS-derivations: ensures that the

procedure does not ignore inferences on shorter prefixes to
work on longer ones

» A notion of limiting sequence for SGGS-derivations: every
prefix stabilizes eventually
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Completeness

Convergence ordering |

» Quasi-orderings >; and equivalence relations =s; on clause
sequences of length up to /

> Convergence ordering >¢: lexicographic combination of >;'s

» Equivalence relation ~¢: same length and all prefixes in the

1
S
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Completeness

Convergence ordering |l

Theorem:
>; is well-founded on clause sequences of length at least /

Corollary:
Descending chain It >¢ 2 >¢ [/ >¢[Jtl ¢
of sequences of bounded length (for all j, |I[/| < n) is finite

No infinite descending chain of sequences of bounded length
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Completeness

Fairness |

» Index of inference [ - T":
the shortest prefix that gets reduced
the smallest / such that I'|; > T"|;

» Index(I"): minimum index of any inference applicable to I

SGGS: A CDCL-like first-order theorem-proving method
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Completeness

Fairness |l

Fair derivation o =Ty ... T; ...
Vi, i >0, if for infinitely many I;'s index(I';) <i
for infinitely many [';'s the applied inference has index </

Any SGGS-inference that is infinitely often possible is eventually
done

The minimal index SGGS-strategy that always selects an inference
of minimal index is fair
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Completeness

Limiting sequence

\4

Derivation g =Ty ... =T F ... admits limit

if there exists a I (limit)

such that for all lengths i, i < |I'|

there is an integer n;

such that for all indices j > n; in the derivation

if |FJ| > | then FJ-],- ~°¢ F|,-

Every prefix stabilizes eventually

The longest such sequence I, is the limiting sequence

Both derivation and ', may be finite or infinite
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Completeness

Convergence and descending chain theorems

» Convergence theorem:
A derivation that is a non-ascending chain admits limiting
sequence

» Descending chain theorem:
A bundled derivation forms a descending chain
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Completeness

Completeness theorem

Theorem:
For all initial interpretations Z and sets S of first-order clauses,

if S is unsatisfiable, any fair bundled SGGS-derivation is a
refutation

Idea of proof:

If not, infinitely many SGGS-extensions apply;

infinite derivation with infinite limiting sequence I;

I'; gets reduced in > in a finite prefix (I';)|, that had already
converged ((I)[» = (F'=)|n): contradiction
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Discussion

Summary

SGGS is possibly unique in being simultaneously

> First order
Model based a la CDCL
Semantically guided

>

>

> Refutationally complete

» Goal sensitive (when deemed desirable)
>

Proof confluent
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Discussion

References on SGGS

> Semantically-guided goal-sensitive reasoning: model representation.
Journal of Automated Reasoning 56(2):113-141, February 2016.

» Semantically-guided goal-sensitive reasoning: inference system and
completeness. Submitted, 58 pages.

» SGGS theorem proving: an exposition. 4th Workshop on Practical
Aspects in Automated Reasoning (PAAR), Vienna, July 2014. EPiC
31:25-38, July 2015.

» Constraint manipulation in SGGS. 28th Workshop on Unification
(UNIF), Vienna, July 2014. TR 14-06, RISC, 47-54, 2014.
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Discussion

Future work on SGGS

vVvyVvVvYyypy

>

Implementation: algorithms and strategies

Heuristic choices: literal selection, assignments
Simpler SGGS?

Initial interpretations not based on sign

Extension to equality?

SGGS for model building?

SGGS for decision procedures for decidable fragments?

Towards a semantically-oriented style of theorem proving
that may pay off for hard problems or new domains
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