On fairness in theorem proving

Maria Paola Bonacina

Dipartimento di Informatica
Università degli Studi di Verona
Verona, Italy

June 26, 2013
Motivation

Uniform fairness for saturation

Fairness for theorem proving

Discussion
The gist of this talk

- Theorem proving is search, not saturation
- The relevant property is fairness
- Fairness should earn less than saturation
- Fairness should consider both expansion and contraction
Scheduling: no starvation of processes
Search: no neglect of “useful” moves
Automated reasoning

- Inference system or Transition system: set of non-deterministic rules defines the search space of all possible steps
- Search plan: controls rules application, guides search for proof/model, adds determinism: given input, unique derivation

Procedure/Strategy = Rule system + Search plan
Requirements

- System of rules: completeness
 there exist successful derivations
- Search plan: fairness
 ensure that the generated derivation succeeds
Theorem proving (TP)

- Inference system: **refutational completeness**
 if input set unsat
 there exist derivations yielding \(\bot\) (and a proof)

- Search plan: **fairness**
 ensure that the generated derivation yields \(\bot\)

- Complete TP strategy =
 Refutationally complete inference system + Fair search plan
Exhaustive: consider *eventually* all *applicable* steps trivial, brute force way to be fair

How to be fair without being exhaustive?

Non-trivial definitions of fairness?

Non-trivially fair search plans?

Non-trivial fairness: reduce gap between completeness and efficiency
Fairness and redundancy

- Consider eventually all needed steps: What is needed?
- Dually: what is not needed, or: what is redundant?
- Fairness and redundancy are related
Redundancy I

- **Resolution**: generate resolvents by resolving complementary literals
- **Subsumption**: clause C eliminates less general clause D
- **Subsumption ordering**: $D \succ C$ if $C\sigma \subseteq D$ (as multisets)

 $D \succ C$ if $D \succ C$ and $C \not\succ D$

- D redundant in S ($D \in \text{Red}(S)$) if there exists $C \in S$ that subsumes D (strictly)

[Michäel Rusinowitch]
Redundancy II

➢ Well-founded ordering \prec on terms and literals
➢ **Superposition**: resolution with equality built-in: superpose maximal side of maximal equation into maximal literal/side
➢ **Simplification**: by well-founded rewriting
➢ Ground \(D \) **redundant** in \(S \) if for ground instances \(C_1 \ldots C_n \) of clauses in \(S \), \(C_1 \ldots C_n \prec D \) and \(C_1 \ldots C_n \models D \);

\(D \) redundant in \(S \) (\(D \in Red(S) \)) if all its ground instances are

[Leo Bachmair and Harald Ganzinger]
Redundancy III

- From clauses to inferences
- Redundant inference: uses/generates redundant clause
Fairness is a global property

Derivation:

\[S_0 \vdash S_1 \vdash \ldots S_i \vdash S_{i+1} \ldots \]

Limit: set of persistent clauses

\[S_\infty = \bigcup_{j \geq 0} \bigcap_{i \geq j} S_i \]
Uniform fairness

\[C \in I_E(S) : \text{C generated from S by expansion} \]

\[S_0 \vdash S_1 \vdash \ldots S_i \vdash S_{i+1} \ldots \]

- For all \(C \in I_E(S_\infty) \) exists \(j \) such that \(C \in S_j \cup Red(S_j) \)
- For all \(C \in I_E(S_\infty \setminus Red(S_\infty)) \) exists \(j \) such that \(C \in S_j \)
- All non-redundant expansion inferences done eventually

[Leo Bachmair and Harald Ganzinger]
A weaker notion of fairness?

- Uniform fairness is for saturation
- Fairness for theorem proving?
Proof orderings

- Well-founded proof ordering $<$

[Leo Bachmair, Nachum Dershowitz and Jieh Hsiang]

- May reduce to formula ordering if we compare proofs by their premises
- But it is more flexible: small proofs may have large premises
Proof reduction

- Justification: set of proofs P
- Comparing justifications:
 Q better than P, written $P \sqsubseteq Q$:
 $\forall p \in P. \exists q \in Q. p \geq q$
Comparing presentations by their proofs

- S presentation of $Th(S)$
- Proofs with premises in S: $Pf(S)$
- S' simpler than S, written $S \sim S'$: $S \equiv S'$ and $Pf(S) \supseteq Pf(S')$
Best proofs

- Minimal proofs in a justification: $\mu(P)$
- Normal-form proofs of S:

$$Nf(S) = \mu(Pf(Th(S)))$$

the minimal proofs in the deductively closed presentation
Saturated vs. complete presentation

- **Saturated**: provides all normal-form proofs
- **Complete**: provides a normal-form proof for every theorem
- They coincide if minimal proofs are unique (e.g., total proof ordering)
Example I

\{a \simeq b, b \simeq c, a \simeq c\}

Minimal proofs: valley proofs: \(s \rightarrow o \leftarrow t \)

- \(a \triangleright b \triangleright c \)
- **Complete**: \(\{b \simeq c, a \simeq c\} \) with \(a \rightarrow c \leftarrow b \) as minimal proof of \(a \simeq b \)
- **Saturated**: \(\{a \simeq b, b \simeq c, a \simeq c\} \) with both \(a \rightarrow b \) and \(a \rightarrow c \leftarrow b \)
Example II

\{ a \approx b, b \approx c, a \approx c \}

Minimal proofs: valley proofs: \(s \rightarrow o \leftarrow t \)

- \(a \not\approx b, a \triangleright c, b \triangleright c \)
- **Complete**: \(\{ b \approx c, a \approx c \} \)
- **Saturated**: \(\{ b \approx c, a \approx c \} \)
 because \(a \leftrightarrow b \) not minimal
Canonical presentation

- **Contracted**: contains all and only the premises of its minimal proofs
- **Canonical (S♯)**:
 - Contains all and only the premises of normal-form proofs
 - Saturated and contracted
 - Smallest saturated presentation
 - Simplest presentation

[Nachum Dershowitz and Claude Kirchner]
Equational theories

- Normal-form proof of $\forall \bar{x} \ s \simeq t$:
 valley proof $\hat{s} \rightarrow^* \circ \leftarrow^* \hat{t}$ by rewriting
 \hat{s} and \hat{t} are s and t with variables replaced by Skolem constants
- **Saturated**: convergent (confluent and terminating)
- **Contracted**: inter-reduced
- **Canonical**: convergent and inter-reduced
- Finite and canonical: decision procedure
Proof-ordering based redundancy

C redundant in S ($C \in \text{Red}(S)$) if adding it does not improve minimal proofs:
\[\mu(Pf(S)) = \mu(Pf(S \cup \{C\})) \]

C redundant in S ($C \in \text{Red}(S)$) if removing it does not worsen proofs:
\[S \succcurlyeq S \setminus \{C\} \text{ or } Pf(S) \supseteq Pf(S \setminus \{C\}) \]
Inference as proof reduction I

\[S_0 \vdash S_1 \vdash \ldots S_i \vdash S_{i+1} \ldots \]

- **Good**: \(S_i \supseteq S_{i+1} \) for all \(i \)
- Once redundant always redundant:
 \[S_{i+1} \cap \text{Red}(S_i) \subseteq \text{Red}(S_{i+1}) \]
Inference as proof reduction II

\(S_0 \vdash S_1 \vdash \ldots S_i \vdash S_{i+1} \ldots \)

- **Expansion:** \(A \vdash A \cup B \) with \(B \subseteq Th(A) \)
- **Contraction:** \(A \cup B \vdash A \) with \(A \cup B \preceq A \)
- Expansions and contractions are **good**
Derivations

\[S_0 \vdash S_1 \vdash \ldots S_i \vdash S_{i+1} \ldots \]

- **Saturating**: \(S_\infty \) is saturated
- **Completing**: \(S_\infty \) is complete
- **Contracting**: \(S_\infty \) is contracted
- **Canonical**: saturating and contracting
Proof-ordering based fairness I

\[S_0 \vdash S_1 \vdash \ldots S_i \vdash S_{i+1} \ldots \]

- Whenever a minimal proof of the target theorem is reducible by inferences, it is reduced eventually
- For all \(i \geq 0 \) and \(p \in \mu(Pf(S_i)) \)
 - if there are inferences \(S_i \vdash \ldots \vdash S' \) and \(q \in \mu(Pf(S')) \)
 - such that \(q < p \)
 - then there exist \(j > i \) and \(r \in \mu(Pf(S_j)) \) such that \(r \leq q \)
- Applies to both expansion and contraction
- Contraction is not only deletion
Outline
Motivation
Uniform fairness for saturation
Fairness for theorem proving
Discussion

Proof-ordering based fairness II

\[S_0 \vdash S_1 \vdash \ldots S_i \vdash S_{i+1} \ldots \]

- **Critical proof**: minimal proof, not in normal form, all proper subproofs in normal form
 (E.g.: peak \(\hat{s} \leftarrow \circ \rightarrow \hat{t} \) yielding critical pair)
- \(C(S) \): critical proofs of \(S \)
- Critical proofs with persistent premises: \(C(S_\infty) \)
- **Fairness**: All strictly reduced eventually:
 \(C(S_\infty) \sqsubseteq Pf(\bigcup_{i \geq 0} S_i) \)
Uniform fairness

- **Trivial proof**: made of the theorem itself
- \(\widehat{S} \): trivial proofs of \(S \)
- Trivial proofs with persistent premises: \(\widehat{S}_\infty \)
- **Uniform fairness**: All strictly reduced eventually (unless canonical): \(\widehat{S}_\infty \setminus \widehat{S}^\# \sqsupset Pf(\bigcup_{i \geq 0} S_i) \)
Results about good derivations

- If fair then completing
- Uniformly fair iff saturating
- Fairness sufficient for theorem proving (proof search):
 no need to add all consequences of critical proofs
 only enough to provide a smaller proof for each critical proof
Properties of the search plan

- Schedule enough expansion and contraction to be *fair* hence completing
- Schedule enough contraction to be *contracting*
- Schedule contraction *before* expansion: *eager contraction*
Implementation of contraction

- **Forward contraction:**
 contract new C wrt already existing clauses: C'

- **Backward contraction:**
 contract already existing clauses wrt C'

- Implement backward contraction by forward contraction:
 reducible clause as new clause
Implementation of eager contraction

- $\text{Red}(S_i) = \emptyset$ for all i: not if every step is single inference
- $\text{Red}(S_i) = \emptyset$ for some i (periodically): given-clause loop with active \cup passive inter-reduced
- $\text{Red}(B_i) = \emptyset$ for some $B_i \subseteq S_i$ and some i: given-clause loop with active inter-reduced
Example I: conditional equations

Also conditions rewrite:

\[\{ a \simeq b \supset f(a) \simeq c, \ a \simeq b \supset f(b) \simeq c \} \]

\[f \succ a \succ b \succ c \]

\[a \simeq b \supset f(a) \simeq c \] reduces to \[a \simeq b \supset c \simeq c \] which is deleted
Example II

- $a ≻ b ≻ c$
- \{a \simeq b \supset b \simeq c, a \simeq b \supset a \simeq c\} \text{ is saturated}
- \{a \simeq b \supset b \simeq c\} \text{ is equivalent, complete and reduced}
- $a \simeq b \supset a \simeq c$ self-reduces to $a \simeq b \supset b \simeq c$ which is subsumed
 or is reduced to $a \simeq c \supset a \simeq c$ which is deleted
Discussion

- Fairness should earn something weaker than saturation
- Proof orderings vs. formula orderings
- Non-trivially fair and eager contracting search plans
References

