Decision procedures with unsound theorem proving for software verification

Maria Paola Bonacina

Dipartimento di Informatica
Università degli Studi di Verona
Verona, Italy

September 2009

Joint work with Chris Lynch (Clarkson U., NY) and Leonardo de Moura (MSR, Redmond, WA)
Motivation: reasoning about software
 Problem statement
 Combining strengths of different reasoners

Unsound theorem proving

DPLL($\Gamma + \mathcal{T}$): Superposition within SMT-solver

Decision procedures for type systems

Discussion
Motivation

- Software is everywhere
- Needed: *Reliability*
- Difficult goal: Software may be
 - Artful
 - Complex
 - Huge
 - Varied
 - Old (and undocumented)
- Software/hardware border: blurred, evolving
Some approaches to software reliability

- Testing (test case generation ...)
- Programmer assistants
- Program analyzers
- Static analysis (types, extended static checking, abstract interpretations ...)
- Dynamic analysis (traces ...)
- Software model checkers (+ theorem proving, e.g., SMT-BMC, CEGAR-SMC)

Reasoning about software
Systems with reasoning about software

Typical architecture:

- **Front-end**: interface, problem modelling, compiling
 - From programs to formulæ
 (via specifications, annotations, intermediate languages)

- **Back-end**: problem solving by **reasoning engine**
 - **Problem**: determine *satisfiability* of formulæ
 - **Objective**: decision procedures
Ingredients of formulæ

- Propositional logic (PL): \lor, \neg, \land
- Equality: \simeq, $\not\simeq$, free constant and function symbols
- Theories of data structures, e.g.:
 - Lists, recursive data structures: constructors (cons), selectors (car, cdr)
 - Arrays, records: select, store
 - Bitvectors
- Linear arithmetic: \leq, $+$, $-$, \ldots, -2, -1, 0, 1, 2, \ldots
- Formalizations of type systems, e.g.: subtype relation \sqsubseteq, type constructor Array-of (monadic function f)
- First-order logic (FOL): \forall, \exists, free predicate symbols
Why quantifiers

- To capture frame conditions over loops
- To summarize auxiliary invariants over heaps
- To axiomatize *type systems*
- To supply *axioms of theories without decision procedure* for ground formulae
Shape of problems

- Background theory \mathcal{T}
 - $\mathcal{T} = \bigcup_{i=1}^{n} \mathcal{T}_i$, e.g., linear arithmetic, bit-vectors

- Set of formulæ: $\mathcal{R} \cup \mathcal{P}$
 - \mathcal{R}: set of non-ground clauses without \mathcal{T}-symbols
 - \mathcal{P}: large ground formula (set of ground clauses) may contain \mathcal{T}-symbols

- Determine whether $\mathcal{R} \cup \mathcal{P}$ is satisfiable modulo \mathcal{T}
 (Equivalently: determine whether $\mathcal{T} \cup \mathcal{R} \cup \mathcal{P}$ is satisfiable)
What do we need

- \mathcal{T}_i-solvers: *Satisfiability procedures* for the \mathcal{T}_i’s, e.g. *Simplex method* for linear arithmetic
- Davis-Putnam-Logemann-Loveland (DPLL) procedure for SAT
- DPLL(\mathcal{T})-based SMT-solver: *Decision procedure* for \mathcal{T} with *Nelson-Oppen combination* of the \mathcal{T}_i-sat procedures
- First-order engine to handle \mathcal{R} (additional theory): Resolution+Rewriting+Superposition: *Superposition-based*
Combining strengths of different reasoning engines

- **DPLL**: SAT-problems; large non-Horn clauses
- Theory solvers: linear arithmetic, bitvectors
- **DPLL(T)**-based SMT solvers: efficient, scalable, integrated theory reasoning
- Superposition-based inference system Γ:
 - equalities, Horn clauses, universal quantifiers
 - known to be a sat-procedure for several theories of data structures
How about termination?

- During development conjectures are usually **false** because of mistakes in implementation or specification.
- Need a theorem prover that **terminates on satisfiable** inputs.
- Not possible in general:
 - FOL is only semi-decidable.
 - First-order formulæ of linear arithmetic with uninterpreted function: not even semi-decidable.

However we need less than a general solution!
Problematic axioms do occur in relevant inputs

Let \sqsubseteq be a subtype relation and f a type constructor

- **Transitivity**
 \[\neg (x \sqsubseteq y) \lor \neg (y \sqsubseteq z) \lor x \sqsubseteq z \]

- **Monotonicity**
 \[\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \]

Resolution generates unbounded number of clauses
In practice we need finitely many

Example:

1. $\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$
2. $a \sqsubseteq b$ generate
3. $\{f^i(a) \sqsubseteq f^i(b)\}_{i \geq 0}$

In practice $f(a) \sqsubseteq f(b)$ or $f^2(a) \sqsubseteq f^2(b)$ often suffice to show satisfiability
Idea: Unsound theorem proving

- TP applied to maths: most conjectures are true
- Sacrifice *completeness* for efficiency
 Retain *soundness*: if proof found, input *unsatisfiable*
Outline
Motivation: reasoning about software
Unsound theorem proving
DPLL(Γ + T): Superposition within SMT-solver
Decision procedures for type systems
Discussion

Idea: Unsound theorem proving

- TP applied to maths: most conjectures are true
- Sacrifice completeness for efficiency
 Retain soundness: if proof found, input unsatisfiable
- TP applied to verification: most conjectures are false
- Sacrifice soundness for termination
 Retain completeness: if no proof, input satisfiable
Idea: Unsound theorem proving

- TP applied to maths: most conjectures are \textit{true}
- Sacrifice \textit{completeness} for efficiency
 Retain \textit{soundness}: if proof found, input \textit{unsatisfiable}
- TP applied to verification: most conjectures are \textit{false}
- Sacrifice \textit{soundness} for termination
 Retain \textit{completeness}: if no proof, input \textit{satisfiable}
- How do we do it: Additional axioms to enforce termination
- Detect \textit{unsoundness} as conflict $+$ Recover by \textit{backtracking}
 (DPLL framework)
Example

1. \(\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)\)
2. \(a \sqsubseteq b\)
3. \(a \sqsubseteq f(c)\)
4. \(\neg(a \sqsubseteq c)\)
Example

1. \(\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg(a \sqsubseteq c) \)

1. Add \(f(x) \simeq x \)
2. Rewrite \(a \sqsubseteq f(c) \) into \(a \sqsubseteq c \) and get \(\Box \): backtrack!
Example

1. \(\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg(a \sqsubseteq c) \)

1. Add \(f(x) \simeq x \)
2. Rewrite \(a \sqsubseteq f(c) \) into \(a \sqsubseteq c \) and get \(\square: \) backtrack!
3. Add \(f(f(x)) \simeq x \)
4. \(a \sqsubseteq b \) yields only \(f(a) \sqsubseteq f(b) \)
5. \(a \sqsubseteq f(c) \) yields only \(f(a) \sqsubseteq c \)
6. Reach saturated state and detect satisfiability
DPLL

State of derivation: $M \parallel F$

- **Decide**: guess L is true, add it to M
- **UnitPropagate**: propagate consequences of assignment
- **Conflict**: detect $L_1 \lor \ldots \lor L_n$ all false
- **Learn**: detect by resolution L_i made false by assignment (not propagation)
- **Backjump**: undo assignment for L_i
- **Unsat**: conflict clause is \Box (nothing else to try)
DPLL(\mathcal{T})

State of derivation: $M \parallel F$

- \mathcal{T}-Propagate: add to M an L that is \mathcal{T}-consequence of M
- \mathcal{T}-Conflict: detect that L_1, \ldots, L_n in M are \mathcal{T}-inconsistent

Since \mathcal{T}_i-solvers build \mathcal{T}-model:

- PropagateEq: add to M a ground $s \simeq t$ true in \mathcal{T}-model
DPLL(Γ + ℰ): integrate Γ in DPLL(ℰ)

- **Idea**: literals in M can be premises of Γ-inferences
- Stored as *hypotheses* in inferred clause
- *Hypothetical clause*: $H \triangleright C$ (equivalent to $\neg H \lor C$)
- Inferred clauses inherit hypotheses from the premises

- **Note**: don’t need Γ for ground inferences
- Use each engine for what is best for:
 - non-ground clauses: seen only by Γ
 - ground non-unit clauses: seen only by DPLL(ℰ)
 - ground unit clauses: seen by both
DPLL($\Gamma + T$): Superposition within SMT-solver

State of derivation: \(M \parallel F \)

- **Deduce**: \(\Gamma \)-inference, e.g., superposition, using *non-ground* clauses in \(F \) and literals in \(M \)
- **Backjump**: remove hypothetical clauses depending on undone assignments
Unsound inferences

- Single unsound inference rule: add *arbitrary* clause C
- Simulate many:
 - Suppress literals in long clause $C \lor D$:
 add C and subsume
 - Replace deep term t by constant a:
 add $t \simeq a$ and rewrite
Controlling unsound inferences

- Unsound inferences to induce termination on sat input
- What if the unsound inference makes problem unsat?!
- Detect conflict and backjump:
 - Keep track by adding $\lceil C \rceil \triangleright C$
 - $\lceil C \rceil$: new propositional variable (a “name” for C)
 - Treat “unnatural failure” like “natural failure”
Unsound theorem proving in DPLL(Γ + Τ)

State of derivation: \(M \parallel F \)

Inference rule:

- **UnsoundIntro**: add \([C] \triangleright C\) to \(F \) and \([C]\) to \(M \)
Example as done by system

1. \(\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg (a \sqsubseteq c) \)
Example as done by system

1. \neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)
2. a \sqsubseteq b
3. a \sqsubseteq f(c)
4. \neg (a \sqsubseteq c)

1. Add \[f(x) \simeq x \] \rhd f(x) \simeq x
2. Rewrite \(a \sqsubseteq f(c) \) into \[f(x) \simeq x \] \rhd a \sqsubseteq c
Example as done by system

1. \(\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg(a \sqsubseteq c) \)

1. Add \(\lceil f(x) \simeq x \rceil \triangleright f(x) \simeq x \)
2. Rewrite \(a \sqsubseteq f(c) \) into \(\lceil f(x) \simeq x \rceil \triangleright a \sqsubseteq c \)
3. Generate \(\lceil f(x) \simeq x \rceil \triangleright \Box; \) Backtrack, learn \(\neg\lceil f(x) \simeq x \rceil \)
Example as done by system

1. \(\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg (a \sqsubseteq c) \)

1. Add \([f(x) \simeq x] \triangleright f(x) \simeq x\)
2. Rewrite \(a \sqsubseteq f(c)\) into \([f(x) \simeq x] \triangleright a \sqsubseteq c\)
3. Generate \([f(x) \simeq x] \triangleright \Box; \text{ Backtrack, learn } \neg [f(x) \simeq x]\)
4. Add \([f(f(x)) \simeq x] \triangleright f(f(x)) \simeq x\)
5. \(a \sqsubseteq b\) yields only \(f(a) \sqsubseteq f(b)\)
6. \(a \sqsubseteq f(c)\) yields only \(f(a) \sqsubseteq f(f(c))\)
 hence \([f(f(x)) = x] \triangleright f(a) \sqsubseteq c\)
7. Reach saturated state and detect satisfiability
Issues about completeness

- Γ is refutationally complete
- Since Γ sees only non-ground clauses, DPLL(Γ + T) does not inherit refutational completeness trivially
Issues about completeness

- Γ is refutationally complete
- Since Γ sees only non-ground clauses, $\text{DPLL}(\Gamma + \mathcal{T})$ does not inherit refutational completeness trivially
- $\text{DPLL}(\mathcal{T})$ has depth-first search: complete for ground SMT problems, not when injecting non-ground inferences
- Solution: *iterative deepening* on inference depth
Issues about completeness

- Γ is refutationally complete
- Since Γ sees only non-ground clauses, $\text{DPLL}(\Gamma + T)$ does not inherit refutational completeness trivially
- $\text{DPLL}(T)$ has depth-first search: complete for ground SMT problems, not when injecting non-ground inferences
- Solution: iterative deepening on inference depth
- However refutationally complete only for T empty
 Example: $R = \{x = a \lor x = b\}$, $P = \emptyset$, T is arithmetic
 Unsat but can’t tell!
Issues about completeness (continued)

- Sufficient condition for refutational completeness with $\mathcal{T} \neq \emptyset$:
- \mathcal{R} be *variable inactive* (a technical but simple condition)
 - it implies stable-infiniteness
 (needed for completeness of Nelson-Oppen combination)
 - it excludes cardinality constraints (e.g., $x = a \lor x = b$)
Issues about completeness (continued)

- Sufficient condition for refutational completeness with $\mathcal{T} \neq \emptyset$:
- \mathcal{R} be *variable inactive* (a technical but simple condition)
 - it implies stable-infiniteness
 (needed for completeness of Nelson-Oppen combination)
 - it excludes cardinality constraints (e.g., $x = a \lor x = b$)
- Use *iterative deepening* on both *Deduce* and *UnsoundIntro*
 to impose also termination: DPLL($\Gamma + \mathcal{T}$) gets “stuck” at k
How to get decision procedures

To decide satisfiability modulo \mathcal{T} of $\mathcal{R} \cup P$:

- Find sequence of “unsound axioms” U
- Show that there exists k s.t. k-bounded DPLL($\Gamma + \mathcal{T}$) is guaranteed to terminate
 - with $Unsat$ if $\mathcal{R} \cup P$ is \mathcal{T}-unsat
 - in a state which is not stuck at k if $\mathcal{R} \cup P$ is \mathcal{T}-sat
Decision procedures

- \mathcal{R} has single monadic function symbol f
- *Essentially finite*: if $\mathcal{R} \cup P$ is sat, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
Decision procedures

- \mathcal{R} has single monadic function symbol f
- *Essentially finite*: if $\mathcal{R} \cup P$ is sat, has model where range of f is *finite*
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
- *UnsoundIntro* adds “pseudo-axioms” $f^j(x) \simeq f^k(x)$ for $j > k$
- Use $f^j(x) \simeq f^k(x)$ as rewrite rule to limit term depth
Decision procedures

- \mathcal{R} has single monadic function symbol f
- *Essentially finite*: if $\mathcal{R} \cup P$ is sat, has model where range of f is *finite*
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
- *UnsoundIntro* adds “pseudo-axioms” $f^j(x) \simeq f^k(x)$ for $j > k$
- Use $f^j(x) \simeq f^k(x)$ as rewrite rule to limit term depth
- Clause length limited by properties of Γ and \mathcal{R}
- Only finitely many clauses generated: termination without getting stuck
Concrete examples of essentially finite theories

Decision procedures for axiomatizations of type systems:

Reflexivity \(x \sqsubseteq x \) \hspace{1cm} (1)

Transitivity \(\neg(x \sqsubseteq y) \vee \neg(y \sqsubseteq z) \vee x \sqsubseteq z \) \hspace{1cm} (2)

Anti-Symmetry \(\neg(x \sqsubseteq y) \vee \neg(y \sqsubseteq x) \vee x \simeq y \) \hspace{1cm} (3)

Monotonicity \(\neg(x \sqsubseteq y) \vee f(x) \sqsubseteq f(y) \) \hspace{1cm} (4)

Tree-Property \(\neg(z \sqsubseteq x) \vee \neg(z \sqsubseteq y) \vee x \sqsubseteq y \vee y \sqsubseteq x \) \hspace{1cm} (5)

\(\text{MI} = \{(1), (2), (3), (4)\} \): type system with *multiple inheritance*

\(\text{SI} = \text{MI} \cup \{(5)\} \): type system with *single inheritance*
Summary of contributions

- Unsound theorem proving [Lynch at CSL 2004]
- Variable-inactivity [Bonacina et al. at IJCAR 2006]
- DPLL(Γ) [de Moura, Bjorner at IJCAR 2008]
- DPLL(Γ + T) + variable-inactivity: extend completeness (T \neq \emptyset)
- DPLL(Γ + T) + unsound TP: termination
- Decision procedures for type systems with multiple/single inheritance used in ESC/Java and Spec#

[Bonacina, Lynch, de Moura at CADE 2009]