# Big proof engines as little proof engines: new results on rewrite-based satisfiability procedures

Maria Paola Bonacina<sup>1</sup>

Dipartimento di Informatica Università degli Studi di Verona

12th of May, 2006

<sup>1</sup>Joint work with Alessandro Armando (Università degli Studi di Genova), Mnacho Echenim (Università degli Studi di Verona), Silvio Ranise (INRIA Lorraine) and Stephan Schulz (Università degli Studi di Verona) ( = ) ( = )

Maria Paola Bonacina Big proof engines as little proof engines: new results on rewrite

#### Decision procedures

 Objective: Decision procedures for application of automated reasoning to verification

イロト イポト イヨト イヨト

-

## Decision procedures

- Objective: Decision procedures for application of automated reasoning to verification
- Desiderata: Efficient, scalable, expressive, proof-producing, easy to build, combine, extend, integrate, prove sound and complete

・ 回 と ・ ヨ と ・ ヨ と

# Decision procedures

- Objective: Decision procedures for application of automated reasoning to verification
- Desiderata: Efficient, scalable, expressive, proof-producing, easy to build, combine, extend, integrate, prove sound and complete
- Issues:
  - Combination of theories:
    - usually done by combining procedures: complicated? ad hoc?
  - Soundness and completeness proof: usually ad hoc
  - Implementation: usually from scratch: correctness? integration in different environments? duplicated work?

イロン イボン イヨン トヨ

# "Little" engines and "big" engines of proof

 "Little" engines, e.g., validity checkers for specific theories Built-in theory, quantifier-free conjecture, decidable, combined by Nelson-Oppen scheme

# "Little" engines and "big" engines of proof

- "Little" engines, e.g., validity checkers for specific theories Built-in theory, quantifier-free conjecture, decidable, combined by Nelson-Oppen scheme
- "Big" engines, e.g., general first-order theorem provers Any first-order theory, any conjecture, semi-decidable

(日) (同) (E) (E) (E)

# "Little" engines and "big" engines of proof

- "Little" engines, e.g., validity checkers for specific theories Built-in theory, quantifier-free conjecture, decidable, combined by Nelson-Oppen scheme
- "Big" engines, e.g., general first-order theorem provers Any first-order theory, any conjecture, semi-decidable
- ▶ Not an issue of size (e.g., lines of code) of systems!
- Continuity: e.g., "big" engines may have theories built-in

・ロト ・回ト ・ヨト ・ヨト 三星

# "Little" engines and "big" engines of proof

- "Little" engines, e.g., validity checkers for specific theories Built-in theory, quantifier-free conjecture, decidable, combined by Nelson-Oppen scheme
- "Big" engines, e.g., general first-order theorem provers Any first-order theory, any conjecture, semi-decidable
- ▶ Not an issue of size (e.g., lines of code) of systems!
- ► Continuity: e.g., "big" engines may have theories built-in
- Challenge: can we get something good for decision procedures from big engines?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ●

# From a big-engine perspective

 Combination of theories: give union of presentations as input to prover

イロト イポト イヨト イヨト

-

# From a big-engine perspective

- Combination of theories: give union of presentations as input to prover
- Soundness and completeness proof: already given for first-order inference system

(1日) (日) (日)

# From a big-engine perspective

- Combination of theories: give union of presentations as input to prover
- Soundness and completeness proof. already given for first-order inference system
- Implementation: take first-order provers off the shelf
- Proof generation: already there by default
- ► *Model generation*: final *T*-sat set (starting point)

# From a big-engine perspective

- Combination of theories: give union of presentations as input to prover
- Soundness and completeness proof. already given for first-order inference system
- Implementation: take first-order provers off the shelf
- Proof generation: already there by default
- Model generation: final T-sat set (starting point)
- How to make it possible?

#### Motivation

#### Rewrite-based satisfiability: new results

Rewrite-based methodology for *T*-satisfiability Theories of equality, data structures, fragments integer arithmetic General modularity theorem for combination of theories

#### Experimental appraisal

Comparison of E with CVC and CVC Lite Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

#### Summary

(4月) (4日) (4日)

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# What kind of theorem prover?

First-order logic with equality

 $\mathcal{SP}$  inference system: rewrite-based

- Simplification by equations: normalize clauses
- Superposition/Paramodulation: generate clauses

Complete simplification ordering (CSO)  $\succ$  on terms, literals and clauses:  $SP_{\succ}$ 

(Fair)  $S\mathcal{P}_{\succ}$ -strategy :  $S\mathcal{P}_{\succ}$  + (fair) search plan

・ロト ・同ト ・ヨト ・ヨト

**Rewrite-based methodology for** *T*-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# Rewrite-based methodology for *T*-satisfiability

► *T*-satisfiability: decide satisfiability of set S of ground literals in theory (or combination) T

イロン イヨン イヨン

**Rewrite-based methodology for** *T***-satisfiability** Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# Rewrite-based methodology for T-satisfiability

- ► T-satisfiability: decide satisfiability of set S of ground literals in theory (or combination) T
- Methodology:
  - *T*-reduction: apply inferences (e.g., to remove certain literals or symbols) to get equisatisfiable *T*-reduced problem
  - ► *Flattening*: flatten all ground literals (by introducing new constants) to get equisatisfiable *T*-reduced *flat* problem
  - Ordering selection and termination: prove that any fair SP<sub>≻</sub>-strategy terminates when applied to a T-reduced flat problem, provided ≻ is T-good

<ロ> (四) (四) (三) (三) (三) (三)

Rewrite-based methodology for *T*-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# Rewrite-based methodology for T-satisfiability

- ► T-satisfiability: decide satisfiability of set S of ground literals in theory (or combination) T
- Methodology:
  - ► *T*-reduction: apply inferences (e.g., to remove certain literals or symbols) to get equisatisfiable *T*-reduced problem
  - ► *Flattening*: flatten all ground literals (by introducing new constants) to get equisatisfiable *T*-reduced *flat* problem
  - Ordering selection and termination: prove that any fair SP<sub>≻</sub>-strategy terminates when applied to a T-reduced flat problem, provided ≻ is T-good

Everything fully automated except for termination proof

<ロ> (四) (四) (三) (三) (三) (三)

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# Covered theories

- Non-empty lists, arrays with and without extensionality, finite sets with extensionality [Armando, Ranise, Rusinowitch 2003]
- Records with and without extensionality, possibly empty lists, integer offsets, integer offsets modulo [Armando, Bonacina, Ranise, Schulz 2005]
- Equality [Lankford 1975]

In experiments: arrays, records, integer offsets, integer offsets modulo, equality and combinations (queues, circular queues)

(日) (同) (E) (E) (E)

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# The theory of records

Sort REC $(id_1 : T_1, \dots, id_n : T_n)$ Presentation  $\mathcal{R}$ :

 $\begin{array}{ll} \forall x, v. & \operatorname{rselect}_i(\operatorname{rstore}_i(x, v)) \simeq v & 1 \leq i \leq n \\ \forall x, v. & \operatorname{rselect}_j(\operatorname{rstore}_i(x, v)) \simeq \operatorname{rselect}_j(x) & 1 \leq i \neq j \leq n \\ \forall x, y. & \left( \bigwedge_{i=1}^n \operatorname{rselect}_i(x) \simeq \operatorname{rselect}_i(y) \supset x \simeq y \right) \end{array}$ 

where x and y have sort REC and v has sort  $T_i$ . Extensionality is the third axiom.

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# Records: termination of $\mathcal{SP}$

 $\mathcal{R}$ -reduction: eliminate disequalities between records by resolution with extensionality + splitting.

*R*-good:  $t \succ c$  for all ground compound terms t and constants c.

*Termination*: case analysis of generated clauses (CSO plays key role).

**Theorem**: A fair  $\mathcal{R}$ -good  $\mathcal{SP}_{\succ}$ -strategy is a polynomial  $\mathcal{R}$ -satisfiability procedure (with or without extensionality).

・ロト ・回ト ・ヨト ・ヨト

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# The theory of integer offsets

Fragment of the theory of the integers:

s: successor p: predecessor

Presentation  $\mathcal{I}$ :

$$\begin{array}{ll} \forall x. & \mathsf{s}(\mathsf{p}(x)) \simeq x \\ \forall x. & \mathsf{p}(\mathsf{s}(x)) \simeq x \\ \forall x. & \mathsf{s}^{i}(x) \not\simeq x & \text{for } i > 0 \end{array}$$

**Infinitely many acyclicity axioms** (*Ac*) **Remark:** these axioms imply that s is *injective* (*Inj*)

$$\forall x, y. \ \mathsf{s}(x) \simeq \mathsf{s}(y) \supset x \simeq y$$

イロン イヨン イヨン

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# Integer offsets: termination of $\mathcal{SP}$

*I*-reduction: eliminate p by replacing  $p(c) \simeq d$  with  $c \simeq s(d)$ : first two axioms no longer needed, provided *Inj* is added. Bound the number of acyclicity axioms:  $\forall x. s^i(x) \not\simeq x$  for  $0 < i \le n$ if there are *n* occurrences of s.

 $\mathcal{I}$ -good:  $t \succ c$  for all constants c and terms t with top symbol s.

Termination: case analysis of generated clauses.

**Theorem**: A fair  $\mathcal{I}$ -good  $S\mathcal{P}_{\succ}$ -strategy is an exponential  $\mathcal{I}$ -satisfiability procedure (polynomial on Ac only).

・ロト ・同ト ・ヨト ・ヨト

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

#### The theory of integer offsets modulo

To reason with indices ranging over the integers mod k (k > 0) Presentation  $\mathcal{I}_k$ :

$$\begin{array}{ll} \forall x. & \mathsf{s}(\mathsf{p}(x)) \simeq x \\ \forall x. & \mathsf{p}(\mathsf{s}(x)) \simeq x \\ \forall x. & \mathsf{s}^{i}(x) \not\simeq x \\ \forall x. & \mathsf{s}^{k}(x) \simeq x \end{array}$$

Finitely many axioms.

<ロ> (日) (日) (日) (日) (日)

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

Integer offsets modulo: termination of  $\mathcal{SP}$ 

 $\mathcal{I}_k$ -reduction: same as  $\mathcal{I}$ -reduction.

 $\mathcal{I}_k$ -good: same as  $\mathcal{I}$ -good.

Termination: case analysis of generated clauses.

**Theorem**: A fair  $\mathcal{I}$ -good  $S\mathcal{P}_{\succ}$ -strategy is an exponential  $\mathcal{I}_k$ -satisfiability procedure.

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# The theory of possibly empty lists

Presentation  $\mathcal{L}$ :

Unsorted, possibly cyclic lists.

<ロ> (日) (日) (日) (日) (日)

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

Possibly empty lists: termination of  $\mathcal{SP}$ 

*L*-reduction: none.

 $\mathcal{L}$ -good:

- 1.  $t \succ c$  for all ground compound terms t and constants c,
- 2.  $t \succ$  nil for all terms t with top symbol cons.

Termination: case analysis of generated clauses.

**Theorem**: A fair  $\mathcal{L}$ -good  $\mathcal{SP}_{\succ}$ -strategy is an exponential  $\mathcal{L}$ -satisfiability procedure.

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

A modularity theorem for combination of theories

► Modularity: if SP<sub>≻</sub>-strategy decides T<sub>i</sub>-sat problems then it decides T-sat problems for T = U<sup>n</sup><sub>i=1</sub> T<sub>i</sub>

・ロン ・回と ・ヨン・

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

A modularity theorem for combination of theories

- ► Modularity: if SP<sub>≻</sub>-strategy decides T<sub>i</sub>-sat problems then it decides T-sat problems for T = ∪<sub>i=1</sub><sup>n</sup> T<sub>i</sub>
- ► *T<sub>i</sub>*-reduction and flattening apply as for each theory

・ロト ・回ト ・ヨト ・ヨト

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

A modularity theorem for combination of theories

- ► Modularity: if SP<sub>≻</sub>-strategy decides T<sub>i</sub>-sat problems then it decides T-sat problems for T = ∪<sub>i=1</sub><sup>n</sup> T<sub>i</sub>
- ► *T<sub>i</sub>*-reduction and flattening apply as for each theory
- Termination?

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

#### Three simple conditions

▶  $\succ$  *T*-good, if *T*<sub>i</sub>-good for all *i*, 1 ≤ *i* ≤ *n* 

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# Three simple conditions

- ▶  $\succ$  *T*-good, if *T*<sub>*i*</sub>-good for all *i*, 1 ≤ *i* ≤ *n*
- The *T<sub>i</sub>* do not share function symbols (*Intuition*: no paramodulation from compound terms across theories)

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# Three simple conditions

- ▶  $\succ$  *T*-good, if *T*<sub>*i*</sub>-good for all *i*, 1 ≤ *i* ≤ *n*
- The *T<sub>i</sub>* do not share function symbols (*Intuition*: no paramodulation from compound terms across theories)
- Each T<sub>i</sub> is variable-inactive:

in no persistent clause  $t \simeq x$  with  $x \notin Var(t)$  is maximal (*Intuition*: no paramodulation from variables across theories, since for  $t \simeq x$  where  $x \in Var(t)$  it is  $t \succ x$ )

(日) (同) (E) (E) (E)

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# The modularity theorem

#### Theorem: if

- ▶ No shared function symbol (shared constants allowed),
- ▶ Variable-inactive theories  $T_i$ ,  $1 \le i \le n$ ,
- ► A fair  $T_i$ -good  $SP_{\succ}$ -strategy is  $T_i$ -satisfiability procedure,

then

a fair  $\mathcal{T}\text{-}\mathsf{good}\ \mathcal{SP}_\succ\text{-}\mathsf{strategy}$  is a  $\mathcal{T}\text{-}\mathsf{satisfiability}\ \mathsf{procedure}.$ 

Equality, *arrays* (with or without extensionality), *records* (with or without extensionality), *integer offsets*, *integer offsets modulo* and *possibly empty lists* all satisfy these hypotheses.

(日) (同) (E) (E) (E)

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# A few remarks on generality I

► Purely equational theories: no trivial models ⇒ variable-inactive

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# A few remarks on generality I

- ► Purely equational theories: no trivial models ⇒ variable-inactive
- Horn theories:

no trivial models + maximal unit strategy  $\Rightarrow$  variable-inactive

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# A few remarks on generality I

- ► Purely equational theories: no trivial models ⇒ variable-inactive
- ► Horn theories: no trivial models + maximal unit strategy ⇒ variable-inactive
- Maximal unit strategy: restricts superposition to unit clauses and paramodulates unit clauses into maximal negative literals [Dershowitz 1990]

・ロト ・回ト ・ヨト ・ヨト

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# A few remarks on generality II

 First-order theories: variable-inactive excludes, e.g., *a*<sub>1</sub> ≃ x ∨ ... ∨ *a*<sub>n</sub> ≃ x, *a*<sub>i</sub> constants (\*) Such a clause implies not stably-infinite, hence not convex under the no trivial models hypothesis: if *T*<sub>i</sub> not variable-inactive for (\*), Nelson-Oppen does not apply either.

(日) (同) (E) (E) (E)

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# A few remarks on generality II

 First-order theories: variable-inactive excludes, e.g., *a*<sub>1</sub> ≃ x ∨ ... ∨ *a*<sub>n</sub> ≃ x, *a*<sub>i</sub> constants (\*) Such a clause implies not stably-infinite, hence not convex under the no trivial models hypothesis: if *T*<sub>i</sub> not variable-inactive for (\*), Nelson-Oppen does not apply either.

• 
$$\mathcal{T}$$
 convex:  
 $\mathcal{T} \models H \supset \bigvee_{i=1}^{n} P_i$  implies  $\mathcal{T} \models H \supset P_j$  for some *j*.

(日) (同) (E) (E) (E)

Rewrite-based methodology for T-satisfiability Theories of equality, data structures, fragments integer arithmeti General modularity theorem for combination of theories

# A few remarks on generality II

- First-order theories: variable-inactive excludes, e.g., *a*<sub>1</sub> ≃ x ∨ ... ∨ *a*<sub>n</sub> ≃ x, *a*<sub>i</sub> constants (\*) Such a clause implies not stably-infinite, hence not convex under the no trivial models hypothesis: if *T*<sub>i</sub> not variable-inactive for (\*), Nelson-Oppen does not apply either.
- T convex: T ⊨ H ⊃ ∨<sub>i=1</sub><sup>n</sup> P<sub>i</sub> implies T ⊨ H ⊃ P<sub>j</sub> for some j.

   T stably infinite: quantifier-free T-formula has T-model iff has infinite T-model.

・ロト ・回ト ・ヨト ・ヨト 三星

Comparison of E with CVC and CVC Lite

Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

# Experimental setting

- Three systems:
  - ▶ The E theorem prover: E 0.82 [Schulz 2002]
  - CVC 1.0a [Stump, Barrett and Dill 2002]
  - CVC Lite 1.1.0 [Barrett and Berezin 2004]
- Generator of pseudo-random instances of synthetic benchmarks
- 3.00GHz 512MB RAM Pentium 4 PC: max 150 sec and 256 MB per run
- Folklore: systems with built-in theories are out of reach for prover with presentation as input ...

・ロト ・回ト ・ヨト ・ヨト

Comparison of E with CVC and CVC Lite Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

# Synthetic benchmarks

- STORECOMM(n), SWAP(n), STOREINV(n): arrays with extensionality
- ▶ IOS(*n*): arrays and integer offsets
- QUEUE(n): records, arrays, integer offsets
- ▶ CIRCULAR\_QUEUE(n, k): records, arrays, integer offsets mod k

STORECOMM(n), SWAP(n), STOREINV(n): both valid and invalid instances

Parameter *n*: test *scalability* 

Comparison of E with CVC and CVC Lite Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

## Performances on valid STORECOMM(n) instances



Native input: CVC wins but E better than CVC Lite

Maria Paola Bonacina Big proof engines as little proof engines: new results on rewrite

< 注) < 注)

Comparison of E with CVC and CVC Lite Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

#### Performances on valid STORECOMM(n) instances



#### Flat input: E matches CVC

Maria Paola Bonacina Big proof engines as little proof engines: new results on rewrite

Comparison of E with CVC and CVC Lite Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

## Performances on invalid STORECOMM(n) instances



Native input: prover conceived for unsat handles sat even better

Maria Paola Bonacina Big proof engines as little proof engines: new results on rewrite

<回> < 回> < 回> < 回>

э

Comparison of E with CVC and CVC Lite Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

# Performances on invalid STORECOMM(n) instances



Flat input: E surpasses CVC

Maria Paola Bonacina Big proof engines as little proof engines: new results on rewrite

- 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □

Comparison of E with CVC and CVC Lite Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

# Performances on valid SWAP(n) instances



Harder problem: no system terminates for  $n \ge 10$ 

Maria Paola Bonacina Big proof engines as little proof engines: new results on rewrite

Comparison of E with CVC and CVC Lite Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

# Performances on valid SWAP(n) instances



Added lemma for E: additional flexibility for the prover

Maria Paola Bonacina Big proof engines as little proof engines: new results on rewrite

▶ < 글 ▶ < 글 ▶</p>

Comparison of E with CVC and CVC Lite Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

# Performances on invalid SWAP(n) instances



Easier problem, but E clearly ahead

Maria Paola Bonacina Big proof engines as little proof engines: new results on rewrite

< 🗇 🕨

→ 3 →

Comparison of E with CVC and CVC Lite Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

## Performances on valid STOREINV(n) instances



#### *E*(*std-kbo*) does it in *nearly constant time*!

Maria Paola Bonacina Big proof engines as little proof engines: new results on rewrite

< ≣⇒

< 🗇 🕨

< ∃⇒

Comparison of E with CVC and CVC Lite Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

## Performances on invalid STOREINV(n) instances



Not as good for E but run times are minimal

</l>
< □ > < □ >

Comparison of E with CVC and CVC Lite Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

#### Performances on IOS instances



CVC and CVC Lite have built-in  $\mathcal{LA}(\mathcal{R})$  and  $\mathcal{LA}(\mathcal{I})$  respectively!

Maria Paola Bonacina Big proof engines as little proof engines: new results on rewrite

→ E → < E →</p>

Comparison of E with CVC and CVC Lite Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

#### Performances on QUEUE instances (plain queues)



CVC wins (built-in arithmetic!) but E matches CVC Lite

Maria Paola Bonacina Big proof engines as little proof engines: new results on rewrite

Comparison of E with CVC and CVC Lite Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

# Performances on CIRCULAR\_QUEUE(n, k) instances k = 3



CVC does not handle integers mod k, E clearly wins

Maria Paola Bonacina Big proof engines as little proof engines: new results on rewrite

(B) (B)

Comparison of E with CVC and CVC Lite Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

# "Real-world" problems

- ▶ UCLID [Bryant, Lahiri, Seshia 2002]: suite of problems
- ▶ haRVey [Déharbe and Ranise 2003]: extract *T*-sat problems
- over 55,000 proof tasks: integer offsets and equality
- all valid

Test performance on huge sets of literals.

・ロト ・回ト ・ヨト ・ヨト

Comparison of E with CVC and CVC Lite Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

# Run time distribution for E(auto) on UCLID set



Auto mode: prover chooses search plan by itself

Maria Paola Bonacina Big proof engines as little proof engines: new results on rewrite

3 N 4 3 N

Comparison of E with CVC and CVC Lite Synthetic benchmarks (valid and invalid): evaluate scalability "Real-world" problems: huge sets of literals

# Better run time distribution for E on UCLID set



Optimized strategy: found by testing on random sample of 500 problems (less than 1%)

< 17 ►

→ Ξ →

→ ∃ >



- General methodology for rewrite-based T-sat procedures and its application to several theories relevant to verification
- Modularity theorem for combination of theories
- Experiments: first-order prover
  - taken off the shelf and
  - conceived for very different search problems

compares amazingly well with built-in theories validity checkers

イロン イヨン イヨン ・ ヨン

# Current work

- Precise relationship between variable-inactive and stably-infinite, convex (e.g., *R* and *A*, arrays, are not convex) [Bonacina, Ghilardi, Nicolini, Ranise, Zucchelli 2006]
- *T*-satisfiability procedures for all theories of *recursive data* structures:

one constructor and k selector (k = 1: integer offsets, k = 2: lists) [Bonacina, Echenim 2006]

► *T*-decision procedures (arbitrary quantifier-free formulæ) [Bonacina, Echenim 2006]

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ●

# Directions for future work

- Search plans for T-sat problems
- Finer complexity results for specific search plans
- More or stronger termination results
- $\blacktriangleright$  Integration with approaches for full  $\mathcal{LA}$  or bit-vectors
- ► *T*-decision procedures: integration with SAT-solver?
- Combination with automated model building
- In general: explore "big" engines technology for decision procedures



Reasoning environments for verification (and more):

- SAT-solvers (e.g., DPLL, Stålmarck's method)
- "Little" engines
- "Big" engines (e.g., Rewrite-based, Stålmarck's method extended)
- Good interfaces
- ... ... ...

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● ●