On Model-Based Reasoning
Recent Trends and Current Developments

Maria Paola Bonacina

Dipartimento di Informatica
Università degli Studi di Verona
Verona, Italy

September, 2013

1 Joint work with Leonardo de Moura
Model-based reasoning

\text{DPLL}(\Gamma + \mathcal{T})$: algorithmic reasoner + first-order prover

\text{DPLL}(\Gamma + \mathcal{T}) + speculative inferences: Decision procedures

Current and future work
The gist of this talk

- Automated reasoning from proofs to models
- Models are relevant to applications (e.g., program testing, program synthesis)
- Theorem provers that terminate on satisfiable inputs (Decision procedures)
- Trade-off between decidability and expressivity
Automated reasoning

- Logico-deductive reasoning
- Other kinds: Probabilistic ...

Outline
Model-based reasoning
DPLL(Γ + T): algorithmic reasoner + first-order prover
DPLL(Γ + T) + speculative inferences: Decision procedures
Current and future work
Logico-deductive reasoning

- **Proofs and Models**
- **Theorem Proving**
 - Validity: $\mathcal{T} \models \varphi$
 - Refutationally: $\mathcal{T} \cup \{\neg \varphi\}$ unsatisfiable
 - If not: \mathcal{T}-model of $\neg \varphi$, counter-example for φ
- **Model Building**
 - Satisfiability: is there a \mathcal{T}-model of φ?
 - If not: $\mathcal{T} \cup \{\varphi\}$ unsatisfiable, $\mathcal{T} \models \neg \varphi$
Theorem proving strategies (Semi-decision procedures)

- First-order logic with equality
- Unsatisfiability is semi-decidable, satisfiability is not
- Search for proof (refutation)
- Models for semantic guidance:
 - Hyper-resolution [Alan Robinson 1965]
 - Set of support [Larry Wos et al. 1965]
 - Semantic resolution [James Slagle 1967]
Algorithmic reasoning (Decision procedures)

- Satisfiability decidable: Symmetry restored
- Propositional logic
- Decidable (fragments of) first-order theories
 - QFF: equality, recursive data structures, arrays
 - Linear arithmetic (integers, rationals), arithmetic (reals)
Symmetry in the reasoner’s operations

- Deduction guides search for model
- Candidate partial model guides deduction
- How?
Propositional logic (SAT)

- Davis-Putnam-Logemann-Loveland (DPLL) procedure
 - [Martin Davis and Hilary Putnam 1960]
 - [Martin Davis and George Logemann and Donald Loveland 1962]
- Backtracking search for model
- State of derivation: $M \| F$
 - M: sequence of truth assignments
 - F: clauses to satisfy
Conflict-Driven Clause Learning (CDCL)

- **Conflict**: M falsifies clause $L_1 \lor \ldots \lor L_n$: conflict clause
- **Explain**: resolve and get another conflict clause

 $L_1 \lor \ldots \lor L_n$

 $\neg L_1 \lor Q_2 \ldots \lor Q_k$

- **Learn**: may add resolvent(s)
- **Backjump**: undoes at least an assignment, jumps back as far as possible to state where learnt resolvent can be satisfied

[Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang and Sharad Malik 2001]
Example of CDCL

\[F = \{ \neg a \lor b, \neg c \lor d, \neg e \lor \neg f, f \lor \neg e \lor \neg b \} \]
\[M = a \ b \ c \ d \ e \ \neg f \]
blue: assignments; violet: propagations

Conflict: \(f \lor \neg e \lor \neg b \)
Explain by resolving \(f \lor \neg e \lor \neg b \) and \(\neg e \lor \neg f \): \(\neg e \lor \neg b \)
Learn \(\neg e \lor \neg b \): no model with \(e \) and \(b \) true
Jump back to earliest state with \(\neg b \) false and \(\neg e \) unassigned:
\[M = a \ b \ \neg e \]

Chronological backtracking: \(M = a \ b \ c \ d \ \neg e \)
Satisfiability modulo theories (SMT)

- DPLL(\(\mathcal{T}\)) procedure
- Integrate \(\mathcal{T}\)-satisfiability procedure in DPLL
- Ground first-order literals abstracted to propositional variables
- CDCL: same

[Robert Nieuwenhuis, Albert Oliveras and Cesare Tinelli 2006]
Theory combination by equality sharing

- Theories $\mathcal{T}_1, \ldots, \mathcal{T}_n$
- $\mathcal{T} = \bigcup_{i=1}^{n} \mathcal{T}_i$
- \mathcal{T}_i-satisfiability procedures
- Disjoint: share only \simeq and uninterpreted constants
- Need to compute **arrangement**: which shared constants are equal and which are not
- Conservative approach: propagate all entailed (disjunctions of) equalities between shared constants

[Greg Nelson and Derek C. Oppen 1979]
Model-based theory combination (MBTC)

- Every \mathcal{T}_i-satisfiability procedure builds a \mathcal{T}_i-model
- Optimistic approach: propagate equalities true in \mathcal{T}_i-model
- If not entailed: conflict + backjumping with CDCL + update \mathcal{T}_i-model
- Rationale: few equalities matter in practice

[Leonardo de Moura and Nikolaj Bjørner 2007]
CDCL for \exists-fragments of arithmetic

- Linear arithmetic (rationals)
 [Ken McMillan, A. Kuehlmann and Mooly Sagiv 2009]
 [Konstantin Korovin, Nestan Tsiskaridze and Andrei Voronkov 2009] [Scott Cotton 2010]

- Linear arithmetic (integers)
 [Dejan Jovanović and Leonardo de Moura 2011]

- Non-linear arithmetic (reals)
 [Dejan Jovanović and Leonardo de Moura 2012]

- Floating-point binary arithmetic
 [Leopold Haller, Alberto Griggio, Martin Brain and Daniel Kroening 2012]
Model-constructing satisfiability procedures (MCsat)

- Satisfiability *modulo assignment* (SMA)
 - M: both L (means $L \leftarrow \text{true}$) and $x \leftarrow 3$
- CDCL + MBTC
- Theory CDCL: explain theory conflicts and theory propagations
- Beyond input literals: finite bag for termination
- Equality, lists, arrays, linear arithmetic (rationals)

[Leonardo de Moura and Dejan Jovanović 2013]

[Dejan Jovanović, Clark Barrett and Leonardo de Moura 2013]
Example of theory explanation (equality)

\[F = \{\ldots, v \simeq f(a), w \simeq f(b), \ldots\} \]

\[M = \ldots a \leftarrow \alpha \quad b \leftarrow \alpha \quad w \leftarrow \beta_1 \quad v \leftarrow \beta_2 \ldots \]

Conflict!

Explain by \(a \simeq b \supset f(a) \simeq f(b) \)

(instance of substitutivity)
Summary: Recent trends in model-based reasoning

- Deduction guides search for model
- Candidate model guides deduction

- Propositional CDCL (both DPLL and DPLL(Γ))
- Model-based theory combination (MBTC)
- CDCL for arithmetic (aka Natural domain SMT)
- Model-constructing satisfiability procedures (MCsat)
Motivation

- Decision procedures are most desirable, but ...
- Formulæ from SW verification tools (verifying compiler, static analyzer, test generator, synthesizer, model checker) use quantifiers to write
 - invariants
 - axioms of theories without decision procedure
- Need for generic first-order inferences
Shape of problem

- Background theory \mathcal{T}
 - $\mathcal{T} = \bigcup_{i=1}^{n} \mathcal{T}_i$ (linear arithmetic, data structures)
- Set of formulæ: $\mathcal{R} \cup \mathcal{P}$
 - \mathcal{R}: set of non-ground clauses without \mathcal{T}-symbols
 - \mathcal{P}: large ground formula (set of ground clauses) typically with \mathcal{T}-symbols
- Determine whether $\mathcal{R} \cup \mathcal{P}$ is satisfiable modulo \mathcal{T}
DPLL(Γ+T): integrate Γ in DPLL(T)

- Superposition-based inference system Γ:
 - **FOL+=** clauses with universally quantified variables
 - **Expansion**: generate clauses (resolution, superposition)
 - **Contraction**: delete redundant clauses (subsumption, simplification)
 - **Well-founded** ordering and literal **selection**
 - Decision procedure for several theories of data structures (e.g., lists, arrays, records)

- **Model-based deduction**: literals in M as premises of Γ-inferences!

[Alessandro Armando, Maria Paola Bonacina, Silvio Ranise and Stephan Schulz 2009]

[Leonardo de Moura and Nikolaj Bjørner 2008]
Hypothetical clauses

- Literals from \(M \) used as premises of \(\Gamma \)-inferences stored as hypotheses in inferred clause:
 \[(L_1 \land \ldots \land L_n) \triangleright (L'_1 \lor \ldots \lor L'_m)\]
 interpreted as
 \[\neg L_1 \lor \ldots \lor \neg L_n \lor L'_1 \lor \ldots \lor L'_m\]
- Inferred clauses inherit hypotheses from premises
- Backjump: remove hypothetical clauses depending on undone assignments
DPLL(Γ+T): expansion inferences

- If non-ground clauses \(C_1, \ldots, C_m \) and ground \(\mathcal{R} \)-literals \(L_{m+1}, \ldots, L_n \) generate \(C \):
 \[
 H_1 \triangleright C_1, \ldots, H_m \triangleright C_m \quad \text{and} \quad L_{m+1}, \ldots, L_n \quad \text{in } M \quad \text{generate} \quad H_1 \cup \ldots \cup H_m \cup \{L_{m+1}, \ldots, L_n\} \triangleright C
 \]
- Only \(\mathcal{R} \)-literals: \(\Gamma \)-inferences ignore \(\mathcal{T} \)-literals
- Take ground unit \(\mathcal{R} \)-clauses from \(M \) as MBTC puts them there
DPLL(Γ+T): contraction inferences

- Don’t delete clause if clauses that make it redundant gone by backjumping
 - Level of a literal in M: its decision level
 - Level of a set of literals: the maximum
- If non-ground clauses C_1, \ldots, C_m and ground \mathcal{R}-literals L_{m+1}, \ldots, L_n simplify C to C'
 - $H_1 \triangleright C_1, \ldots, H_m \triangleright C_m$ and L_{m+1}, \ldots, L_n in M simplify $H \triangleright C$ to $H \cup H_1 \cup \ldots \cup H_m \cup \{L_{m+1}, \ldots, L_n\} \triangleright C'$
 - If $\text{level}(H) \geq \text{level}(H')$: delete
 - If $\text{level}(H) < \text{level}(H')$: disable
 (re-enable when backjumping $\text{level}(H')$)
Completeness of DPLL($\Gamma + \mathcal{T}$)

- **Refutational completeness** of the inference system:
 - From that of Γ, DPLL(\mathcal{T}) and equality sharing
 - Combines both built-in and axiomatized theories

- **Fairness** of the search plan:
 - Depth-first search fair only for ground SMT problems;
 - Add *iterative deepening* on inference depth:
 - k-bounded DPLL($\Gamma + \mathcal{T}$)
Outline
Model-based reasoning
DPLL(Γ+Σ): algorithmic reasoner + first-order prover
DPLL(Γ+Σ) + speculative inferences: Decision procedures
Current and future work

DPLL(Γ+Σ): Summary

Use each engine for what is best at:

- DPLL(Σ) works on ground clauses and built-in theory
- Γ works on non-ground clauses and ground unit clauses taken from M: Γ works on R-satisfiability problem
- Γ-inferences guided by current partial model
Can DPLL($\Gamma + \mathcal{T}$) still be a decision procedure?

Problematic axioms do occur in relevant inputs:

1. $\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y)$ (Monotonicity)
2. $a \sqsubseteq b$ generates by resolution
3. $\{f^i(a) \sqsubseteq f^i(b)\}_{i \geq 0}$

When $f(a) \sqsubseteq f(b)$ or $f^2(a) \sqsubseteq f^2(b)$ often suffice to show satisfiability
Idea: Allow speculative inferences

1. \(\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)

2. \(a \sqsubseteq b \)

3. \(a \sqsubseteq f(c) \)

4. \(\neg (a \sqsubseteq c) \)
Idea: Allow speculative inferences

1. $\neg (x \subseteq y) \lor f(x) \subseteq f(y)$
2. $a \subseteq b$
3. $a \subseteq f(c)$
4. $\neg (a \subseteq c)$

1. Add $f(x) \simeq x$
2. Rewrite $a \subseteq f(c)$ into $a \subseteq c$ and get \square: backtrack!
Idea: Allow speculative inferences

1. \(\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg (a \sqsubseteq c) \)

1. Add \(f(x) \simeq x \)
2. Rewrite \(a \sqsubseteq f(c) \) into \(a \sqsubseteq c \) and get \(\Box \): backtrack!
3. Add \(f(f(x)) \simeq x \)
4. \(a \sqsubseteq b \) yields only \(f(a) \sqsubseteq f(b) \)
5. \(a \sqsubseteq f(c) \) yields only \(f(a) \sqsubseteq c \)
6. Terminate and detect satisfiability
Speculative inferences in DPLL(Γ+𝕋)

- Speculative inference: add arbitrary clause C
- To induce termination on satisfiable input
- What if it makes problem unsatisfiable?!
- Detect conflict and backjump:
 - $\lceil C \rceil$: new propositional variable (a “name” for C)
 - Add $\lceil C \rceil \triangleright C$ to clauses and $\lceil C \rceil$ to M
 - Speculative inferences are reversible
Example as done by system

1. \(\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg (a \sqsubseteq c) \)
Example as done by system

1. \(\neg (x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg(a \sqsubseteq c) \)

1. Add \([f(x) \simeq x] \triangleright f(x) \simeq x\)
2. Rewrite \(a \sqsubseteq f(c)\) into \([f(x) \simeq x] \triangleright a \sqsubseteq c\)
Example as done by system

1. $\neg (x \sqsubseteq y) \vee f(x) \sqsubseteq f(y)$
2. $a \sqsubseteq b$
3. $a \sqsubseteq f(c)$
4. $\neg (a \sqsubseteq c)$

1. Add $\lceil f(x) \simeq x \rceil \triangleright f(x) \simeq x$
2. Rewrite $a \sqsubseteq f(c)$ into $\lceil f(x) \simeq x \rceil \triangleright a \sqsubseteq c$
3. Generate $\lceil f(x) \simeq x \rceil \triangleright \Box$; Backtrack, learn $\neg \lceil f(x) \simeq x \rceil$
Example as done by system

1. \(\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \)
2. \(a \sqsubseteq b \)
3. \(a \sqsubseteq f(c) \)
4. \(\neg(a \sqsubseteq c) \)

1. Add \([f(x) \simeq x] \triangleright f(x) \simeq x \)
2. Rewrite \(a \sqsubseteq f(c) \) into \([f(x) \simeq x] \triangleright a \sqsubseteq c \)
3. Generate \([f(x) \simeq x] \triangleright \Box \); Backtrack, learn \(\neg[f(x) \simeq x] \)
4. Add \([f(f(x)) \simeq x] \triangleright f(f(x)) \simeq x \)
5. \(a \sqsubseteq b \) yields only \(f(a) \sqsubseteq f(b) \)
6. \(a \sqsubseteq f(c) \) yields only \([f(f(x)) = x] \triangleright f(a) \sqsubseteq c \)
7. Terminate and detect satisfiability
Outline
Model-based reasoning
DPLL($\Gamma + T$): algorithmic reasoner + first-order prover
DPLL($\Gamma + T$) + speculative inferences: Decision procedures
Current and future work

Decision procedures with speculative inferences

To decide satisfiability modulo T of $R \cup P$:

- Find sequence of speculative axioms U
- Show that there exists k s.t. k-bounded DPLL($\Gamma + T$) is guaranteed to terminate
 - returning Unsat if $R \cup P$ is T-unsatisfiable
 - in a state which is not stuck at k otherwise
Decision procedures

- \mathcal{R} has single monadic function symbol f
- **Essentially finite**: if $\mathcal{R} \cup P$ is satisfiable, has model where range of f is **finite**
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
Decision procedures

- \(\mathcal{R} \) has single monadic function symbol \(f \)
- **Essentially finite**: if \(\mathcal{R} \cup P \) is satisfiable, has model where range of \(f \) is **finite**
- Such a model satisfies \(f^j(x) \simeq f^k(x) \) for some \(j \neq k \)
- Add **pseudo-axioms** \(f^j(x) \simeq f^k(x), j > k \)
- Use \(f^j(x) \simeq f^k(x) \) as rewrite rule to **limit term depth**
Decision procedures

- \mathcal{R} has single monadic function symbol f
- **Essentially finite**: if $\mathcal{R} \cup P$ is satisfiable, has model where range of f is finite
- Such a model satisfies $f^j(x) \simeq f^k(x)$ for some $j \neq k$
- Add pseudo-axioms $f^j(x) \simeq f^k(x)$, $j > k$
- Use $f^j(x) \simeq f^k(x)$ as rewrite rule to limit term depth
- Clause length limited by properties of Γ and \mathcal{R}
- Only finitely many clauses generated: termination
Situations where clause length is limited

\(\Gamma \): Superposition, Resolution + negative selection, Simplification

Negative selection: only positive literals in positive clauses resolve or superpose

- \(\mathcal{R} \) is Horn: number of literals in each clause is bounded
- \(\mathcal{R} \) is ground-preserving: all variables appear also in negative literals
 the only positive clauses are ground
 only finitely many clauses generated
Axiomatizations of type systems

Reflexivity \[x \sqsubseteq x \] (1)
Transitivity \[\neg(x \sqsubseteq y) \lor \neg(y \sqsubseteq z) \lor x \sqsubseteq z \] (2)
Anti-Symmetry \[\neg(x \sqsubseteq y) \lor \neg(y \sqsubseteq x) \lor x \simeq y \] (3)
Monotonicity \[\neg(x \sqsubseteq y) \lor f(x) \sqsubseteq f(y) \] (4)
Tree-Property \[\neg(z \sqsubseteq x) \lor \neg(z \sqsubseteq y) \lor x \sqsubseteq y \lor y \sqsubseteq x \] (5)

Multiple inheritance: \(\text{MI} = \{(1), (2), (3), (4)\} \)
Single inheritance: \(\text{SI} = \text{MI} \cup \{(5)\} \)
Concrete examples of decision procedures

DPLL(Γ+T) with addition of $f^j(x) \simeq f^k(x)$ for $j > k$ decides the satisfiability modulo T of problems

- $\text{MI} \cup P$
- $\text{SI} \cup P$
- $\text{MI} \cup \text{TR} \cup P$ and $\text{SI} \cup \text{TR} \cup P$

where $\text{TR} = \{\lnot(g(x) \simeq \text{null}), \ h(g(x)) \simeq x\}$ has only infinite models!

(because g is injective, since it has left inverse, but not surjective, since there is no pre-image for null)

[Maria Paola Bonacina, Chris Lynch and Leonardo de Moura 2011]
Current and future work

- MCsat procedures for more first-order theories
e.g., Boolean algebra with Presburger arithmetic (BAPA)
- Many-sorted DPLL(Γ+T)
- Weakening conditions for completeness
- More decision procedures by speculative inferences
- MCsat + Γ

[Joint work with Serdar Erbatur]