
Automated Proofs in Lukasiewicz Logic

Siva Anantharaman

LIFO, Dépt. Math-Info.

Université d’Orléans

45067 Orléans Cedex 02

FRANCE

E-mail: siva@univ-orleans.fr

Maria Paola Bonacina∗

Department of Computer Science

SUNY at Stony Brook

Stony Brook, NY 11794-4400 USA

E-mail: bonacina@sbcs.sunysb.edu

November 28, 1989

Abstract

In this paper we present some mechanical proofs in the many-valued logic defined
by Lukasiewicz. The main result is the first mechanical proof of the fifth Lukasiewicz

conjecture. All the presented proofs are obtained by the (AC-)Unfailing Knuth-Bendix
completion method in the theorem prover SBR3. However, a proof of the conjecture
cannot be obtained by a brute-force application of completion. We introduce auxil-
iary functions and reformulate the theorem in terms of the new auxiliary functions.
No manual addition of lemmas is needed. These transformations are customary in
mathematics and we feel they are useful in automated reasoning too.
The paper is organized as follows: in section 1 we present the fifth Lukasiewicz con-
jecture, in section 2 we briefly present the prover SBR3 and in section 3 we present
the proofs.

1 A problem in many-valued logic

Many-valued propositional logic was first introduced by Jan Lukasiewicz in the 1920’s. All
the following results about early work on many-valued logic are reported in [8].

The original definition of many-valued logic is purely semantical. No axioms and no
inference rules are given. Lukasiewicz defines first a model and then the logic is defined
as the set of all sentences in propositional calculus which are true on that model. More
precisely, the n-valued logic Ln is defined as the set of all sentences satisfied by the structure

Ln =< {
k

n − 1
|0 ≤ k ≤ n − 1}, g, f >

where An = { k

n−1
|0 ≤ k ≤ n − 1} is the domain, g : An → An is the unary function

g(x) = 1 − x and f : An × An → An is the binary function f(x, y) = min(1 − x + y, 1).

L1 is the set of all legal propositional sentences, L2 is classical two-valued propositional
logic with model

L2 =< {0, 1}, g, f >

∗Research supported in part by grants CCR-8805734 & INT-8715231, both funded by the National

Science Foundation, and by Dottorato di ricerca in Informatica, Universitá degli Studi di Milano.

1

where the functions g and f are classical negation and implication. L3 is three-valued
logic, the first one introduced by Lukasiewicz. As n increases, the domain An grows:

A1 = {1}

A2 = {0, 1}

A3 = {0, 1

2
, 1}

A4 = {0, 1

3
, 2

3
, 1}

A5 = {0, 1

4
, 2

4
, 3

4
, 1} . . .

The limit of this sequence is the set Q0 of all rational numbers in the interval [0, 1],
which is the domain of the many valued logic

Lℵ0
=< {

k

l
|0 ≤ k ≤ l}, g, f >

As n increases, the set Ln shrinks and Lℵ0
is the smallest such set, i.e. the intersection of

all the Ln. It has been later proved by Lindenbaum that the domain for Lℵ0
can be any

arbitrary set of numbers {x|0 ≤ x ≤ 1} closed with respect to g and f .

The following research in the 20’s and 30’s was devoted to find axiomatizations for
these n-valued logics. Wajsberg gave first an axiomatization for L3 and proved that for
all n such that n − 1 is a prime number, an axiomatization for Ln exists. Lindenbaum
later extended this result to all n. Lukasiewicz conjectured that the following axioms are
an axiomatization for Lℵ0

:

1. p ⇒ (q ⇒ p)

2. (p ⇒ q) ⇒ ((q ⇒ r) ⇒ (p ⇒ r))

3. ((p ⇒ q) ⇒ q) ⇒ ((q ⇒ p) ⇒ p)

4. ((p ⇒ q) ⇒ (q ⇒ p)) ⇒ (q ⇒ p)

5. (not(p) ⇒ not(q)) ⇒ (q ⇒ p)

where not and ⇒ are interpreted as g and f in the model Lℵ0
. In the following we use not,

⇒ and true rather than g, f and 1 whenever we are working on the axiomatization rather
than on the model. However, it should be clear that they are not negation, implication
and truth in classical logic, but they are interpreted as g, f and 1 in Lℵ0

. The fourth
axiom was later proved to be dependent on the remaining ones.

In the following years classes of algebras related to Lukasiewicz logics have been given
an equational axiomatization. The following is the equational axiomatization for Wajsberg

algebras [7]:

1. true ⇒ x == x

2. (x ⇒ y) ⇒ ((y ⇒ z) ⇒ (x ⇒ z)) == true

3. (x ⇒ y) ⇒ y == (y ⇒ x) ⇒ x

4. (not(x) ⇒ not(y)) ⇒ (y ⇒ x) == true

2

Axioms 2, 3 and 4 correspond to axioms 2, 3 and 5 in the original axiomatization by
Lukasiewicz. We denote by W this equational presentation of Wajsberg algebras.

The problem we are interested in is the following: prove from W that

(x ⇒ y) ∨ (y ⇒ x) == true

where the operator ∨ is defined by:

x ∨ y == (x ⇒ y) ⇒ y.

This problem was first given by Lukasiewicz as a conjecture [9] and proved several
years later [9]. It is known as the fifth Lukasiewicz conjecture. If the operator ⇒ in the
definition of the operator ∨ is interpreted as min(1−x+ y, 1), then x∨ y gets interpreted
as max(x, y):

min(1 − min(1 − x + y, 1) + y, 1) =

{

min(1 − 1 + y, 1) = y if y ≥ x

min(1 − 1 + x − y + y, 1) = x if x ≥ y

It follows that the theorem (x ⇒ y) ∨ (y ⇒ x) == 1 is interpreted as max(min(1 −
x + y, 1),min(1 − y + x, 1)) == 1, which is intuitively true, since the above evaluates to
max(1 − x + y, 1) = 1 if x ≥ y and to max(1 − y + x, 1) = 1 if y ≥ x. We are interested
in obtaining a mechanical derivation of this theorem from the above axioms.

A major step to obtain the mechanical proof is the introduction of an auxiliary operator
or, defined as

or(x, y) == not(x) ⇒ y

In the model Lℵ0
, or is interpreted as min(1 − 1 + x + y, 1) = min(x + y, 1). In

Lukasiewicz logic ∨ and or are two different connectives, with two different interpreta-
tions. In order to distinguish them, we call them weak disjunction and strong disjunction

respectively. In classical two-valued logic, i.e. on the domain {0, 1}, the weak disjunction
x∨y and the strong disjunction or(x, y) are the same connective, the classical disjunction.

Finally, it is known that the following lemmas are true in any Wajsberg algebra [7]:

[1] x ⇒ x == true

[2] if x ⇒ y == y ⇒ x == true then x == y

[3] x ⇒ true == true

[4] x ⇒ (y ⇒ x) == true

[5] if x ⇒ y == y ⇒ z == true then x ⇒ z == true

[6] (x ⇒ y) ⇒ ((z ⇒ x) ⇒ (z ⇒ y)) == true

[7] x ⇒ (y ⇒ z) == y ⇒ (x ⇒ z)

[8] x ⇒ false == x ⇒ not(true) == not(x)

[9] not(not(x)) == x

[10] not(x) ⇒ not(y) == y ⇒ x

Some of these lemmas are involved in our mechanical proof of the fifth conjecture.
All of them except lemma 7 are mechanically derived from W by SBR3 in running time
varying from 2 secs to 1 minute, on a SUN 3/260. Lemma 7 is proved as well, but its
deduction is not immediate as shown in the final section.

3

2 An overview of SBR3

SBR3 is written in CLU, and runs both on Sun-3 and the Vax-11 series. It is an enhance-
ment of SbReve2 [2]. Its basic mechanism is the term rewriting method based on the
well-known Knuth-Bendix completion.

The main features in SBR3 are the following:

1. AC-Unfailing Completion [2]

2. Cancellation inference rules [5]

3. Order saturation strategy [1]

4. Critical pair criteria for refutational theorem proving [3]

5. Heuristic strategies to sort equations [3]

SBR3 is a refutational theorem prover for proving equational theorems. The inputs to the
prover are a set of equations, the axioms, and an inequality, the skolemized negation of
the intended theorem. The user should also give a precedence among the function symbols
and a status for each function symbol, so that an ordering can be imposed on the terms.
The status can be left-to-right, multiset or right-to-left. The user also indicates which
operators are AC and selects a sorting strategy.

3 The mechanical proofs

The fifth conjecture cannot be proved by simply applying (AC)UKB completion to the
axiomatization W and the negation of the conjecture. This is not surprising since the
mathematical proof of the conjecture took several years and it is unlikely that the numerous
sophisticated steps of that proof are reducible to simplification and overlap steps alone in
a straightforward way. Therefore, we adopt a different approach, in which the application
of the completion procedure is controlled as follows: we break the proof into smaller steps,
we introduce auxiliary operators to state the theorem in a different format and we exploit
the possibility given by SBR3 to leave an equation, which could be oriented into a rewrite
rule, unoriented. For example, we keep not(not(x)) == x as an equation. This controlled
application of completion allows us to prove the conjecture in about 24 minutes. Since
reducing a problem to subproblems and finding more useful ways to write axioms and
theorems are typical techniques in mathematics, our experiments with Lukasiewicz logic
show a successful interaction of automated reasoning and mathematical reasoning.

Our mechanical proof of Lukasiewicz’s conjecture is done incrementally through 5
executions:

Part 1. Prove
lemma 9 : not(not(x)) == x

with W as input. During the proof the following lemmas are also generated automatically:

lemma 1 : x ⇒ x == true

lemma 3 : x ⇒ true == true

4

lemma 4 : x ⇒ (y ⇒ x) == true

lemma 8 : x ⇒ not(true) == not(x)

Part 2. Prove
lemma 10 : not(x) ⇒ not(y) == y ⇒ x

with W and lemmas 1, 3 and 9 as input.

Part 3. Introduce the auxiliary operator and and prove

lemma 7 : x ⇒ (y ⇒ z) == y ⇒ (x ⇒ z)

from W and lemmas 1, 3, 4, 8, 9 and 10.

Part 4. Introduce the auxiliary operator or defined as or(x, y) == not(x) ⇒ y, and
prove that it is associative and commutative from lemmas 7, 9 and 10. Note that lemma
9 implies that or(not(x), y) == x ⇒ y is equivalent to or(x, y) == not(x) ⇒ y.

Part 5. Prove
(x ⇒ y) ∨ (y ⇒ x) == true

from W, lemmas 1, 3, 9, or(not(x), y) == x ⇒ y, where or is AC, and x ∨ y == (x ⇒
y) ⇒ y.

Previous knowledge of the lemmas of the Wajsberg algebras helps in breaking the proofs
into smaller steps. This allows us to obtain the earlier lemmas as partial results and give
them to the prover as additional inputs to prove further results. However we emphasize
that the idea of introducing the auxiliary or and and is new and the observation that
the lemmas imply that or is AC plays a crucial role in achieving the final result. All the
proofs inside each of these parts are fully mechanical and all the lemmas are generated by
SBR3 from the given axioms by pure forward reasoning: whenever the negation of one of
the above lemmas is given to the prover as a goal, the prover achieves the refutation by
actually generating the lemma itself.

In the various extracts given below from the output files, all the simplification steps
used in the generation of rules or inequalities are also indicated, whenever it seems neces-
sary for comprehension. All the runtimes are given for a SUN 3/260.

3.1 Part 1: proof of lemmas 1, 3, 4, 8, 9 from W

Instead of giving separate proofs for these assertions, we choose to show here that the
completely automatic proof obtained by SBR3 for lemma 9 (not(not(x)) == x), generates
also directly lemmas 1, 3, 4 and 8. For that we input the initial equation set W and the
negation of lemma 9: not(not(cx)) 6= cx, where cx is a Skolem constant.

Here is the extract from the script file for the proof, obtained in 58 secs., using the
recursive path ordering induced by the precedence: ⇒> not > true with left-to-right
status for ⇒. Actually, any status or no status works as well here.

..........

New Rule (or Ineqn.)::

[9] (not(x) => not(true)) => x -> true

From:

[6] (not(x) => not(y)) => (y => x) -> true

and:

5

[5] true => x -> x

.......

New Rule (or Ineqn.)::

[15] (y => true) => true -> y => y

From:

[4] (x => y) => y == (y => x) => x

and:

[5] true => x -> x

.......

New Rule (or Ineqn.)::

[44] y => ((y => z) => z) -> true

From:

[7] (x => y) => ((y => z) => (x => z)) -> true

and:

[5] true => x -> x

New Rule (or Ineqn.)::

[46] (x => true) => (z => (x => z)) -> true

From:

[7] (x => y) => ((y => z) => (x => z)) -> true

and:

[5] true => x -> x

.......

New Rule (or Ineqn.)::

[114] z => z -> true %%..Lemma 1 Proved here...

From:

[44] y => ((y => z) => z) -> true

and:

[5] true => x -> x

.......

New Rule (or Ineqn.)::

[129] y => true -> true %%..Lemma 3 Proved here...

From:

[44] y => ((y => z) => z) -> true

and:

[15] (y => true) => true -> y => y

The equation or Rule:

[46] (x => true) => (z => (x => z)) -> true

was reduced to:

[131] z => (x => z) -> true %%..Lemma 4 Proved here...

.......

New Rule (or Ineqn.)::

[141] ((x => x1) => z) => (x1 => z) -> true

From:

[131] z => (x => z) -> true

and:

[7] (x => y) => ((y => z) => (x => z)) -> true

......

6

New Rule (or Ineqn.)::

[153] not(true) => z -> true

From:

[141] ((x => x1) => z) => (x1 => z) -> true

and:

[9] (not(x) => not(true)) => x -> true

.......

New Rule (or Ineqn.)::

[160] not(y) => (y => x) -> true

From:

[141] ((x => x1) => z) => (x1 => z) -> true

and:

[6] (not(x) => not(y)) => (y => x) -> true

......

New Rule (or Ineqn.)::

[172] (y => not(true)) => not(true) -> y

From:

[153] not(true) => z -> true

and:

[4] (x => y) => y == (y => x) => x

......

New Rule (or Ineqn.)::

[190] not(y => not(true)) => y -> true

From:

[172] (y => not(true)) => not(true) -> y

and:

[160] not(y) => (y => x) -> true

........

New Rule (or Ineqn.)::

[200] y => (not(y) => not(true)) -> true

From:

[190] not(y => not(true)) => y -> true

and:

[6] (not(x) => not(y)) => (y => x) -> true

The equation or Rule:

[19] (y => (not(y) => not(true))) => (not(y) => not(true)) -> y

was reduced to:

[202] not(y) => not(true) -> y

.......

New Rule (or Ineqn.)::

[212] y => not(true) -> not(y) %%..Lemma 8 Proved here...

From:

[202] not(y) => not(true) -> y

and:

[172] (y => not(true)) => not(true) -> y

The equation or Rule:

[172] (y => not(true)) => not(true) -> y

7

was reduced to:

[213] not(not(y)) == y

......

The equation or Rule:

[0] not(not(cx)) =/= cx -> 1

was reduced to:

[223] cx =/= cx -> 1

*** Proved ***

Knuth-Bendix runtime:

Total: 58 seconds.

Computed 345 critical pairs and ordered 98 equations into rules.

3.2 Part 2: proof of lemma 10 from W and lemmas 1, 3 and 9

The ordering used in this automatic proof is exactly the same as in part 1. Here is the
extract from the script file.

User equations:

true => x == x

x => x == true

x => true == true

(x => y) => ((y => z) => (x => z)) == true

(x => y) => y == (y => x) => x

(not(x) => not(y)) => (y => x) == true

not(not(x)) == x

User Inequations: (not(cx) => not(cy)) =/= (cy => cx) -> 1

.......

New Rule (or Ineqn.)::

[17] (x => not(y)) => (y => not(x)) -> true

From:

[12] (not(x) => not(y)) => (y => x) -> true

and:

[11] not(not(x)) -> x

........

New Rule (or Ineqn.)::

[25] (x => x1) => (not(x1) => not(x)) -> true

From:

[17] (x => not(y)) => (y => not(x)) -> true

and:

[11] not(not(x)) -> x

.......

Crit. Pair::

((y => x) => (not(x) => not(y))) => (not(x) => not(y))

== true => (y => x)

From:

[5] (x => y) => y == (y => x) => x

and:

[12] (not(x) => not(y)) => (y => x) -> true

Simplified with: [8] true => x -> x

8

Simplified with: [25] (x => x1) => (not(x1) => not(x)) -> true

Simplified with: [8] true => x -> x

New Rule (or Ineqn.)::

[50] y => x == not(x) => not(y)

From:

[5] (x => y) => y == (y => x) => x

and:

[12] (not(x) => not(y)) => (y => x) -> true

Crit. Pair.

(not(not(cy)) => not(not(cx))) =/= (cy => cx) == 1

From:

[50] y => x == not(x) => not(y)

and:

[0] (not(cx) => not(cy)) =/= (cy => cx) -> 1

Simplified with: [11] not(not(x)) -> x

Simplified with: [11] not(not(x)) -> x

New Rule (or Ineqn.)::

[51] (cy => cx) =/= (cy => cx) -> 1

From:

[50] y => x == not(x) => not(y)

and:

[0] (not(cx) => not(cy)) =/= (cy => cx) -> 1

*** Proved ***

Knuth-Bendix runtime:

Total: 11 seconds.

Computed 157 critical pairs and ordered 24 equations into rules.

3.3 Part 3: proof of lemma 7 from W and lemmas 1, 3, 4, 8, 9, 10

This proof is obtained by reformulating the problem in terms of the auxiliary operator
and, whose definition is only implicit in the following user input equation:

and(x, y) ⇒ z == (x ⇒ (y ⇒ z))

No other axiom involving and is necessary. We prove that and is commutative and lemma
7 is a consequence. To allow the reformulation in terms of and, we naturally give here
the right-to-left status to ⇒. The status given to and is irrelevant. The precedence is:
⇒> and > not > true.

User equations:

true => x == x

x => x == true

x => true == true

(x => y) => ((y => z) => (x => z)) == true

(x => y) => y == (y => x) => x

x => (y => x) == true

x => not(true) == not(x)

not(x) => not(y) == y => x

9

not(not(x)) == x

AND(x, y) => z == x => (y => z)

User Inequations: AND(cx, cy) =/= AND(cy, cx) -> 1

.......

Crit. Pair.::

x => true == AND(x, z) => z

From:

[18] x => (y => z) -> AND(x, y) => z

and:

[12] x => x -> true

Simplified with: [13] x => true -> true

New Rule (or Ineqn.)::

[37] AND(x, z) => z -> true

From:

[18] x => (y => z) -> AND(x, y) => z

and:

[12] x => x -> true

.......

Crit. Pair.::

x => not(y) == AND(x, y) => not(true)

From:

[18] x => (y => z) -> AND(x, y) => z

and:

[16] x => not(true) -> not(x)

Simplified with: [16] x => not(true) -> not(x)

New Rule (or Ineqn.)::

[39] x => not(y) -> not(AND(x, y))

From:

[18] x => (y => z) -> AND(x, y) => z

and:

[16] x => not(true) -> not(x)

.......

Simplified with: [39] x => not(y) -> not(AND(x, y))

Simplified with: [14] not(not(x)) -> x

Simplified with: [37] AND(x, z) => z -> true

Simplified with: [39] x => not(y) -> not(AND(x, y))

The equation or Rule:

[8] not(x) => not(y) == y => x

was reduced to:

[45] y => x -> not(AND(not(x), y))

........

Simplified with: [45] y => x -> not(AND(not(x), y))

Simplified with: [14] not(not(x)) -> x

The equation or Rule:

[39] x => not(y) -> not(AND(x, y))

was reduced to:

[57] not(AND(y, x)) == not(AND(x, y))

10

......

New Rule (or Ineqn.)::

[119] AND(x, y) == AND(y, x)

From:

[57] not(AND(y, x)) == not(AND(x, y))

and:

[14] not(not(x)) -> x

New Rule (or Ineqn.)::

[120] AND(cy, cx) =/= AND(cy, cx) -> 1

From:

[119] AND(x, y) == AND(y, x)

and:

[0] AND(cx, cy) =/= AND(cy, cx) -> 1

*** Proved ***

Knuth-Bendix runtime:

Total: 17 seconds.

Computed 144 critical pairs and ordered 51 equations into rules.

3.4 Part 4: the pseudo-disjunction or is AC

Here we prove the crucial result that or is AC. This observation allows us to use AC-UKB
during the final proof of the theorem. The commutativity and associativity of or can be
proved mechanically, but in order to save space we report here a simple proof by hand:

Commutativity:

or(x, y) = (not(x) ⇒ y) (definition)

= not(y) ⇒ not(not(x)) (by lemma 10)

= not(y) ⇒ x (by lemma 9)

= or(y, x) (definition).

Associativity:

or(or(x, y), z) = (not(or(x, y)) ⇒ z) (definition)

= not(z) ⇒ not(not(or(x, y))) (by lemma 10)

= not(z) ⇒ or(x, y) (by lemma 9)

= not(z) ⇒ (not(x) ⇒ y) (definition)

= not(x) ⇒ (not(z) ⇒ y) (by lemma 7)

= (not(x) ⇒ or(z, y)) = or(x, or(z, y)) (definition)

= or(x, or(y, z)) (by commutativity).

3.5 Part 5: the fifth Lukasiewicz conjecture

For this step, we input the initial set of equations:

true ⇒ x == x

x ⇒ x == true

x ⇒ true == true

11

(x ⇒ y) ⇒ ((y ⇒ z) ⇒ (x ⇒ z)) == true

not(not(x)) == x

((x ⇒ y) ⇒ y == (y ⇒ x) ⇒ x

or(not(x), y) == x ⇒ y

x ∨ y == (x ⇒ y) ⇒ y

and the initial inequality:

(cx ⇒ cy) ∨ (cy ⇒ cx) 6= true

The input includes in this order axiom 1, lemma 1, lemma 3, axiom 2, lemma 9, axiom
3, the definition of ⇒ in terms of or, the definition of ∨ and the negation of the theorem,
where cx and cy are Skolem constants. Axiom 4 is not included; it is needed only in part
4. The final refutation is obtained by order-saturation on the inequalities, as shown by the
following extract of the script file (where ‘weakor’ stands for ∨). The only AC-operator is
or.

.....

Simplified with: [13] x => y -> OR(not(x), y)

The equation or Rule:

[9] true => x -> x

was reduced to:

[14] OR(not(true), x) == x

Simplified with: [13] x => y -> OR(not(x), y)

The equation or Rule:

[10] x => x -> true

was reduced to:

[15] OR(not(x), x) -> true

Simplified with: [13] x => y -> OR(not(x), y)

The equation or Rule:

[11] x => true -> true

was reduced to:

[16] OR(not(x), true) -> true

Simplified with: [13] x => y -> OR(not(x), y)

Simplified with: [13] x => y -> OR(not(x), y)

The equation or Rule:

[8] weakor(x, y) == (x => y) => y

was reduced to:

[18] weakor(x, y) -> OR(not(OR(not(x), y)), y)

Simplified with: [13] x => y -> OR(not(x), y)

Simplified with: [13] x => y -> OR(not(x), y)

Simplified with: [13] x => y -> OR(not(x), y)

Simplified with: [13] x => y -> OR(not(x), y)

The equation or Rule:

[6] (x => y) => y == (y => x) => x

was reduced to:

[19] OR(not(OR(not(x), y)), y) == OR(not(OR(not(y), x)), x)

12

Simplified with: [13] x => y -> OR(not(x), y)

Simplified with: [13] x => y -> OR(not(x), y)

The equation or Rule:

[0] weakor(cx => cy, cy => cx) =/= true -> 1

was reduced to:

[21] weakor(OR(cy, not(cx)), OR(cx, not(cy))) =/= true -> 1

Simplified with: [18] weakor(x, y) -> OR(not(OR(not(x), y)), y)

The equation or Rule:

[21] weakor(OR(cy, not(cx)), OR(cx, not(cy))) =/= true -> 1

was reduced to:

[25] OR(cx, not(OR(cx, not(OR(cy, not(cx))), not(cy))), not(cy))

=/= true -> 1

......

New Rule (or Ineqn.)::

[28] OR(true, x) -> true

From:

[16] OR(not(x), true) -> true

and:

[12] not(not(x)) -> x

....

Superposing::

[19] OR(not(OR(not(x), y)), y) == OR(not(OR(not(y), x)), x)

.......

New Rule (or Ineqn.)::

[33] OR(not(OR(not(x), not(y))), not(x)) -> OR(not(OR(x, y)), y)

From:

[19] OR(not(OR(not(x), y)), y) == OR(not(OR(not(y), x)), x)

and:

[12] not(not(x)) -> x

.......

New Rule (or Ineqn.)::

[156] OR(not(OR(not(x), x1)), not(x)) == OR(not(OR(not(x1), x)), not(x1))

From:

[33] OR(not(OR(not(x), not(y))), not(x)) -> OR(not(OR(x, y)), y)

and:

[12] not(not(x)) -> x

Crit. Pair.::

OR(cx, not(OR(cx, not(OR(cy, not(cx))))),

not(OR(cy, not(OR(cx, not(OR(cy, not(cx)))))))) =/= true == 1

From:

[156] OR(not(OR(not(x), x1)), not(x)) ==

OR(not(OR(not(x1), x)), not(x1))

and:

[25] OR(cx, not(OR(cx, not(OR(cy, not(cx))), not(cy))), not(cy)) =/=

true -> 1

Simplified with:

13

[19] OR(not(OR(not(x), y)), y) == OR(not(OR(not(y), x)), x)

Simplified with:

[19] OR(not(OR(not(x), y)), y) == OR(not(OR(not(y), x)), x)

Simplified with: [15] OR(not(x), x) -> true

Simplified with: [28] OR(true, x) -> true

Simplified with: [28] OR(true, x) -> true

Simplified with: [28] OR(true, x) -> true

New Rule (or Ineqn.)::

[157] true =/= true -> 1

From:

[156] OR(not(OR(not(x), x1)), not(x)) ==

OR(not(OR(not(x1), x)), not(x1))

and:

[25] OR(cx, not(OR(cx, not(OR(cy, not(cx))), not(cy))), not(cy)) =/=

true -> 1

*** Proved ***

Knuth-Bendix runtime:

Total: 22:30.

Computed 359 critical pairs and ordered 27 equations into rules.

References

[1] S. Anantharaman, J. Hsiang, Automated Proofs of the Moufang Identities in
Alternative Rings, J. of Automated Reasoning, To appear, 1989-90.

[2] S. Anantharaman, J. Hsiang, J. Mzali, SbReve2: A term Rewriting Laboratory
with (AC-)Unfailing Completion, Proc. RTA-1989, LNCS no. 335, Springer-Verlag.

[3] S. Anantharaman, A. Andrianarivelo, Heuristical Criteria in Refutational The-
orem Proving, Research Report, Université d’Orléans (Fr.), no. 89-9, 1989, (Sub-
mitted at the DISCO-90).

[4] J. Hsiang, M. Rusinowitch, On word problems in equational theories, Proc. of
the 14th ICALP, Springer-Verlag LNCS, Vol 267, pp 54-71, 1987.

[5] J. Hsiang, M. Rusinowitch, K. Sakai, Complete set of inference rules for the
cancellation laws, IJCAI 87, Milano, Italy, 1987.

[6] G. Peterson, M.E. Stickel, Complete sets of reductions for some equational the-
ories, J. Ass. Comp. Mach., Vol 28 no. 2, pp 233-264, 1981.

[7] J.M.Font, A.J.Rodriguez, A.Torrens, Wajsberg algebras, Stochastica, Vol. 8,
No. 1, 5–31, 1984

[8] A.Tarski, J.Lukasiewicz, Investigations into the sentential calculus, Chapter IV in
A.Tarski, Logic, Semantics and Metamathematics, 38–56, Clarendon Press, Oxford,
1956

[9] D.Mundici, Personal communication

14

