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Abstract

Interpolation is a technique for extracting intermediaterfulze from a proof. It has applications in
formal verification, where interpolation may enable a pavgranalyser to discover information about
intermediate program locations and states. We study iok&tipn in the theorem proving method
DPLL(I'+7), which integrates tightly a superposition based prdver a DPLL(7") based SMT-solver
to unite their respective strengths. We show how a first iratiation system for DPLL{+7") can be
obtained from interpolation systems for DPLL, equalityrémgandl’. We describe ongoing work on an
interpolation system foF, by presenting and proving complete an interpolation systa the ground
case, followed by a discussion of ongoing work on an extensidhe general case. Thanks to the mod-
ular design of DPLLI+7), its interpolation system can be extended easily beyomdtbund case once
a general interpolation system fBrbecomes available.

1 Introduction

Interpolation is a theorem proving technique which hasmdgdound several applications in verifica-
tion. Informally, interpolants are formulee ‘in-betweenher fomulee in a proof: for a proof oA - B
with interpolantl, A + I andI + B, with I only containing symbols shared betwednand B.
Interpolation was first proposed fabstraction refinemenin software model checking, initially for
propositional logic and propositional satisfiability [1&Jnd then for quantifier free fragments of first-
order theories and their combinations [21, 17, 11, 5, 8,18thé Counter-Example Guided Abstraction
Refinement paradigm, interpolants from the proof of unakgity of the formula produced from a
spurious counter-example may capture intermediate statas error trace, and can be used to refine
the abstraction by re-introducing predicates from therpudkants to exclude states leading to spurious
errors.

Interpolation has also found applications fiovariant generatiorin the context of inference systems
for first-order logic with equality [18, 13, 9]. Here, one as®es that &-step unwinding of a loop does
not satisfy the post-condition. The formulae expressing thoduces a contradiction if the loalmes
satisfy the post-condition. An interpolant, containindyotime symbols occurring in the loop body, can
be extracted and used to guide the construction of a loopiang18].

A third application of interpolation is to supplememtnotation generatiohy a weakest pre-condition
calculus [19]. In this context, interpolation allows a &tatnalyser to avoid inserting irrelevant program
variables in annotations, such as procedure summaries.
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The aim of this work is to develop an interpolation systemB&LL(I" + 7) [2], a new theorem
proving method which integrates a first-order inferencéesy$’, based on resolution and superposition,
into the DPLL(J) framework for satisfiability modulo theories. The motieatfor DPLL(I"+7) is to
unite the strengths of resolution based provers, such asnabed treatment of quantifiers, with those
of SMT-solvers, such as built-in theories and scalabilitylarge ground problems. All these features
are crucial for applications to verification. For instanfmemulee with quantifiers are necessary to state
invariants and to axiomatise theories without decisiorcedures. Heuristic techniques for instantiating
variables in SMT-solvers can be used, but they can be fragitbrequire a lot of user effort to get
right[15]. Thus, DPLL(Gamma+T) has properties attractosehe application areas, exemplified above,
where also interpolation has uses. Hence an interpolagngjon of DPLL{"+7) would be of interest
for the formal verification community. The work describedhis paper is still in progress; we describe
how a first interpolation system for DPLL{7), thanks to its modular design, is built from interpolation
systems for DPLL, equality sharing aiid

We will use the propositional interpolation system for DPindependently discovered by Huang,
Krajicek and Pudlak [10, 20, 14], later reformulated gmdved correct in the context of satisfiability
modulo theories by Yorsh and Musuvathi [21]. We call thisoaithm HKPYM from the initials of
the authors. Yorsh and Musuvathi also gave an interpolaystem for equality sharing, which we
refer to as EQSH [21]. EQSH requires that the satisfiabiliiycpdures for the built in theories can
produce proofs and interpolants. Then HKPYM and EQSH camtagiiated to yield an interpolation
system for DPLLY) [21, 5, 8]. What remains for an interpolation system for RPL+ 7) is an
interpolation system foF. We present a novel complete interpolation systenifar the ground case
and give a modular interpolation system for DPLIK 7). We consider our interpolation system for
superposition to be clearer and more general than previouls, Wwecause its working is specified for
each generative inference, which was not done before. Wellda with a discussion of related work
and an overview of ongoing work aiming at extending the gtbimterpolation system far' to proofs
involving substitutions, under suitable restrictionseTiterpolation system for DPLL{7) is currently
restricted to the ground case, but easily extendable to dhegnound case once such an interpolation
system forl" is available, which is the ultimate goal of this project.

2 Preliminaries

We assume the basic definitions commonly used in theorenin@oiquality in the inference systems
will be denoted by~ and the symbaki stands for eithet or .

Let A andB be two formulee. We denote y4, andX g, the set of constant, function and predicate
symbols that occur i, and B, respectively, and we usgfor set difference. A non-variable symbol is
A-colouredifitisin ¥4\ Xp, B-colouredifitisin X5\ X 4, andtransparentifitisin X = X 4NXp.
This extends to terms, literals and clauses:

Definition 2.1 A term, literal or clause idransparentf all its symbols are transparent\-coloured
if it contains at least oned-coloured symbol, and the rest are transparent (similady B-coloured.
Otherwise it isA B-mixed.

A clause iscolourableif it contains noA B-mixed literals. We use, ambiguously, for the language
of terms, literals or formulee made of symbolsiin; £5 and Ly are defined similarly fobz andXr,
respectively. We let x stand for eithell 4, L or L.

A theory is presented by a sgt of sentences, meaning that the theory is the set of all lbgaa
sequences of . It is customary to calll itself a theory. Lets be the signature of , and L the
language of terms, literals or formulee built frady-. Then, letLr be the language of terms, literals
or formulae built from¥X+ U ¥7: in other words, whenever a theory is involved, theory syislaoe
considered transparent:



Definition 2.2 (Theory Interpolant) A formulal is atheory interpolandf formuleeA and B such that
Atz B,if () Ab7 I, (i) I =7 B and (i) [ isin L7. A formulal is areverse theory interpolaof
formulaeA and B such thatd, B+ L, if () A4 I, (i) B, I 7L and (iii) I isin L.

Reverse interpolants are more widely used in the contekisafrem proving, since practical theorem
provers work refutationally. In keeping with most of thestiture, in the following we shall write
“interpolant” for “reverse interpolant”, unless the digttion is relevant. Furthermore, when it is clear
from the context, we may omit the “theory” prefix and just wriinterpolant”. Similarly, we may use
instead of-+.

Definition 2.3 (Projection) Let C be a disjunction (conjunction) of literals. Th@ojectionof C' on
language’l x, denoted”|x, is the disjunction (conjunction) obtained frofby removing any literal
whose atom is not i x. By convention, i€” is a disjunction and”|x is empty, ther|x =L;if C'is
a conjunction and” | x is empty, thel®|x = T.

Many approaches to interpolation work by annotating eaghsgC' in a refutation ofA and B with
auxiliary formulae, callegbartial interpolants

Definition 2.4 (Partial interpolant) A partial interpolan?(C) of a clause” occurring in a refutation
of AU Bis aninterpolant ofA A =(C|4) and B A =(C|p).

By Definition 2.2 applied to Definition 2.4, a partial intefpot needs to satisfy the following re-
quirements:

Proposition 2.1 A partial interpolant for a claus€' have to satisfy:
1. AN—(C|a) F PI(C) or, equivalentlyA - C|4 vV PI(C)
2. BA-(C|g) A PI(C) L or, equivalentlyB A PI(C) + C|5, and
3. PI(C) is transparent.

We now give a brief overview of the DPLI{) and DPLL({" + 7) theorem proving methods for
satisfiability modulo theories. DPLI) combines propositional reasoning by DPLL with decisioo-pr
cedures for specific theories. DPUL{ 7) is a further extension which also features an interface to a
first-order prover with resolution and superposition. Wer¢o [2] for a description of DPLL{+7),
which includes DPLLY). DPLL(I"+ 7)) works with hypothetical clauseswvhere the hypotheses are
the connection betwedrrinferences and the partial model maintained by DPLLY). Hypothetical
clauses have the fortH > C', whereC' is a clause and the hypothedisis a set of ground literals. The
literals in H come fromM and are the literals that were used as premises to @ifiey aT'-inference.
DPLL(I'+7") employs model-based theory combination [6], which is @ierof equality sharing where
only equalities between ground terms are propagated. DIPLI() can be described as a transition sys-
tem with two kinds of statesM || F' (candidate model and set of clauses) &dd| F' || C' (candidate
model, set of clauses and conflict clause). Eet R W P stand for the set of input clauses, wh#&es
a set of non-ground clauses, without occurrences-gfymbols, whileP is a set of ground clauses that
typically do contairZ -symbols. A transition system derivation for DPIL{ 7) is defined as follows:

Definition 2.5 (Transition system derivation) Let/ stand for DPLL["+7), and .S be the input set
R @ P. Atransition system derivatigor /-derivation is a sequence of state transitions:

Ay—=yu A=y ... A=y AiJrl —u ..., Wherevi > 0, A, is of the form/; ” F; or M; " F; ” C;,
each transition is determined by a transition rulelirand Ao = | Fy, whereFy = {0>C | C € S}.

A transition system derivation is characterised by the &ts= | J,., F; of all generated clauses
andC* = {C;|i > 0} of all conflict clauses. A DPLU(+7) refutation is a refutation by propositional
resolution plusZ -conflict clauses, which are derived when one of the thedmes® discovers an incon-
sistency with the current model, and inferences perfornyeld. BAVe denote the proof tree produced by
the 7 -solver for a7 -conflict clause”, by I (C).



Definition 2.6 (DPLL(I"+7)-proof tree) Given a DPLL{ +7)-derivation,

A0:>A1:>...Ai:>Ai+1:>...,
u u u u

forall C € C*andH > C € F*, theDPLL(I'+7)-proof treelly,(C) of C' is defined as follows:
o If C € Fy, ITy(C) consists of a node labelled fay;

e If C is generated by resolving conflict clausg with justificationCs, II;,(C) consists of a node
labelled byC with sub-treedT;,(C1) andIl; (Cs);

o If C'is a7 -conflict clausell, (C) = II7(C);

e If H Cis inferred by al™-based transition from hypothetical clausgd > C4, ..., H,, > Cp,}
and literals{l,,+1, - .., 1t }, y (H > C) consists of a node labelled by > C with m sub-trees
Hu(Hl > Cl), . ,Hu(Hm > Cm)

If the derivation halts reporting unsatisfiabld;, (0) is a DPLL({I +7)-refutation.

Hypotheses need to be discharged when the hypotheticaectawr O is generated. The system then
switches to conflict resolution mode, withH as the conflict clause. A refutation is reached only when
—H is reduced tad. Thus, a DPLL[ + 7)-refutation is obtained by attaching a non-ground proeé tr
with H >0, or—H, as root, to a ground proof tree withi among its leaves and as root.

An interpolation systens a mechanism to annotate each clagise a refutation ofA and B with
a partial interpolant. To define an interpolation systeng needs to define the partial interpolants that
it associates to the clauses in a proof. Since each clausprivoéis generated by some inference rule,
the definition of an interpolation system needs to coveradkpbilities. The fundamental property of an
interpolation system isompleteness

Definition 2.7 (Complete interpolation system) An interpolation system isompletefor inference sys-
temI’, or transition systerty, if for all sets of clausesl and B, such thatd U B is unsatisfiable, and for
all refutations ofA U B byT, or U, respectively, it generates an interpolant(af, B).

The key property of partial interpolants is thaf (O) is an interpolant ofA and B. Thus, in order to
prove that an interpolation system is complete, it is sudfitto show that it annotates the clauses in any
refutation with clauses that are indeed partial interpislan

3 An Interpolation System for DPLL(T" + 7)

A complete interpolation system for DPLL(+ 7)) must be able to compute partial interpolants for each
clause in the proof tree in Def. 2.6, that is: propositioredalvents, 7 -conflict clauses, and clauses
derived byI". The latter are covered by the new interpolation systenrgivehis section. Propositional
resolvents are dealt with by a propositional interpolatigstem such as HKPYM [10, 20, 14, 21]. Since
T is a combination -conflict clauses are handled by EQSH [21], which requires tite component
theories arequality interpolating

Definition 3.1 (Equality Interpolating Theory) Atheory7 isequality interpolatingf for all 7-formulae
A and B, wheneved A B =1 t, ~ tp, Wheret, is an A-coloured ground term ant}, is a B-coloured
ground term, theM A B =1 t, ~ t A t, ~ t for some transparent ground terin

Several theories used in practice are indeed equalitypalating, for example quantifier-free theo-
ries of uninterpreted functions and linear arithmetic [28fthout this requirement, the notion of trans-
parency is not stable: if, ~ ¢, without any transparentsuch that, ~ ¢ and¢, ~ t, the congruence
class oft, andt;, includes no transparent term, which means a coloured teomdhbecome” transpar-
ent, to serve as a representative for terms of both cololnis.ig clearly undesirable as transparent terms
are those used to build interpolants. A similar issue afiseB, which also reasons about equalities. If



an A B-mixed equalityt, ~ t; is derived, it can be used to simplify clauseslinntroducingB-coloured
symbols, which now should be considered transparent ashiénés become shared betwedrand B.
Proofs without4d B-mixed equalities were termexblourablein [8]:

Definition 3.2 (Colourable proof) A proof iscolourabléf it contains noAB-mixed literals.

We proceed to connect the notion of equality-interpolathmgpry with the following requirement,
that appeared in [18], under the nam&-oriented orderingand then in [12]:

Definition 3.3 (Separating ordering) An ordering> is separatingf ¢ - s whenevers is transparent
andt is not, for all ground terms, or literals; andt.

If the theory is equality-interpolating, whenewgr~ t;, holds,¢, ~ t andt;, ~ ¢ also hold, and a
separating ordering ensures thattjf~ ¢t andt, ~ ¢ are derived{ replaces, andt,, or becomes the
representative of the congruence class,adndty,.

Lemma 3.1 If the ordering is separating, all ground-proof-trees are colourable.

The proof is by induction on the structure of the proof treze(El]). To get a superposition based
theorem prover to produce ground colourable proofs, itus gufficient to adopt a separating ordering.
Separating orderings exist, and were implemented, foamts, in Vampire [9]. From now on, we
assume thathe built-in theoriesZ;, 1 < i < n, are equality-interpolatingand thathe ordering>- for
I'-inferences is separatingo that all ground proofs are colourable. Under these gsisons, we present
a complete interpolation system fBrin the ground case, where the inferences rules, with prenaisd
consequences labelled for later reference, are as folleees[@] for full details):

Resolution:
p1: (CVI) pa: (DV L)
c: (CVvD)
Paramodulation:
p1: (CVs~r) py: (DVIs])

VmeC:l=m YmeD:=l=m

c: (CVir]v D) (@) (i) (id)
Superposition:
1: (CVs~r) pa: (DVI[s]>at) . . _
- c:(CV l[r]])m tVv D) @ (@) () (v)

where (i)s = r, (i) Vm € C: (s ~r) = m, (i) Vm € D: l[s] = m, (iv) l[s] = t, (V)Vm € D: (I[s] >
t) = m; and Simplification inferences are instances of Paramdidal&uperposition, wherereplaces
p2, C'is empty, and (i) is the only side condition.

Definition 3.4 (GI'l interpolation system) Letc: C be a clause that appears in a grouherefutation
of AU B:
o Ifc: Ce A thenPI(c)=L1,ifc: C € B,thenPI(c)=T.
e If ¢: Cis generated from premises andp. by aT'-inference,PI(c) is defined as follows:
— Resolutionc: C Vv D generated frompy: C'ViIandps: DV -l
* 1is A-coloured: PI(c) = PI(p1)V PI(p2)
* [ is B-coloured: PI(c) = PI(p1) A PI(p2)
* listransparent:PI(c) = (I1V PI(p1)) A (=l V PI(p2))
— Paramodulation/Superposition/Simplification: C' v I[r] V D generated fromp, : CVs ~r
andps: DV [[s]
x s ~ris A-coloured: PI(c) = PI(p1)V PI(p3)
x s~ ris B-coloured: PI(c) = PI(p1) A PI(p2)



x s ~r,[[s] are transparent:PI(c) = (s ~rV PI(p1)) A (I[s] V PI(p2))
* s~ ristransparent{[s] is not: PI(c) = (s ~rV PI(p1)) A (s % rV PI(p3)).

Superposition is treated like Paramodulation, wjthreplaced by|[s] < ¢, and the case for Simplifi-
cation is subsumed by those for Paramodulation and Sugggmo#\s we assume a separating ordering,
transparent terms are smaller than coloured ones and wetde®ed to consider the case where: r is
coloured and(s] is transparent for paramodulation inferences. In such @, saaust be transparent, as
it also occurs in the transparent litef&], andr must be coloured. The separating ordering would thus
re-orient such an equation to~ s, and only inferences rewriting a coloured term are allowed.

Theorem 1 If the ordering is separating, G is a complete interpolation system for all grouid
refutations.

Proof: By induction on the structure of the proof. We need to prow for all clauseg: C in the
refutation, the partial interpolants satisfy the requiesits in Proposition 2.1.
Base cases: : C'is an input clauseTrivial.
Inductive cases:
Inductive hypothesidor k£ € {1, 2} it holds that:

1. AN —(prla) F PI(px) or, equivalentlyA - prla V PI(pg)
2. B A —(pk|B) N PI(py) =L or, equivalentlyB A PI(p) F pxlB
3. PI(py) is transparent.
Resolution:c: C v D generated fromp,: C' VI andpy: DV =l
e lis A-coloured:il|s =1, (-)|a =l l|p =L= (Hl)|B
1. AF(CVD)|aV PI(p1)V PI(pz). From inductive hypothesis (1) we have- (C' V)| V
PI(p;)andAF (D V —l)|aV PI(pz). Aresolution step gived - (C'V D)|a VvV PI(p1) V
PI(p,) as desired.
2. BA(PI(p1)V PI(p2))F (CV D)|g. Frominductive hypothesis (2) we haer PI(p,) -
C|g andB A PI(ps) = D|g from which the inductive conclusion follows.
3. Transparency of the partial interpolant follows from thauctive hypothesis.
e [ is B-coloured: Symmetric to the previous case.
e listransparent|s =1 =1|p, (-)|a =l = (=l)|B
1. AN-(CV D)lat (IV PI(p1)) A (—lV PI(ps)) or, equivalently,A A =C|a A —=D|a
(IVPI(p1))A(—lV PI(ps2)). Frominductive hypothesis (1) we hade\ ~C| 4 F IV PI(p1)
andA A =D|4 F -l Vv PI(ps), which together give the desired result.
2. BA(IV PI(p1)) AN (=lV PI(p2)) F (CV D)|p. By case analysis ohin PI(c): if [ is true,
[ holds,! subsume$ v PI(p;) and simplifies-l v PI(py) to PI(ps); if [ is false,~[ holds,
-l subsumes: v PI(p2) and simplified v PI(p;) to PI(p;); so that we need to establish:
(@) BAILAPI(py) - (CV D)|g. From inductive hypothesis (2) we haeA PI(p2) +
D|g Vv -l whenceB Al A PI(ps) F D|pg.
(b) BA-IAPI(p1)+ (CV D)|g. From inductive hypothesis (2) we hat®en PI(p;)
C|p ViwhenceB A -l A PI(p1) F C|p.
3. Transparency of the partial interpolant follows fromitheuctive hypothesis and the assump-
tion thatl/ is transparent.

Paramodulation/Superposition/Simplification: C V [[r] V D generated fromp;: C' V s ~ r and
p2: DV I[s]
e s ~ ris A-coloured: eithex andr are bothA-coloured, or, since > r, s is A-coloured and
r is transparent; since there are A@-mixed literals, eithet[s] andi[r] are bothA-coloured, or
I[s] is A-coloured and|r] is transparent; thus, we havés ~ r)|4 = (s ~ r), l[s]|la = l[9],
Irjla =1[r], (s ~r)|p =L,1[s]|p =L



1. A- (CVlir]Vv D)|aV PI(p1)V PI(p2). Inductive hypothesis (1) gived - C|4 V s ~
rV PI(p1) and A + D|4 V I[s] V PI(p2); Thus, the inductive conclusion follows by a
paramodulation step.

2. BA(PI(p1)V PI(p2)) F (C VIr] Vv D)|g. From inductive hypothesis (2) we hagA
PI(p;) F C|g andB A PI(p2) - D|p, which proves the inductive conclusion.

3. The partial interpolant is transparent by inductive hjesis.

e s~ ris B-coloured: Symmetric to the previous case.

e s ~ r andl[s] are transparent![r] is also transparent, and all three literals are unaffected b
projections.

1. AAN=(Cla) Alr) A=(Dla) F (s =~ 7V PI(p1)) A (I[s] V PI(p2)). From inductive
hypothesis (1) we hava A —=C|4 F s ~ 7V PI(p;) andA A =D| + 1[s] V PI(p3), which
together give the desired result.

2. BA(s~rVPI(p1))AN([s]VPI(p2))) F (CVI[r]VvD)|p. We do a case analysis en- r
and[s]:

(@) If s ~r andi[s] are both true, theijr] is true.

(b) If s ~ ris true and|s] is false, thenPI(ps) must be true an®d V [[s] is equivalent to
D, so that induction hypothesis (2) givBsA PI(p2) F D|p.

(c) If s ~ risfalse and]s] is true, thenPI(p;) must be true and' v s ~ r is equivalent to
C, so that induction hypothesis (2) givesA PI(p1) - C|5.

(d) If s ~ r and![s] are both false, the(p;) and PI(p2) must be true and induction
hypothesis (2) giveB A PI(p1) + C|g andB A PI(ps) - D|p.

3. Transparency of the partial interpolant follows fromith@uctive hypothesis and the assump-
tion thats ~ r andl[s] are transparent.

e s~ ristranspareni]s] is not:

1. A (CVIr]VvD)aV(s~rVPIp)) A(s #rV PI(p2)). This is equivalent to:
AN((s £ r AN=PI(p1))V (s ~rA-Pl(p2))) F (CVlIr]V D)a. We performa case
analysis ors ~ r:

(@) If s ~ ris false,s ~ r A =PI(p2) is false, and it suffices to establishA s % r A
-PI(p1) F (CVI[r]vD)| 4. By induction hypothesis (1) we havirs % rA—PI(p1)
C 4, which suffices.

(b) If s ~ ristrue,s 2 r A =PI(py) is false, and it suffices to establishA s ~ r A
—PI(p2) F (CVI[r]V D)|a or, equivalentlyA A s ~ r A=PI(p3) - (CVI[s]V D)|a
sinces ~ r holds. By induction hypothesis (1) we ha¥deA —PI(p2) - (I[s] V D)|a,
and we are done.

2. BA(s~rV PI(p1))A(s# 7V PI(p2)))F (CVlI[r]Vv D)|p. By case analysis o1~ r:
(@) If s = ristrue,s ~ r VvV PI(py) is subsumeds # r is false andPI(p;) must be true.

Thus, it suffices to establisB A s ~ r A PI(p2) b (C VI[r]V D)|g, which is equivalent
to BAs~rAPI(p:)F (CVI[s]V D)|g, sinces ~ r holds. By induction hypothesis
(2) we haveB A PI(p2) F U[s]|s Vv D|g, which closes this case.

(b) If s 2 ristrue,s % r VvV PI(p2) is subsumeds ~ r is false andPI(p;) must be true.
Thus, we need to establigh A s 2 r A PI(p1) B (C Vv I[r] v D)|g. By induction
hypothesis (2) we havB A s = r A PI(p1) F C| g, which suffices.

3. Transparency follows from the transparency ef r and the inductive hypothesis.

O

Having obtained a complete interpolation systemIfpwve can now define an interpolation system
for DPLL(I'+7):

Definition 3.5 (I* interpolation system) Letc: C be a clause that appears in a DPUL{T)-refutation
of AU B:



o Ifc: C e A thenPI(c)=1,ifc: C € B,thenPI(c)=T.

o If c: C'isaT-conflictclausePI(c) is theT-interpolant of((—=C)| 4, (—=C)|s) produced by EQSH
from the refutation~C' F+_L;

e If c: C'Vv D is a propositional resolvent ¢f, : C' vVl andpy: D Vv -l then:
— If I is A-coloured, therPI(c) = PI(p1) V PI(p2),
— If I is B-coloured, thenPI(c) = PI(p1) A PI(p2) and
— If lis transparent, thedI(c) = (I vV PI(p1)) A (=l V PI(p2)).

e If ¢c: C is a hypothetical clausél > C' inferred by a generativE-based transition from premises
{H>Cy, ..., Hp>Chy and{ly41, . - ., Ik}, thenPI(c) is the partial interpolant produced by the
interpolation systert:T' I for theT'-inference inferring” from premise¢’, ..., Coy, lint1y - - - ke

The partial interpolant for a hypothetical claude> C'is given by the partial interpolant for the corre-
sponding regular clausg, because th&-inference embedded inlabased transition ignores hypothe-
ses, and, wher > O is generated, the hypothesesiihare discharged by propositional resolution
steps, whose partial interpolant is computed as in HKPYMsummary, the modular construction of
DPLL(I"+7) allows us to define its interpolation system from the intdaion systems of its compo-
nents. Furthermore, this allows us to simply replédel by a general interpolation system fbronce
available. The requirement that all theorieqirare equality-interpolating guarantees thatIreonflict
clauses do not introduce in the pradf3-mixed literals, and the completenessiéfthus follows from
the completeness of its component interpolation systems.

4 Related Work

Interpolation forcolouredsuperposition proofs was first considered by McMillan [E8]d further stud-
ied, with some criticism that restricted it to ground prqdfg Kovacs and Voronkov [13]Colouredis
a stronger requirement thaolourable each inference may involve at most one colour, so that nigt on
AB-mixed literals, but alsocd B-mixed clauses are forbidden. The main similarity betweenveork
and these is the adoption of a separating ordering, whanegeaent literals are smaller than coloured
ones. However, our approach differs is several ways: instlthe ground case, we relax the require-
ment of coloured proofs, and only require the notion of coddile proofs from [8]. We showed that
when a separating ordering is used, every grabwrdfutation is colourable. Secondly, the target infer-
ence system in [13] is LASCA (Linear Arithmetic SuperpasitiCAlculus), which is superposition with
linear arithmetic built in. We do not consider arithmetidhim I", because in DPLL{+7) arithmetic
is handled by the DPLIX) part, and therefore by an interpolating decision procedar arithmetic
(e.g. [17]). Thirdly, our notion of partial interpolant isfiérent from [13], which focused on proving
existence of partial interpolaritenly for transparent ground clauses in coloured proofstré® explicit
interpolation system is given in either [13] or [18]. We defexplicitly the partial interpolants for every
generative rule i". Thus, we consider the interpolation systéfrto be more concrete and representing
a more direct generalisation of propositional interpolagystems to ground first-order logic.

Christ and Hoenicke considers interpolation in the presefquantifiers in the context of DPLL()
[4]. They assume instantiations are found by heuristic oadhsuch as triggering, rather than by unifi-
cation as in superposition. The interpolation method ietas McMillan’s ground interpolation sys-
tem for resolution [17], extended to introduce quantifiergterpolants, when instantiations introduce
coloured terms. This approach thus goes beyond colouratddgfor resolution. Equality reasoning is
assumed to be handled by an interpolating decision proeedur

Our interpolation system for ground superposition alsoeceproofs in EUF (Equality with Un-
interpreted Functions). McMillan’s interpolation systéar EUF in [17] consists of inference rules
for reflexivity, symmetry, congruence, transitivity ancht@diction, instrumented to compute formulas

'Referred to a€-interpolantsin [13].



akin to partial interpolants for each inference step. Tleeeseveral versions of each rule, depending
on side conditions relating to the colour of the inferen@agling up to the conclusion. The interpola-
tion system by Fuchs et al. [7], on the other hand, works oowable congruence graphs, generated
by the congruence closure algorithm. While we rely on theassjng ordering to ensure that o3-
mixed literals are present in the proof, Fuchs et al. usedbethat EUF is equality interpolating and
perform some modifications on the congruence graph, intioduransparent constants to sepat&te
coloured andB-coloured terms as needed, essentially implementing tignement that the theory be
equality-interpolating. While our interpolation systenilwnclude all transparent literals derived from
A, the specialised congruence closure method can summaasgeswriginating only frond, and only
consider adding the last transparent term in such a chaifs mbans that it tend to produce shorter
interpolants, which for some applications may be desirahtehis stage of research, we have focused
on completeness of the interpolation system, with analyksike properties of interpolants for various
applications left as further work. Last, the algorithm i i restricted to EUF only, while our aim is a
much more general interpolation system.

5 Current and Future Work

We reported on ongoing work on interpolation for the theopeaving method DPLLI(+7"). We showed
how an interpolation system for DPLL{7) can be constructed modularly from interpolation systems
for DPLL, equality sharing and far, a first-order resolution and superposition based prover.pye-
sented and proved correct a novel interpolation systenh fiorthe ground case for colourable proofs.
Current work in progress aims at extending the interpategigstem to general proofs with substitution
under suitable restrictions. The interpolation systemgemerall-proofs can then simply be plugged
into the interpolation system for DPLL{7), to extend it beyond ground proofs. In order to generalise
the ground interpolation system fbrto some class of proofs in full first order logic, we need tceext
our approach to handle variables and substitutions. Intthergl case, we can ensure colours are stable
by imposing a separating ordering, which prevents equstietweem-coloured and3-coloured terms
from being generated. In the general case, a separatingrogds no longer sufficient to ensure that
proofs are colourable, as we may unify two literals of diier colour, which may have the side effect
of generatingAd B-mixed literals by substitution. One way of avoididg3-mixed literals is to impose
the restriction that the proof is coloured. For colouredofspwe have that substitution and projec-
tion commute, allowing a straightforward extension frora round interpolation system of the cases
where both pivots, or literals paramodulated from and intwve the same colour. However, non-ground
coloured proofs also have to deal with the cases where orfeegiremises is transparent and the other
coloured. Thus, excluding B-mixed literals is not enough to ensure colours are stablsybstitutions
may also paint transparent literals as a side effect. Ouentiwork is concerned with extending the
interpolation system to these inferences, in which theigddnterpolants may contain quantifiers. One
of the approaches we are studyingiecrastination suggested by McMillan [18], which involves the
addition of a special inference rule that delays superiposgiteps and record restrictions on variable
instantiations. We are also considerimgtance purificatiorf4], where coloured literals occurring in
partial interpolants are replaced by quantified variables.
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