
On semantic resolution with lemmaizing and

contraction

Maria Paola Bonacina⋆1 and Jieh Hsiang ⋆⋆2

1 Department of Computer Science
The University of Iowa, Iowa City, IA 52242-1419, USA

bonacina@cs.uiowa.edu
2 National Taiwan University, Taipei, Taiwan

hsiang@csie.ntu.edu.tw

Abstract. Reducing redundancy in search has been a major concern
for automated deduction. Subgoal-reduction strategies prevent redun-
dant search by using lemmaizing and caching, whereas contraction-based
strategies prevent redundant search by using contraction rules, such as
subsumption. In this work we show that lemmaizing and contraction can
coexist in the framework of semantic resolution. On the lemmaizing side,
we define two meta-level inference rules for lemmaizing in semantic res-
olution, one for unit and one for non-unit lemmas, and we prove their
soundness. Rules for lemmaizing are meta-rules because they use global
knowledge about the derivation, e.g. ancestry relations, in order to derive
lemmas. On the contraction side, we give contraction rules for semantic
strategies, and we define a purity deletion rule for first-order clauses that
preserves completeness. While lemmaizing generalizes success caching of
model elimination, purity deletion echoes failure caching. Thus, our ap-
proach integrates features of backward and forward reasoning.

1 Introduction

Some of the most successful theorem-proving programs existing today imple-
ment either contraction-based strategies (e.g., [1, 11, 13]) or subgoal-reduction
strategies (e.g., [2, 17]). Contraction-based strategies (e.g., [4, 5, 10, 16]) are
forward-reasoning strategies, that prove the target theorem by deriving conse-
quences from the axioms. (Most forward-reasoning resolution strategies do not
differentiate between the target theorem (negated) and the axioms. They treat
them as a single set of clauses and try to derive a contradiction from it.) The
primary strength of these strategies, is that they apply eagerly contraction infer-
ence rules, such as simplification and subsumption, to delete redundant clauses.
By effectively reducing redundancy, contraction-based strategies keep the size of
the database in check and have been used successfully to prove many problems
beyond the reach of other types of strategies (e.g., [1, 11, 13]).

⋆ Supported in part by grant CCR-94-08667 of the National Science Foundation.
⋆⋆ Supported in part by grant 85-2221-E-002-009 of the National Science Council.

The subgoal-reduction strategies are linear, backward-reasoning strategies. In
such a strategy an inference step consists in reducing the current goal to a set
of subgoals, starting from the input goal. Typical examples are model elimina-
tion [12], and the Prolog technology theorem provers [17]. A weakness of a pure
subgoal-reduction strategy is that by concentrating only on the current goal it
has no memory of previously solved goals. Therefore, if the same subgoals, or in-
stances thereof, are generated at different stages, the strategy would solve them
independently, repeating the same steps. More sophisticated subgoal-reduction
strategies avoid such repetitions by using techniques of lemmaizing, that is, sav-
ing solved goals as lemmas. Lemmaizing for model elimination was presented
already in [12]. However, its first implementation in [9] was less efficient than ex-
pected [2], because unrestricted lemmaizing generated too many lemmas. More
recently, lemmaizing and caching [15] in Horn logic have been reintroduced suc-
cessfully in the framework of Prolog technology theorem proving [3]. Caching
comprises success caching and failure caching. The former is conceptually very
close to lemmaizing: solutions are stored in a cache for fast retrieval, rather than
being added as lemmas. The latter adds the capability of using the information
that a goal has failed before to avoid trying to solve it again. Related techniques,
called memoing or tabling, have been explored independently in logic program-
ming [19]. The experimental work has been followed by the theoretical analysis
of [14], which shows that lemmaizing and caching reduce from exponential to
linear the amount of duplication in the search spaces of model elimination for
problems in propositional Horn logic.

Our intent in this paper is to show that lemmaizing and caching are meta-
level inferences that may apply to different types of strategies, including strate-
gies that are not based on subgoal reduction. For this purpose, we consider se-
mantic resolution strategies. The reason of this choice is that, among resolution
strategies, semantic strategies are those that provide a general notion of “goal”,
by partitioning the database in a consistent set of “axioms” and a set of support
of “goals”. We define meta-rules for lemmaizing in semantic-resolution strate-
gies and we give inference rules that implement them. Lemmaizing in model
elimination then becomes a special case3. This generalization of lemmaizing is
significant in at least two ways:

1. Semantic strategies require that all their inferences are supported, i.e. have
a premise in the set of support. We observe that lemmaizing consists in
generating lemmas from the complement of the set of support (e.g., from
the axioms in model elimination), that is, lemmas are unsupported infer-
ences. Semantic-resolution strategies may do forward or backward reason-
ing depending on how the set of support is defined. If supported inferences
are forward inferences, lemmaizing adds backward reasoning to a forward-
reasoning strategy; if supported inferences are backward inferences, lemmaiz-
ing adds forward reasoning to a backward-reasoning strategy. Therefore, our

3 The treatment of model elimination in our approach has been omitted for reasons of
space and may be found in [6].

treatment makes lemmaizing a general technique for combining forward and
backward reasoning in semantic resolution.

2. We point out that lemmaizing is a meta-level rule. A derivation is made
of inference steps, each justified by an inference rule. Lemmaizing derives
a lemma based on a fragment of the current derivation. Therefore, it is an
inference at the meta-level with respect to the basic inferences.

In the second part of the paper, we describe how contraction inference rules
can be incorporated into semantic-resolution strategies. Furthermore, we define a
generalized notion of purity deletion, and show how it provides additional power
in reducing redundancy in these strategies. Roughly speaking, purity deletion is
similar to failure caching, although in a forward-reasoning setting.

In summary, one can have a semantic-resolution strategy that features both
contraction and lemmaizing, that are two strengths of contraction-based and
subgoal-reduction strategies respectively. Furthermore, contraction-based strate-
gies, unlike subgoal-reduction strategies, are equipped with tools, such as con-
traction and indexing, to deal with a database of generated and kept clauses.
Therefore, while lemmaizing in semantic resolution will certainly need to be
restricted, contraction-based strategies might be less sensitive than subgoal-
reduction strategies to the risk of generating too many lemmas.

The rest of the paper is organized in the following way. In Section 2 we
give a brief summary of semantic resolution and how it plays a role in terms of
forward and backward reasoning methods. Section 3 contains the treatment of
lemmaizing as meta-level inference rules for semantic resolution. In Section 4 we
define concrete inference rules for lemmaizing in strategies with set of support.
In Section 5 we show how to incorporate contraction rules in semantic strategies
with lemmaizing, and we present purity deletion. For reasons of space, we have
left all the proofs in a longer version of this paper [6].

2 Semantic resolution strategies

In semantic resolution4 the application of resolution to a set of clauses S is
controlled by a given interpretation I, in such a way that the consistent subset
T ⊂ S that contains the clauses satisfied by I is not expanded. Only resolution
steps with at most one premise from T are allowed: a clause in either T or S−T ,
called nucleus, resolves with one or more clauses in S−T , called electrons, until a
resolvent that is false in I, and therefore belongs to S−T , is generated. Semantic
resolution may also assume an ordering on predicate symbols, and then require
that the literal resolved upon in an electron contains the greatest predicate
symbol in the electron.

Hyperresolution is semantic resolution where the interpretation I is defined
based on sign: in positive hyperresolution, I contains all the negative literals, T

contains the non-positive clauses, S − T contains the positive clauses, and the
electrons are positive clauses (from S − T) that resolve with all the negative

4 References were omitted in this section for brevity. They may be found in [6].

literals in the nucleus (from T) to generate a positive hyperresolvent. Negative
hyperresolution is defined dually. Hyperresolution is more restrictive than generic
semantic resolution, because resolution steps where both nucleus and electron
are in S − T may not happen (e.g., two positive clauses do not resolve).

In resolution with set of support a set of support (SOS) is a subset of S such
that S−SOS is consistent. Only resolution steps with at most one premise from
S − SOS are allowed and all generated clauses are added to SOS. To keep the
notation uniform, we use T = S−SOS for the consistent subset in all strategies.
Resolution with set of support fits in the paradigm of semantic resolution, under
the interpretation that the clauses in T are true, the clauses in SOS and all their
descendants are false. Positive resolution and negative resolution are sometimes
considered supported strategies where SOS contains the positive or negative
clauses, respectively. However, they are not semantic strategies in the proper
sense, because they do not partition the clauses based on an interpretation, with
the provision that the consistent set is not expanded.

The original idea of set-of-support strategy was that the axioms of a problem
usually form a consistent set and that a strategy should not expand such a set,
but rather work on the goals. In this interpretation, T contains the axioms, SOS

contains the goal clauses (the clauses obtained from the transformation into
clausal form of the negation of the target theorem) and the effect of working
with a set of support is that most of the work done by the strategy is done
on the goals, yielding backward-reasoning strategies. The general definitions of
semantic resolution and resolution with set of support, however, imply neither
backward reasoning nor forward reasoning. For instance, if the axioms are non-
negative clauses and the goals are negative clauses, the positive strategies are
forward-reasoning strategies and the negative strategies are backward-reasoning
strategies compatible with the set-of-support strategy. This is the case in Horn
logic. In general, the partition of S into T and SOS based on the distinction
between axioms and goals may not agree with the partition based on sign (e.g.,
the goals may not be negative clauses), so that hyperresolution and the set-of-
support strategy are not always compatible.

Linear resolution can be regarded as a linear refinement of resolution with
set of support. Given a set of clauses S = T ∪{C0} with a selected top clause C0,
the strategy builds a linear derivation, where at step i clause Ci+1 is generated
by resolving the center clause Ci with a side clause, either a clause in T (an input
clause), or a clause Cj such that j < i (an ancestor clause). If T is consistent
and C0 is the negation of the target, the center clauses form the set of support,
and the only needed resolution steps between clauses in SOS are the resolutions
with ancestors. Because the strategy is linear, it makes the backward-reasoning
character more pronounced: there is a notion of current goal, the most recently
generated center clause, and each step consists in reducing the current goal to
a subgoal. We call such linear, backward-reasoning strategies subgoal-reduction
strategies.

Linear resolution, however, requires keeping the ancestors around. Linear in-
put resolution, where all side clauses are input clauses, is complete for Horn logic,

but not for first-order logic. On the other hand, model elimination [12] enjoys
the advantage of being a linear input strategy that is complete for first-order
logic. Roughly speaking, ancestor-resolution inferences are made unnecessary by
saving the literals resolved upon in the goals as framed literals, and allowing
the latter to resolve away subgoal literals5. It follows that each step involves
either the current goal and an input clause (analogous to an input resolution
step) or the current goal only. Therefore, subgoal-reduction strategies based on
model elimination usually work on a stack of goals, rather than on a database
of clauses, and at each step focus exclusively on the current goal, on top of
the stack. The search plan is depth-first search with backtracking, and iterative
deepening (DFID) to ensure refutational completeness. Finally, since the axiom
set of a problem is static, these strategies yield fast implementations using the
Warren Abstract Machine.

3 Generation of lemmas

In this section we present our treatment of lemmaizing. In Sections 3.1 and 3.2
we give meta-rules for lemma generation in the class of semantic strategies. We
assume derivations in the form

(T0; SOS0)⊢
C

(T1; SOS1)⊢
C

. . . (Ti; SOSi)⊢
C

. . . ,

where C is any strategy in the class, all generated resolvents are added to the
SOS component, but the T component is not assumed to be constant, because
it may be modified by contraction or lemmaizing. In Section 4 we give inference
rules that implement the meta-rules for resolution with set of support.

3.1 Generating unit lemmas

Intuitively speaking, if T ∪ {¬L} |= 2, then T |= Lσ for some substitution σ,
and Lσ can be treated as a lemma of T and be added to T . Generalizing this
idea slightly, if a clause Cσ is deduced from ¬L∨C using T alone (without using
any other clause in SOS), it means that T ∪ {¬L∨C} |= Cσ. Then Lσ can also
be added as a lemma to T .

There is a caveat, however. For this argument to be sound, it is necessary for
the C in ¬L∨C not to take any part in the derivation of Cσ from T ∪{¬L∨C}.
More precisely, the derivation of Cσ from T ∪ {¬L ∨ C} does not include any
resolution or factoring step with a selected literal6 in C. This is necessary to
make sure that the existence of a derivation of Cσ from T ∪ {¬L ∨ C} implies
the existence of a derivation of Lσ from T . If the derivation from T ∪ {¬L∨C}
involves literals in C, then the existence of a derivation of Lσ from T is not

5 Model elimination may be presented in many ways, e.g. as a refinement of linear
resolution or as a tableaux-based method. We refer to [6] for more details.

6 A selected literal is a literal resolved upon in a resolution step or unified in a factoring
step.

ensured, because the steps involving the literals in C may not be reproducible
in a derivation from T . The following definitions will capture this requirement.

Definition 3.1 Let C be a clause and C′ be a binary resolvent or a factor of
C. The relation A 7→ B holds if A is a literal in C different from the selected
literal(s) in generating C′, B is a literal in C′ and B = Aσ, where σ is the most
general unifier of the inference generating C′.

The relation A 7→ B captures the inheritance of literals that are not selected.
By using the transitive closure 7→∗ of 7→, we can represent inheritance of literals
through a sequence of steps:

Definition 3.2 Given a resolution derivation S ⊢∗ S′, where S and S′ are sets
of clauses, a clause C′ ∈ S′ is a strict descendant of a clause C ∈ S, if for every
literal A′ ∈ C′ there is a literal A ∈ C, such that A 7→∗ A′.

Definition 3.3 Let S be a set of clauses. Cσ is linearly derived from ¬L ∨ C

by using S if there is a linear resolution derivation with input set of clauses S,
top clause ¬L ∨ C and last center clause Cσ. We denote such a derivation by
¬L ∨ C |;S Cσ.
If the derivation is a linear input derivation (i.e., all side clauses come from
S) and Cσ is a strict descendant of ¬L ∨ C, we say that Cσ is strictly linearly

derived from ¬L ∨ C by using S and we write ¬L ∨ C |;
h

S Cσ.

Coming back to the SOS strategy, given sets SOS and T , ¬L ∨ C |;
h

T Cσ in-
dicates that Cσ is derived from ¬L ∨ C and T , and that in the derivation, no
literals in C and no clauses in SOS are involved in any of the inference steps.
We have now all the elements to write the first meta-rule for lemma generation:

Definition 3.4 Unit Lemmaizing: if ¬L∨C |;h

T Cσ, then add lemma Lσ to T.

Then we prove the soundness of Unit Lemmaizing:

Theorem 3.1 If ¬L ∨ C |;
h

T Cσ, then T |= Lσ.

3.2 Generating non-unit lemmas

The derivation ¬L∨C |;
h

T Cσ in the condition for Unit Lemmaizing satisfies the
restrictions that all side clauses of the (linear) derivation come from T and that
the literals in C are not selected in the derivation. In Horn logic, since linear
input resolution is complete and factoring is not necessary, Unit Lemmaizing
is the only form of lemmaizing. In first-order logic, one may have a derivation
¬L∨C |;T∪SOS Cσ, in which members of the set SOS are also used and Cσ is
not necessarily a strict descendant of C. This condition leads to a more general
meta-rule for lemmaizing, that may generate also non-unit lemmas. The general
form of a lemma will be (L∨F)σ, or (¬F ⊃ L)σ, where ¬Fσ is the “premise” for
Lσ to hold. Operationally, F contains those subgoals of ¬L that are resolved in
the derivation ¬L∨C |;T∪SOS Cσ by using SOS or C, but cannot be resolved
by using T only. They are formally defined as follows:

Definition 3.5 Given a derivation ¬L1 ∨ · · · ∨ ¬Lk ∨C |;T∪SOS Cσ, for all i,
1 ≤ i ≤ k, the residue of ¬Li in T , denoted by RT (¬Li), is defined as follows:
let D = L′ ∨ Q1 ∨ . . . ∨ Qm be the clause that resolves with ¬L1 ∨ · · · ∨ ¬Lk ∨ C

upon ¬Li and L′; then

RT (¬Li) =

¬Li if D ∈ SOS,
false if D ∈ T and m = 0,
RT (Q1) ∨ . . . RT (Qm) if D ∈ T and m ≥ 1,
¬Li if ¬Li is removed by factoring

with a literal in C,
RT (¬Lj) if ¬Li is removed by factoring

with ¬Lj for 1 ≤ j 6= i ≤ k.

Example 3.1 Assume that ¬L∨C |;T∪SOS Cσ is made of the following steps:

1. ¬L ∨ C resolves with L ∨ P generating P ∨ C,

2. P ∨ C resolves with ¬P ∨ Q ∨ R, generating Q ∨ R ∨ C,

3. Q ∨ R ∨ C resolves with ¬Q, generating R ∨ C,

4. R ∨ C resolves with ¬R, generating C.

We now analyze the residue RT (¬L), according to different situations. If L∨P ∈
SOS, then RT (¬L) = ¬L. If L ∨ P ∈ T , then RT (¬L) = RT (P). In the latter
case, if ¬P ∨ Q ∨ R ∈ SOS, then RT (¬L) = RT (P) = P . On the other hand, if
¬P ∨ Q ∨ R ∈ T , then RT (¬L) = RT (P) = RT (Q) ∨ RT (R). Since RT (Q) = Q

if ¬Q ∈ SOS and RT (Q) = false if ¬Q ∈ T , and the same is true for R, the
value of RT (¬L) in the last case can be determined by the different combinations
of RT (Q) and RT (R).

A meta-rule for Generalized Lemmaizing can then be formulated:

Definition 3.6 If ¬L ∨ C |;T∪SOS Cσ, then add lemma (L ∨ RT (¬L))σ to T .

Unit Lemmaizing is the special case of Generalized Lemmaizing where RT (¬L)
is false, and thus (L ∨ RT (¬L))σ reduces to Lσ. If RT (¬L) is ¬L, it means
that ¬L itself cannot be resolved in T and therefore no lemma should be added.
Indeed, in such a case (L ∨ RT (¬L))σ is a tautology.

Proposition 3.1 Given a derivation ¬L ∨ C |;T∪SOS Cσ, if literal ¬L can be
eliminated only by a resolution step with a side clause from SOS or by factoring,
then no non-trivial lemma can be generated.

We conclude with the soundness of Generalized Lemmaizing:

Theorem 3.2 If ¬L ∨ C |;T∪SOS Cσ, then T |= (L ∨ RT (¬L))σ.

4 Inference rules for Generalized Lemmaizing

In this section we assume that the underlying strategy is resolution with set
of support and we give a set of inference rules for resolution and factoring that
implement our meta-rules for lemmaizing within such a strategy. In the inference
rules the expression [F]L is used to denote that F , a conjunction of literals, is
a potential list of premises for resolving away the literal L completely using
only clauses in T . In other words, F is part of the residue of L. When F in [F]L
contains the entire residue of L, the lemma ¬L∨F can be generated. Some of the
inference rules generate a resolvent with literals labelled by a subscript L, such
as QL. These are subgoals produced while resolving away L, and they themselves
need to be resolved away before a lemma concerning L can be generated. We
call a literal with subscript L an L-subgoal.

The inference rules are separated into three categories, one for resolution,
one for factoring, and one for lemmatization.

4.1 The resolution rules

Several different resolution rules are needed since, in a set of support strategy,
the sets SOS and T play different roles.

In the first rule for resolution, literal L in L ∨ C is resolved with a non-unit
clause from T , and a lemma involving Lσ is initiated:

Resolution with lemma initiation

(T ∪ {¬L′ ∨ D}; SOS ∪ {L ∨ C})

(T ∪ {¬L′ ∨ D}; SOS ∪ {L ∨ C, (DLσ ∨ [false]Lσ ∨ C)σ})
Lσ = L′σ

where L and L′ are literals, C and D are disjunctions of literals and σ is the most
general unifier of L and L′. DLσ has the same literals as D, except that they are
labelled by a subscript Lσ. These are the Lσ-subgoals, that need to be resolved
away before a lemma concerning Lσ can be generated. The expression [false]Lσ

means that at this stage the premise of a potential lemma Lσ is empty. In this
inference rule we assume that neither of the clauses involved in the resolution
step has any subscripted literals. If the T -clause is a unit clause, no lemma is
initiated, and plain unit resolution applies, because lemmaizing would produce
an instance of the unit clause in T .

In the second rule for resolution, ¬L is resolved with a clause from SOS:
Plain resolution

(T ; SOS ∪ {L′ ∨ D,¬L ∨ C})

(T ; SOS ∪ {L′ ∨ D,¬L ∨ C, (D ∨ C)σ})
Lσ = L′σ

We assume that neither of the two clauses involved in the resolution step has
any subscripted literals. In this case, if one were to produce a residue for L, it
would be L itself (by the first case of Definition 3.5), which would result in a
lemma that is a tautology (Proposition 3.1) Thus, there is no need to initiate a
lemma.

The next two rules have the condition Pσ = L′σ:

Residue extension

(T ; SOS ∪ {¬L′ ∨ Q, PL ∨ DL ∨ C ∨ [F]L})

(T ; SOS ∪ {¬L′ ∨ Q, PL ∨ DL ∨ C ∨ [F]L, (QLσ ∨ DLσ ∨ C ∨ [F ∨ P]Lσ)σ})

In this rule, F is the lemma for L being constructed, and PL ∨DL is the disjunc-
tion of the L-subgoals to be solved. Since P , an L-subgoal, is resolved with a
clause in SOS, the remaining literals coming from that clause also become part
of the set of L-subgoals, and P has to be added to the residue list. We remark
that the clause ¬L′∨Q may also be labelled. For instance, ¬L′∨Q may have the
form ¬L′

M ∨EM ∨B ∨ [H]M . Then, the above rule may generate two resolvents:
(ELσ∨BLσ∨DLσ∨C∨[F ∨P]Lσ)σ and (DMσ∨CMσ∨EMσ∨B∨[H∨¬L′]Mσ)σ.

Subgoal elimination

(T ∪ {¬L′ ∨ Q}; SOS ∪ {PL ∨ DL ∨ C ∨ [F]L})

(T ∪ {¬L′ ∨ Q}; SOS ∪ {PL ∨ DL ∨ C ∨ [F]L, (QLσ ∨ DLσ ∨ C ∨ [F]Lσ)σ})

This rule is similar to residue extension except that the resolved literal P is not
added to the residue list. This is because the clause which resolves P away is
from T .

4.2 The factoring rules

Similar to the resolution rules, the factoring rules need to consider the behaviour
of the L-subgoals and residues. All the following rules have the condition Pσ =
P ′σ:

Residue extension factoring

(T ; SOS ∪ {PL ∨ DL ∨ [F]L ∨ C ∨ P ′})

(T ; SOS ∪ {PL ∨ DL ∨ [F]L ∨ C ∨ P ′, (DLσ ∨ [F ∨ P]Lσ ∨ C ∨ P ′)σ})

This rule says that if an L-subgoal is eliminated by factoring with a “normal”
SOS-literal, then it needs to be considered as part of the residue of L.

Subgoal deletion factoring

(T ; SOS ∪ {PL ∨ DL ∨ P ′

L ∨ C})

(T ; SOS ∪ {PL ∨ DL ∨ P ′

L ∨ C, (D ∨ P ′

Lσ ∨ C)σ})

This rule says that, when factoring between two L-subgoals, one of them can be
eliminated. This rule corresponds to the fifth case in Definition 3.5.

Plain factoring

(T ; SOS ∪ {P ∨ DL ∨ P ′ ∨ C})

(T ; SOS ∪ {P ∨ DL ∨ P ′ ∨ C, (DL ∨ P ′ ∨ C)σ})

4.3 The lemma generation rule

Lemmaizing

(T ; SOS ∪ {[F]L ∨ C})

(T ∪ {¬L ∨ F}; SOS ∪ {C})
C does not contain any L−subgoals

In the rule for lemmaizing, all the subgoals of the literal L have been solved, and
therefore ¬L with its residue is turned into a lemma.

Example 4.1 If T = {P ∨ R,¬R} and SOS = {¬P ∨ ¬Q}, the first resolvent
is ¬Q ∨ R¬P ∨ [false]¬P . The new (¬P)-subgoal in the resolvent resolves with
¬R of T and derives ¬Q∨ [false]¬P . By the Lemmaizing rule, the last resolvent
becomes ¬Q and a lemma P can be added to T . Note that since set-of-support
forbids resolution among members of T , the same lemma cannot be obtained from
T directly.

Example 4.2 If T contains ¬P ∨ ¬Q and SOS contains P ∨ ¬Q, then ¬QP ∨
[false]P ∨ ¬Q is inferred by Resolution with lemma initiation. A factoring step
generates the factor [false∨¬Q]P ∨¬Q. Since ¬Q is the residue of P , the lemma
¬P ∨ ¬Q is generated. In this case the lemma is already in T so that it is not
added.

5 Eliminating redundancy in contraction-based strategies

Forward-reasoning resolution strategies often adopt contraction inference rules
such as clausal subsumption and clausal simplification to reduce the database of
clauses. Since space explosion is usually the critical factor deciding whether a
successful derivation is possible, the more power contraction exhibits, the more
effective the proof method is. The combination of the set-of-support strategies
and contraction strategies seems to have been implemented in some provers
including OTTER, but it is rarely studied in the theorem-proving literature.
In this section we discuss two results. First we present schemes of inference
rules to incorporate contraction in semantic strategies, including strategies with
lemmaizing. Then we introduce a notion of purity with which one can utilize
unresolvable literals to detect and delete redundant clauses. The latter is similar
to “failure caching” in the Prolog technology theorem proving framework.

5.1 Incorporating contraction in semantic strategies with

lemmaizing

We start with an example which shows that näıve contraction in a semantic
strategy may destroy its completeness:

Example 5.1 Assume a semantic strategy featuring clausal simplification and
a contraction-first search plan. Given T = {¬P, P ∨ Q} and SOS = {¬Q}, the
strategy looks for contraction steps first, and it contracts P ∨ Q in T to P , by

clausal simplification by ¬Q. It follows that T = {¬P, P} and SOS = {¬Q}.
The set T has become inconsistent and no refutation can be found by a semantic
strategy, since resolution between clauses in T is not allowed.

Intuitively, if contraction “moves” the inconsistency of T ∪ SOS into T , the
semantic strategy becomes incomplete, because a semantic strategy assumes that
T is consistent, and therefore is not able to detect an inconsistency in T . Thus,
if I is the interpretation controlling the semantic strategy, a clause generated by
contraction should be added to T only if the clause is true in I. The following
schemes of inference rules for contraction capture this idea:

Contraction of SOS

(T ; SOS ∪ {C})

(T ; SOS ∪ {D})
C is contracted to D

If a clause in SOS is contracted, the resulting clause is also false in I and belongs
to SOS.

Contraction of T by T

(T ∪ {C}; SOS)

(T ∪ {D}; SOS)
C is contracted to D by clauses in T

If a clause in T is contracted by clauses in T , the resulting clause is also true in
I and therefore belongs to T .

Contraction of T by SOS

(T ∪ {C}; SOS)

(T ; SOS ∪ {D})
C is contracted to D by clauses in SOS and I 6|= D

(T ∪ {C}; SOS)

(T ∪ {D}; SOS)
C is contracted to D by clauses in SOS and I |= D

If a clause in T is contracted by clauses in SOS, one needs to resort to the
definition of I in order to decide the affiliation of the new clause. Otherwise,
incompleteness such as shown in Example 5.1 may occur. For instance, for hy-
perresolution, D is placed according to the sign of its literals. In resolution with
set of support, all clauses descending from SOS clauses are regarded as false
clauses and belong to SOS. Thus, the above two rules can be combined into the
following simpler scheme:

(T ∪ {C}; SOS)

(T ; SOS ∪ {D})
C is contracted to D by clauses in SOS

In case of deletion rules such as subsumption, C is simply deleted and no clause
D is generated.

Example 5.2 If the strategy is resolution with set of support and clausal sim-
plification is applied to T = {¬P, P ∨ Q} and SOS = {¬Q} of Example 5.1,
according to the above schemes, we get T = {¬P} and SOS = {¬Q, P}. Reso-
lution of ¬P ∈ T and P ∈ SOS completes the proof.

The following theorem summarizes the compatibility of contraction with seman-
tic strategies:

Theorem 5.1 Let I1 denote a resolution inference system, I ′1 a semantic re-
striction of I1, and I2 a set of sound contraction inference rules. If I ′1 is refu-
tationally complete and I1 ∪ I2 is refutationally complete, then I ′1 ∪ I2, where
the contraction rules in I2 are applied according to the above schemes, is also
refutationally complete.

For instance, I2 can contain clausal simplification and clausal subsumption. Re-
sults on the completeness of forward-reasoning (ordered) resolution strategies
with contraction (i.e., the completeness of I1∪I2) may be found in the literature
(e.g., [4, 10]).

The above schemes and theorem remain valid for resolution with set of sup-
port and lemmaizing with lemmas generated according to the rules of Section 4.1.
One only needs to take care that whenever a contraction inference rule elimi-
nates a subscripted literal in an SOS clause by applying another SOS clause,
the residue is updated. We give an inference rule for clausal simplification as an
example:

Clausal simplification of SOS by SOS

(T ; SOS ∪ {Q,¬Q′

L ∨ C ∨ [F]L})

(T ; SOS ∪ {Q, C ∨ [F ∨ ¬Q′]L})
Qσ = Q′ for some σ

where Q is a unit clause which may be either positive or negative. It is presented
here as positive just for convenience. If Q′ is not subscripted, the inference rule
works in the same way but no residue is added. Notice that the difference between
this clausal simplification rule and the subgoal elimination rule of Section 4.1 is
that clausal simplification replaces a clause by another one, whereas subgoal
elimination adds a new clause.

5.2 Purity deletion

One technique used quite effectively in subgoal-reduction strategies that has
not been used at all in forward reasoning is the notion of failure caching. Failure
caching says that if a goal literal fails, then it can be used to fail any similar goals
in the future. Since there is usually no notion of a goal in a forward-reasoning
strategy, it is little wonder that failure caching has not been used in this context.

A goal literal (in a subgoal-reduction strategy) fails if it does not unify with
any literal of opposite sign in the given set of clauses. One can in fact adopt
this idea to get the opposite effect of lemmaizing. To be more precise, if a literal
cannot be resolved away, then obviously it cannot play a role in any derivation
of refutation. Therefore, any clause which contains such a literal can be deleted.
In fact, this idea already existed in the Davis-Putnam procedure [8], in which
such a literal was called a pure literal. We adopt the name and generalize the
notion by the following inductive definition:

Definition 5.1 Let S be a set of clauses and A be a literal occurring in S.

1. If for all clause C ∈ S there is no literal B ∈ C, such that Aσ = ¬Bσ for
some substitution σ, then A is pure in S.

2. If for all the clauses C ∈ S that contains a B such that Aσ = ¬Bσ for some
σ, C contains an instance of a pure literal, then A is pure in S.

Condition 1 (basic purity) is the basis of the definition, and Condition 2 is
the inductive case, that represents a sort of transitive closure of purity. Its logical
justification is that a clause that contains a pure literal is not necessary for the
refutation, and therefore a literal that can resolve only with unnecessary clauses
is also unnecessary, or pure.

Proposition 5.1 If a literal A is pure, then any instance of A is also pure.

Our inference rule states that any clause which contains a pure literal can be
deleted:

Purity deletion

S ∪ {C}

S
∃A ∈ C, A is pure

If clauses that contain pure literals are deleted, more literals may become pure.
The inductive case of the definition of purity captures the propagation of basic
purity caused by the application of the Purity Deletion rule: if all the clauses
that A may resolve with contain a pure literal, all such clauses will be deleted
by the Purity Deletion rule and therefore A will become pure according to basic
purity. The inductive part of the definition “anticipates” this propagation effect.
Therefore, in order to show that clauses containing pure literals can be deleted
while preserving refutational completeness, it is sufficient to consider the basis
of the definition of purity.

In propositional logic, if S is an unsatisfiable set of clauses and A is pure in
S, then S′ = S − {C|A ∈ C} is also unsatisfiable. This is because if S′ were
satisfiable, there would be a Herbrand model I of S′. Since neither A nor ¬A

appears in S′, neither of them needs to be in I. Then I ∪ {A} would be a model
of S, contradicting the fact that S is unsatisfiable. The same reasoning does not
apply in this form to a set of first-order clauses for the following reason: if A is
a ground first-order literal, the fact that neither A nor ¬A appears in S′ does
not imply that neither of them is in I, because A may be in the Herbrand base
of S′ even if it does not occur in S′, and therefore either A or ¬A may be in I.
A mapping of ground first-order atoms into propositional variables, however, is
sufficient to extend the reasoning to sets of ground first-order clauses:

Lemma 5.1 Let S be a finite set of ground first-order clauses and A(t̄) be a pure
literal in S. If S is unsatisfiable, then S′ = S − {C|A(t̄) ∈ C} is unsatisfiable.

By applying the Herbrand theorem, the lemma can then be lifted to a set of
general first-order clauses:

Theorem 5.2 Let S be a finite set of first-order clauses and A(t̄) a pure literal
in S. If S is unsatisfiable, then S′ = S − {C|A(t̄) ∈ C} is unsatisfiable.

In summary, a pure literal in the forward-reasoning context has some similarity
with a failed goal of subgoal-reduction strategies, since both notions are based
on the impossibility of unifying the literal. Indeed, instances of pure literals are
pure, like instances of failed goals also fail. In this sense, purity deletion echoes
failure caching in forward-reasoning strategies.

6 Discussion

Forward-reasoning resolution strategies for first-order logic often suffer from
generating too many irrelevant clauses. In order to control the growth of the
database of clauses, contraction inference rules are usually employed. Subgoal-
reduction strategies, on the other hand, lack the ability of producing useful
lemmas which may reduce the search effort. The question of how to combine the
best of the two worlds has long been a challenge to the automated deduction
community.

In this paper we address this question by showing how the technique of
lemmaizing can be extended and used in the general context of semantic strate-
gies. We show how contraction rules can be incorporated in semantic strategies,
even with lemmaizing. We also presented a new redundancy deletion method for
forward-reasoning strategies which is based on a notion of purity.

Lemmaizing is a concept used in the logic programming community for sav-
ing previous execution results for later use. It has been used effectively both
in enhancing Prolog [19] and in Prolog technology theorem proving [3]. In this
paper we have shown how to generalize lemmaizing to semantic resolution, and
how to integrate lemmaizing and contraction in such a strategy. Our approach
has a number of advantages. Unlike previous work on lemmatization which is
mostly limited to model elimination, it provides a general way of adding lem-
mas to the complement of the set of support. Therefore, it provides a flexible
way of adding some forward-reasoning ability to goal-oriented strategies or, vice
versa, some backward-reasoning ability to forward strategies. Our method also
works with non-unit lemmas, and it does not have the left-to-right order of eval-
uation restriction which is common with subgoal-reduction strategies such as
model elimination. Lastly, our work on purity highlights an intuitive correspon-
dence between purity deletion and failure caching. This is complementary to the
intuitive correspondence between subsumption and success caching suggested
in [18], and therefore reinforces the understanding that while contraction elimi-
nates redundancy in contraction-based strategies, caching eliminates redundancy
in subgoal-reduction strategies.

Acknowledgements

We would like to thank Mark Stickel for answering our questions on caching in
model elimination.

References

1. S. Anantharaman and J. Hsiang, Automated Proofs of the Moufang Identities in
Alternative Rings, Journal of Automated Reasoning, Vol. 6, No. 1, 76–109, 1990.

2. O. L. Astrachan and D. W. Loveland, METEORs: High performance theorem
provers using model elimination, in R.S.Boyer (ed.), Automated Reasoning: Essays

in Honor of Woody Bledsoe, Kluwer Academic Publisher, Dordrecht, 1991.
3. O. L. Astrachan and M. E. Stickel, Caching and Lemmaizing in Model Elimination

Theorem Provers, in D. Kapur (ed.), Proc. of the 11th CADE, Springer Verlag,
LNAI 607, 224–238, 1992.

4. L. Bachmair and H. Ganzinger, On Restrictions of Ordered Paramodulation with
Simplification, in M. E. Stickel (ed.), Proc. of the 10th CADE, Springer Verlag,
LNAI 449, 427–441, 1990.

5. M. P. Bonacina and J. Hsiang, Towards a foundation of completion procedures as
semidecision procedures, Theoretical Computer Science, Vol. 146, 199–242, July
1995.

6. M. P. Bonacina and J. Hsiang, On semantic resolution with lemmaizing and
contraction, Tech. Rep., Dept. of Computer Science, University of Iowa, Sept.
1995.

7. C. L. Chang and R. C. Lee, Symbolic Logic and Mechanical Theorem Proving,
Academic Press, New York, 1973.

8. M. Davis and H. Putnam, A computing procedure for quantification theory, Jour-

nal of the ACM, Vol. 7, 201–215, 1960.
9. S. Fleisig, D. Loveland, A. Smiley and D. Yarmash, An Implementation of the

Model Elimination Proof Procedure, Journal of the ACM, Vol. 21, 124–139, 1974.
10. J. Hsiang and M. Rusinowitch, Proving Refutational Completeness of Theorem

Proving Strategies: the Transfinite Semantic Tree Method, Journal of the ACM,
Vol. 38, No. 3, 559–587, July 1991.

11. D. Kapur and H. Zhang, RRL: a Rewrite Rule Laboratory, in E. Lusk, R. Over-
beek (eds.), Proc. of the 9th CADE, Springer Verlag, LNCS 310, 768–770, 1988.

12. D. W. Loveland, A Simplified Format for the Model Elimination Procedure, Jour-

nal of the ACM, Vol. 16, No. 3, 349–363, July 1969.
13. W. W. McCune, Otter 3.0 Reference Manual and Guide, Tech. Rep. ANL-94/6,

Mathematics and Computer Science Division, Argonne Nat. Lab., Jan. 1994.
14. D. A. Plaisted, The Search Efficiency of Theorem Proving Strategies, in A.Bundy

(ed.), Proc. of the 12th CADE, Springer Verlag, LNAI 814, 57–71, 1994, and Tech.
Rep. MPI-I-94-233, Max Planck Institut für Informatik.

15. D. A. Plaisted, Non-Horn Clause Logic Programming Without Contrapositives,
Journal of Automated Reasoning, Vol. 4, No. 3, 287–325, 1988.

16. M. Rusinowitch, Theorem-proving with Resolution and Superposition, Journal of

Symbolic Computation, Vol. 11, No. 1 & 2, 21–50, Jan./Feb. 1991.
17. M. E. Stickel, A Prolog Technology Theorem Prover: Implementation by an Ex-

tended Prolog Compiler, Journal of Automated Reasoning, Vol. 4, 353-380, 1988.
18. M. E. Stickel, PTTP and Linked Inference, in R. S. Boyer (ed.), Automated Rea-

soning: Essays in Honor of Woody Bledsoe, Kluwer Academic Publishers, Dor-
drecht, 1991.

19. D. S. Warren, Memoing for logic programs, Communications of the ACM, Vol.
35, No. 3, 94–111, Mar. 1992.

This article was processed using the LATEX macro package with LLNCS style

