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Abstract. An abstract framework of canonical inference based on proof
orderings is applied to ground Horn theories with equality. A finite pre-
sentation that makes all normal-form proofs available is called saturated.
To maximize the chance that a saturated presentation be finite, it should
also be contracted, in which case it is deemed canonical. We apply these
notions to propositional Horn theories – or equivalently Moore families –
presented as implicational systems or associative-commutative rewrite
systems, and ground equational Horn theories, presented as decreasing
conditional rewrite systems. For implicational systems, we study different
notions of optimality and the completion procedures that generate them,
and we suggest a new notion of rewrite-optimality, that takes contraction
by simplification into account. For conditional rewrite systems, we show
that reduced (fully normalized) is stronger than contracted (sans redun-
dancy), and accordingly the perfect system – complete and reduced –
is preferred to the canonical one – saturated and contracted. We con-
clude with a survey of approaches to normal-form proofs, saturated, or
canonical, systems, and decision procedures based on them.

Keywords: Horn theories, conditional theories, Moore families, decision
procedures, canonical systems, normal forms, saturation, redundancy

The first concept is . . . the elimination of equations and rules. . . .
An equation C ⇒ s = t can be discarded

if there is also a proof of the same conditional equation,
different from the one which led to the construction of the equation.

In addition, this proof has to be simpler
with respect to the complexity measure on proofs.

– Harald Ganzinger (1991)
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1 Motivation

We are interested in the study of presentations for theories in Horn logic with
equality. We use the term “presentation” to mean a set of formulæ, reserving
“theory” for a presentation with all its theorems. Thus, a Horn presentation
is any set of Horn clauses, while a Horn theory is a deductively-closed set of
formulæ that can be axiomatized by a Horn presentation. Since a Horn presen-
tation can also be read naturally as a set of instructions for a computer, Horn
theories are important in automated reasoning, artificial intelligence, declarative
programming and deductive databases. The literature is vast; surveys include
those by Apt [1] and Hodges [51]. More specifically, conditional rewriting (and
unification) with equational Horn clauses has been proposed as a logic-based
programming paradigm in [37,68,49,44,38]; see [50] for a survey.

On account of their double nature – computational and logical – Horn theo-
ries, and especially Horn theories with equality, presented by sets of conditional
equations or conditional rewrite rules, played a special rôle in Harald Ganzinger’s
work (e.g. [48]). Harald’s study of them represented the transition phase from
his earlier work on compilers and programming languages to his later work in
automated deduction.

From the perspective taken here, the quality of presentations depends on the
quality of the proofs they make possible: the better are the proofs, the better is
the presentation. Proofs are measured by proof orderings, and the most desirable
ones are those that are minimal in the chosen ordering. Since a minimal proof
in a certain presentation may not remain minimal in a presentation expanded
by deduction, the best proofs are those that are minimal in deductively-closed
presentations. These best proofs are called normal-form proofs. However, what is
a deductively-closed presentation depends on the choice of deduction mechanism.
Thus, the choices of notion of normal-form proof and deduction mechanism are
intertwined.

One reason for deeming normal-form proofs to be best is their connection
with decidability. The archetypal instance of this concept is rewriting for equa-
tional theories, where normal-form proofs are valley proofs. A valley proof of an
equational theorem ∀x̄ s≃ t, where x̄ are the variables in s≃ t, is a proof chain
s̃

∗
→ ◦

∗
← t̃, where s̃ and t̃ are s and t with their variables treated as Skolem con-

stants, and equations only decrease terms. Given a presentation E of universally
quantified equations, and a complete simplification ordering ≻, an equivalent
ground-convergent presentation E♯ offers a valley proof for every equational the-
orem ∀x̄ s≃ t. If E♯ is finite, it serves as a decision procedure, because validity
can be decided by rewriting s̃ and t̃ “blindly” to their E♯-normal forms and
comparing the results. If E♯ is also reduced, in the sense that as much as possible
is in normal form, it is called canonical, and is unique for the given ordering ≻,
a property first noticed by Mike Ballantyne (see [36]). Procedures to generate
canonical presentations, which afford normal-form proofs and may be the basis
for decision procedures, are called completion procedures (cf. [60,56,55,6,19,5]).
For more on rewriting, see [33,39,12].
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More generally, the notion of canonicity can be articulated into three proper-
ties of increasing strength, that were defined in the abstract framework of [34,14]
as follows:

– A presentation is complete if it affords at least one normal-form proof for
each theorem.

– A presentation is saturated if it supports all normal-form proofs for all the-
orems.

– A presentation is canonical if it is both saturated and contracted, in the
sense of containing no redundancies.

If minimal proofs are unique, complete and saturated coincide. For equational
theories, contracted means reduced and saturated means convergent. We call a
system perfect when it is reduced but not saturated, only complete. A critical
question is whether canonical, or perfect, presentations can be finite – possibly
characterized by some quantitative bound – and/or unique. Viewed in this light,
one purpose of studying these properties is to balance the strength of the “satu-
rated,” or “complete,” requirement with that of the “contracted” requirement.
On one hand, one wants saturation to be strong enough that a saturated pre-
sentation – when finite – yields a decision procedure for validity in the theory.
On the other hand, one wants contraction to be as strong as possible, so as to
maximize the possibility that the canonical presentation turns out to be finite.
Furthermore, it is desirable that the canonical presentation be unique relative
to the chosen ordering.

In this article, we present three main contributions:

– a study of canonicity in propositional Horn theories (Sect. 3);
– a study of canonicity in conditional equational theories in the ground case

(Sect. 4);
– a survey of proof normalization and decision procedures based on saturated

systems, primarily in Horn theories (Sect. 5).

Propositional Horn theories are the theories presented by sets of propositional
Horn implications, known as implicational systems. The family of models of a
theory of this kind is known as a Moore family and has the distinctive property
of closure under intersection (see [11,10]). Moore families and implicational sys-
tems play a rôle in a variety of fields in computer science, including relational
databases, data mining, artificial intelligence, logic programming, lattice theory
and abstract interpretations. We refer to [23] and [10] for surveys, including
applications, related formalisms and historical notes.

Since a Moore family may be presented by different implicational systems,
it makes sense to define and generate implicational systems that are “optimal,”
or “minimal,” or “canonical” in some suitable sense. Bertet and Nebut [11] pro-
posed the notions of directness of implicational systems, optimizing computation
by forward chaining, and direct-optimality of implicational systems, which adds
an optimization step based on a symbol count. Bertet and Monjardet [10] con-
sidered other candidates and proved them all equal to direct-optimality, which,
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therefore, earned the appellation canonical-directness. Furthermore, they showed
that given a Horn function, the Moore family of its models and its associated clo-
sure operator, the elements of the corresponding canonical-direct implicational
system, read as disjunctions, give the prime implicates of the Horn function.

We investigate correspondences between “optimal” implicational systems (di-
rect, direct-optimal) and canonical rewrite systems, by establishing an equiva-
lence between implicational systems and associative-commutative rewrite sys-
tems, and by defining and comparing their respective deduction mechanisms
and underlying proof orderings. We discover that direct-optimality can be sim-
ulated by normalization with respect to a different proof ordering than the one
assumed by rewriting, and this discrepancy leads us to introduce a new no-
tion of rewrite-optimality. Thus, while directness corresponds to saturation in
an expansion-oriented deduction mechanism, rewrite-optimality corresponds to
canonicity.

For conditional equational theories, we find that, unlike for equational the-
ories, reduced implies contracted, but the two notions remain distinct. Thus,
in the conditional case, perfect differs from canonical in two ways: complete
is weaker than saturated, and reduced is stronger than contracted. Since com-
plete/saturated determines how much expansion we need to do in completion,
whereas reduced/contracted refers to how much simplification we should have,
perfect is doubly preferable to canonical.

This article is organized as follows: Sect. 2 fixes notations and concepts;
Sects. 3 and 4 are devoted to propositional Horn theories and to ground condi-
tional equational theories, respectively; and Sect. 5 contains the survey of proof
normalization and saturation-based systems. We conclude with a discussion.

2 Background

Horn clauses, the subject of this study, are an important subclass of logical
formulæ.

2.1 Preliminaries

Let Σ = 〈X, F, P 〉 be a vocabulary, consisting of variables X , function (and
constant) symbols F , and predicate symbols P . Although this article is mainly
concerned with the ground case, where there are no variables X , we keep basic
definitions as general as possible. Let T be the set of atoms over Σ. Identity of
terms and atoms will be denoted by =. A context is a term with a “hole” at
some indicated position. The notation l = t[s]u indicates that term s occurs in
term or atom l at position u within context t, and Var(l) is the set of variables
occurring in term or atom l. Positions u will henceforth be omitted from the
notation.

A Horn clause,

¬a1 ∨ · · · ∨ ¬an or ¬a1 ∨ · · · ∨ ¬an ∨ c ,
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(n ≥ 0) is a clause (set of literals) with at most one positive literal, c, where
∨ (disjunction) is commutative and idempotent by nature, and a1, . . . , an, c are
atoms in T . Positive literals (c present and n = 0), sometimes called “facts”, and
negative clauses (c absent and n > 0), called “queries” or “goals,” are special
cases of Horn clauses. Horn clauses that are not queries are termed definite Horn
clauses. A Horn presentation is a set of non-negative Horn clauses.

It is customary to write a Horn clause as the implication or rule

a1 · · · an ⇒ c .

A Horn clause is trivial if the conclusion c is the same as one of the premises
ai. The same clause also has n contrapositive forms

a1 · · ·aj−1aj+1 · · · an¬c⇒ ¬aj ,

for 1 ≤ j ≤ n. Facts are written simply as is,

c ,

and queries as
a1 · · · an ⇒ false ,

or just
a1 · · · an ⇒ .

The main inference rules for Horn-theory reasoning are forward chaining and
backward chaining:

a1 · · ·an ⇒ c b1 · · · bmc⇒ d

a1 · · ·anb1 · · · bm ⇒ d

a1 · · · anc⇒ b1 · · · bm ⇒ c

a1 · · ·anb1 · · · bm ⇒
.

Another way to present a Horn theory is as an “implicational” system (see
[11,10]). An implicational system S is a binary relation S ⊆ P(T )× P(T ), read
as a set of implications

a1 · · ·an ⇒ c1 · · · cm ,

for ai, cj ∈ T , with both sides understood as conjunctions. If all right-hand sides
are singletons, S is a unary implicational system. Clearly, any definite Horn
clause is such a unary implication and vice-versa, and any non-unary implication
can be decomposed into a set of m unary implications, or, equivalently, Horn
clauses, one for each ci. Empty sets correspond to true. Conjunctions of facts
are written just as

c1 · · · cm ,

instead of as ∅ ⇒ c1 . . . cm.
If we focus on propositional logic, atoms are propositional variables, that eval-

uate to either true or false. A propositional implication a1 · · · an ⇒ c1 · · · cm

is equivalent to the bi-implication a1 · · · anc1 · · · cm ⇔ a1 · · · an, again with both
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sides understood as conjunctions. Since one side is greater than the other in any
monotonic well-founded ordering, it can also be translated into a rewrite rule

a1 · · ·anc1 · · · cm → a1 · · · an ,

where juxtaposition stands for the associative-commutative-idempotent (ACI)
conjunction operator, and the arrow→ has the operational semantics of rewriting
and the logical semantics of equivalence (see, for instance, [28,29,18]).

When dealing with theories with equality, we presume the underlying axioms
of equality (which are Horn), and use the predicate symbol ≃ (in P ) symmet-
rically: l≃ r stands for both l≃ r and r≃ l. If one views atoms as terms and
phrases an atom r(t1, . . . , tn) as an equation r(t1, . . . , tn)≃true, where r is
a predicate symbol other than ≃, t1, . . . , tn are terms, and true is a special
symbol, not in the original vocabulary, then any equational Horn clause can be
written interchangeably as a conditional equation,

p1≃ q1, · · · , pn≃ qn ⇒ l≃ r ,

or as an equational clause

p1 6≃ q1 ∨ · · · ∨ pn 6≃ qn ∨ l≃ r ,

where p1, q1, . . . , pn, qn, l, r are terms, and p 6≃ q stands for ¬(p≃ q).
A conjecture C ⇒ l≃ r is valid in a theory with presentation S, where C is

some set (conjunction) of equations, if l≃ r is valid in S∪C, or, equivalently, S∪
C∪{l 6≃ r} is unsatisfiable, where l 6≃ r is the goal. A conjecture p1≃ q1 . . . pn≃ qn

is valid in S if S∪{p1 6≃ q1∨ . . .∨pn 6≃ qn} is unsatisfiable, in which case p1 6≃ q1∨
. . . ∨ pn 6≃ qn is the goal.

The purely equational ground case, where all conditions are empty, the propo-
sitional case (with rules in the form a1≃true, . . . , an≃true⇒ c≃true), and
the intermediate case a1≃true, . . . , an≃true⇒ l≃ r (where a1, . . . , an, c are
propositional variables and l, r are ground terms), are all covered by the general
ground equational Horn presentation case.

2.2 Canonical Systems

In this paper, we apply the framework of [34,14] to proofs made of ground Horn
clauses. Let A be the set of all ground conditional equations and P the set of all
ground Horn proofs, over signature Σ. Formulæ A and proofs P are linked by two
functions Pm : P → P(A), that takes a proof p and gives its premises, denoted
[p ]Pm , and Cl : P → A, that takes a proof p and gives its conclusion, denoted
[p ]Cl . Both are extended to sets of proofs – termed justifications – in the usual
fashion. Proofs in P are ordered by two well-founded partial orderings: a subproof
relation � and a proof ordering ≥, which, for convenience, is assumed to compare
only proofs with the same conclusion (that is, p ≥ q ⇒ [p ]Cl = [q ]Cl).

In addition to standard inference rules of the form

A1 . . . An

B1 . . . Bm
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that add inferred formulæ B1, . . . , Bm to the set of known theorems, which
already include the premises A1, . . . , An, we are interested in rules that delete
or simplify already-inferred theorems. We use a “double-ruled” inference rule of
the form

A1 . . . An

B1 . . . Bm

meaning that the formulæ (Ai) above the rule are replaced by those below (Bj).
It is a deletion rule if the consequences are a proper subset of the premises;
otherwise, it is a simplification rule. The challenge is incorporating such rules
without endangering completeness of the inference system.

Given a presentation S, the set of all proofs using premises of S is denoted
by Pf (S) and defined by1

Pf (S)
!
= {p ∈ P : [p ]Pm ⊆ S} .

A proof is trivial if it proves only its single premise ([p ]Pm = {[p ]Cl}) and has no
subproofs other than itself (p � q ⇒ p = q). A trivial proof of a ∈ A is denoted
by â. The theory of S is denoted by Th S and defined by

Th S
!
= [Pf (S) ]Cl ,

that is, the conclusions of all proofs using any number of premises from S.
Three basic assumptions on � and ≥ are postulated, for all proofs p, q, r and

formulæ a:

1. Proofs use their premises:

a ∈ [p ]Pm ⇒ p � â .

2. Subproofs do not use non-extant premises:

p � q ⇒ [p ]Pm ⊇ [q ]Pm .

3. Proof orderings are monotonic with respect to subproofs:2

p � q > r ⇒ ∃v ∈ Pf ([p ]Pm ∪ [r ]Pm). p > v � r .

(Recall that p ≥ q ⇒ [p ]Cl = [q ]Cl .)
Since > is well-founded, there exist minimal proofs. The set of minimal proofs

in a given justification P is defined as

µP
!
= {p ∈ P : ∀q ∈ P. q 6< p} ,

while the normal-form proofs of a presentation S are the minimal proofs in the
theory of S, that is,

Nf (S)
!
= µPf (Th S) .

1 We use
!

= to signify definitions.
2 This is weakened in [22].
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This definition is not trivial, because it is not necessarily the case that for all

proofs p, p > [̂p ]Cl . For instance, for equational theories, and a standard choice
of proof ordering (e.g. [5]), s̃→ ◦ ← t̃ 6> s̃≃ t̃. In other words, trivial proofs are
not normal-form proofs in general.

With these notions in place, the characterizations of presentations intro-
duced in Sect. 1 can be defined formally: The canonical presentation is the set
of premises of normal-form proofs, or

S♯ !
= [Nf (S) ]Pm ,

and a presentation S is canonical if S = S♯. Since trivial proofs are not normal-
form proofs in general, S♯ is not Th S. Furthermore, (S♯)♯ = S♯.

By lifting the proof ordering to justifications and presentations, canonicity
can be characterized directly in terms of the ordering. We say that presentation
B is simpler than a logically equivalent presentation A, denoted by A % B, when
B provides better proofs than does A, in the sense that

∀p ∈ Pf (A). ∃q ∈ Pf (B). p ≥ q .

Thus, canonicity is characterized in terms of this quasi-ordering, by proving
that the canonical presentation is the simplest, or, in other words, that A % A♯

[34,14].

In addition to canonical, a presentation S can be:

– contracted, if it is made of the premises of minimal proofs, or S =
[µPf (S) ]Pm ;

– saturated, if its minimal proofs are exactly the normal-form proofs, or
µPf (S) = Nf (S); or

– complete, if its set of minimal proofs contains a normal-form proof for every
theorem, or Th S = [Pf (S) ∩Nf (S) ]Cl .

A clause is redundant in a presentation if adding it – or removing it – does
not affect minimal proofs, and a presentation is irredundant if it does not contain
anything redundant. A presentation is contracted if and only if it is irredundant,
and canonical if and only if it is saturated and contracted [34,14].

A (one-step) deduction mechanism ; is a binary relation over presentations.
A deduction step S ; S ∪ S′ is an expansion provided S′ ⊆ Th S. A deduction
step S ∪ S′ ; S is a contraction provided S ∪ S′ % S. A sequence of deductions
S0 ; S1 ; · · · is a derivation, whose result, or limit, is the set of persisting

formulæ: S∞
!

=
⋃

j

⋂
i≥j Si. Since [56], a fundamental requirement of derivations

is fairness, doing all inferences that are needed to achieve the desired degree of
proof normalization. A fair derivation generates a complete set in the limit, a
uniformly fair derivation generates a saturated limit, and a contracting derivation
generates a contracted limit. We refer to [14] for these definitions and results, as
well as historical notes and references on fairness.
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2.3 A Clausal Ordering

Modern theorem provers employ orderings to control and limit inference. Let ≻
be a complete simplification ordering on atoms and terms over Σ, by which we
mean that the ordering is total (on ground terms), monotonic (with respect to
term structure), stable (with respect to substitutions), and includes the subterm
ordering, meaning that t[s] ≻ s for any non-empty context t (hence, ≻ is well-
founded [27]). See [33], for example, for basic definitions.

Various orderings on Horn clause proofs are possible. Suppose we express
atoms as equations and let t ≻ true for all terms t over Σ. Literals may be
ordered by an ordering ≻L that measures an equation l≃ r by the multiset
{{l, r}} and a disequation l 6≃ r by the multiset {{l, r, l, r}}, and compares such
multisets by the multiset extension [35] of ≻. It follows that l 6≃ r ≻L l≃ r,
because {{l, r, l, r}} is a bigger multiset than is {{l, r}}, which is desirable, so as to
allow l≃ r to simplify l 6≃ r.

Given this ordering on literals, an ordering ≻C on clauses is ob-
tained by another multiset extension. An equational clause e of the form
p1≃ q1, · · · , pn≃ qn ⇒ l≃ r, regarded as a multiset of literals, is measured by

M(e)
!
= {{{{p1, q1, p1, q1}}, . . . , {{pn, qn, pn, qn}}, {{l, r}}}}

and these multisets are compared by the multiset extension of ≻L. Under this
ordering, a clause C ∨ p 6≃ q∨ l≃ r is smaller than a clause C ∨ f [p] 6≃ f [q]∨ l≃ r,
because the multiset M(C) ∪ {{{{p, q, p, q}}, {{l, r}}}} is smaller than the multiset
M(C) ∪ {{{{f [p], f [q], f [p], f [q]}}, {{l, r}}}}. Similarly, a clause C ∨ l≃ r is smaller
than a clause C∨f [l]≃ f [r], because the multiset M(C)∪{{{{l, r}}}} is smaller than
M(C) ∪ {{{{f [l], f [r]}}}}. A clause C ⇒ l≃ r is smaller than a clause B ⇒ l≃ r,
such that C ( B, because the multiset M(C) ∪ {{{{l, r}}}} is smaller than the
multiset M(B) ∪ {{{{l, r}}}}.

Example 1. If e1 is a≃ b ⇒ c≃ d, M(e1) = {{{{a, b, a, b}}, {{c, d}}}}. If e2 is
f(a)≃ f(b)⇒ c≃ d, M(e2) = {{{{f(a), f(b), f(a), f(b)}}, {{c, d}}}}. Since f(a) ≻ a

and f(b) ≻ b in any ordering with the subterm property, e2 ≻C e1. ⊓⊔

If S is a set of clauses, we write M(S) also for the multiset of their measures,
and ≻M for the multiset extension of ≻C . Let >P be the usual proof ordering
where proofs are compared by comparing the multisets of their premises: p >P q

if [p ]Pm ≻M [q ]Pm .

Example 2. Consider the equational theory {a≃ b, b≃ c, a≃ c}. Different proof
orderings induce different canonical presentations.

a. If all proofs are minimal, the canonical saturated presentation is the whole
theory, while any pair of equations, like a≃ b and b≃ c, is sufficient to form a
complete presentation, because, in this example, the proof of a≃ c by tran-
sitivity from {a≃ b, b≃ c} is minimal. Since minimal proofs are not unique,
saturated and complete indeed differ.
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b. Suppose a ≻ b ≻ c. If all valley proofs are minimal, the whole theory is
again the saturated presentation, while the only other complete presentation
is {a≃ c, b≃ c}, which gives a→ c← b as minimal proof of a≃ b.

c. If a ≻ b ≻ c and the proof ordering is >P , then minimal proofs are unique.
The complete presentation {a≃ c, b≃ c} is also saturated. The proof of a≃ b

is again a→ c← b, which is smaller than a→ b, since {{{{a, c}}, {{b, c}}}} ≺M

{{{{a, b}}}}.
d. If a and b are incomparable, that is, a 6= b ∧ a 6≻ b ∧ b 6≻ a, and all valley

proofs are minimal, a ↔ b is not a minimal proof, and {a≃ c, b≃ c} is both
complete and saturated.

e. On the other hand, if only trivial proofs are minimal, it is the whole theory
{a≃ b, b≃ c, a≃ c} that is both saturated and complete. ⊓⊔

3 Implicational Systems

In this section we study canonicity for propositional Horn theories. We consider
propositional implicational systems, that are sets of implications A⇒ B, whose
antecedent A and consequent B are conjunctions of distinct propositional vari-
ables. The notation A ⇒S B specifies that A ⇒ B ∈ S, for given implicational
system S.

Let V be a set of propositional variables. A subset X ⊆ V represents the
propositional interpretation that assigns the value true to all elements in X

and false to all those in V \ X . Accordingly, a set X is said to satisfy an
implication A⇒ B over V if either B ⊆ X or else A 6⊆ X . Similarly, we say that
X satisfies an implicational system S, or is a model of S, denoted by X |= S, if
X satisfies all implications in S.

3.1 Moore Families

A Moore family on a given set V is a family F of subsets of V that contains V and
is closed under intersection [13]. Moore families are in one-to-one correspondence
with closure operators, where a closure operator on V is an operator ϕ : P(V )→
P(V ) that is

– isotone, that is, X ⊆ X ′ implies ϕ(X) ⊆ ϕ(X ′),
– extensive, that is, X ⊆ ϕ(X), and
– idempotent, that is, ϕ(ϕ(X)) = ϕ(X).

The Moore family Fϕ associated with a given closure operator ϕ is the set of all
fixed points of ϕ:

Fϕ
!
= {X ⊆ V : X = ϕ(X)} .

The closure operator ϕF associated with a given Moore family F maps any
X ⊆ V to the least element of F that contains X :

ϕF (X)
!
= ∩{Y ∈ F : X ⊆ Y } .
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The Moore family FS associated with a given implicational system S is the
family of the propositional models of S, in the sense given above:

FS
!
= {X ⊆ V : X |= S} .

In turn, every Moore family F can be presented at least by one implicational
system, for instance {X ⇒ ϕF (X) : X ⊆ V }. Combining the notions of closure
operator for a Moore family, and Moore family associated with an implicational
system, the closure operator ϕS for implicational system S maps any X ⊆ V to
the least model of S that satisfies X [11]:

ϕS(X)
!
= ∩{Y ⊆ V : Y ⊇ X ∧ Y |= S} .

Example 3. If S = {a ⇒ b, ac ⇒ d, e ⇒ a} and writing sets as strings, then
FS = {∅, b, c, d, ab, bc, bd, cd, abd, abe, bcd, abcd, abde, abcde} and ϕS(ae) = abe.

⊓⊔

As noted in Sect. 2.1, there is an obvious syntactic correspondence between
Horn presentations and implicational systems. At the semantic level, there is a
correspondence between Horn theories and Moore families, since Horn theories
are those theories whose models are closed under intersection, a fact due to
McKinsey [66] and later Horn himself [52, Lemma 7]. This result is rephrased
in [10] in terms of Boolean functions and Moore families: if a Horn function is
defined as a Boolean function whose conjunctive normal form is a conjunction of
Horn clauses, a Boolean function is Horn if and only if the set of its true points
(equivalently, the set of its models) is a Moore family.3

Different implicational systems can describe the same Moore family, like dif-
ferent presentations can describe the same theory. Two implicational systems S

and S′ are said to be equivalent if they have the same Moore family, FS = FS′ .

3.2 Direct Systems

In this section we investigate the relation between the notion of direct implica-
tional system and that of saturated presentation with respect to an appropriately
chosen deduction mechanism. Directness appeared in [11], motivated by finding
an implicational system that allows one to compute ϕS(X) efficiently for any X :

Definition 1 (Directness [11, Def. 1]). An implicational system S is direct

if ϕS(X) = S(X), where S(X)
!

= X ∪∪{B : A⇒S B ∧A ⊆ X}.

In other words, a direct implicational system allows one to compute ϕS(X)
in one single round of forward chaining. In general, ϕS(X) = S∗(X), where

S0(X) = X

Si+1(X) = S(Si(X))

S∗(X) =
⋃

i
Si(X) .

3 For enumerations of Moore families and related structures, see [32] and Sequences
A102894–7 and A108798–801 in [70].
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Since S, X and V are all finite, S∗(X) = Sk(X) for the smallest k such that
Sk+1(X) = Sk(X).

Example 4. The implicational system S = {ac⇒ d, e⇒ a} is not direct. Indeed,
for X = ce, the computation of ϕS(X) = {acde} requires two rounds of forward
chaining, because only after a has been added by e ⇒ a, can d be added by
ac⇒ d. That is, S(X) = {ace} and ϕS(X) = S2(X) = S∗(X) = {acde}. ⊓⊔

Generalizing this example, it is sufficient to have two implications A⇒S B and
C ⇒S D such that A ⊆ X , C 6⊆ X and C ⊆ X ∪ B, for ϕS(X) to require
more than one iteration of forward chaining. Since A ⊆ X , but C 6⊆ X , the first
round adds B, but not D; since C ⊆ X ∪ B, D is added in a second round. In
the above example, A ⇒ B is e ⇒ a and C ⇒ D is ac ⇒ d. The conditions
A ⊆ X and C ⊆ X ∪B are equivalent to A ∪ (C \B) ⊆ X , because C ⊆ X ∪B

means that whatever is in C and not in B must be in X . Thus, to collapse the
two iterations of forward chaining into one, it is sufficient to add the implication
A∪ (C \B)⇒S D. In the example A∪ (C \B)⇒S D is ce⇒ d. This mechanism
can be defined in more abstract terms as the following inference rule:

Implicational overlap

A⇒ BO CO ⇒ D

AC ⇒ D
B ∩ C = ∅ 6= O

Intuitively, the consequent of the first implication “overlaps” with the antecedent
of the second one, whence the conclusion. The condition O 6= ∅ says that the
overlap is non-trivial, and the condition B ∩ C = ∅ says that it is as large as
possible. Indeed, if O = ∅, the conclusion AC ⇒ D is subsumed by C ⇒ D, and
if B ∩ C 6= ∅, then an alternate inference is more general. One inference step of
this rule will be denoted by ⊢I. Thus, directness can be characterized as follows:

Definition 2 (Generated direct system [11, Def. 4]). Given an implica-
tional system S, the direct implicational system I(S) generated from S is the
smallest implicational system containing S and closed with respect to implica-
tional overlap.

A main theorem of [11] shows that indeed ϕS(X) = I(S)(X). What we call
“overlap” is called “exchange” in [10], where a system closed with respect to
implicational overlap is said to satisfy an “exchange condition.”

As we saw in Sect. 2.1, an implicational system can be rewritten as a unary
system or a set of Horn clauses, and vice-versa. Recalling that an implication
A ⇒ B is equivalent to the bi-implication AB ⇔ A, and using juxtaposition
for ACI conjunction, we can view the bi-implication as a rewrite rule AB →
A, where AB ≻ A in any well-founded ordering with the subterm property.
Accordingly, we have the following:

Definition 3 (Associated rewrite system). The rewrite system RX associ-
ated to a set X ⊆ V of variables is RX = {x→ true : x ∈ X}. The rewrite sys-
tem RS associated with an implicational system S is RS = {AB → A : A⇒S B}.
Given S and X we can also form the rewrite system RS

X = RX ∪RS.
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Example 5. If S = {a⇒ b, ac⇒ d, e⇒ a}, then RS = {ab→ a, acd→ ac, ae→
e}. If X = ae, then RX = {a→ true, e→ true}. Thus, RS

X = {a→ true, e→
true, ab→ a, acd→ ac, ae→ e}. ⊓⊔

We show that there is a correspondence between implicational overlap and
the classical notion of overlap between monomials in Boolean rewriting that
was developed for theorem proving in both propositional and first-order logic
(e.g. [53,54,4,73]) and applied also to declarative programming (e.g. [29,38,18]).
Here we are concerned only with its propositional version:

Equational overlap

AO → B CO → D

M → N
A ∩C = ∅ 6= O, M ≻ N

where M and N are the normal forms of BC and AD with respect to {AO →
B, CO → D}, and ≻ is some ordering on sets of propositions (with the subterm
property).

Intuitively, the left hand sides of the two rules “overlap,” yielding the proof
BC ← AOC → AD, which justifies the conclusion. One inference step of this rule
will be denoted by ⊢E. We observe the correspondence first on the implicational
system of Example 4:

Example 6. For S = {ac ⇒ d, e ⇒ a}, we have RS = {acd → ac, ae → e}, and
the overlap of the two rewrite rules gives ace ← acde → cde. Hence, the proof
ce ← ace← acde → cde yields the rewrite rule cde → ce, which corresponds to
the implication ce⇒ d generated by implicational overlap. ⊓⊔

Note how an implicational overlap between consequent and antecedent corre-
sponds to an equational overlap between left hand sides, since both antecedent
and consequent appears on the left hand sides of rewrite rules representing bi-
implications.

Lemma 1. If A⇒ B and C ⇒ D are two non-trivial Horn clauses (|B| = |D| =
1, B 6⊆ A, D 6⊆ C), then if A⇒ B, C ⇒ D ⊢I E ⇒ D by implicational overlap,
then AB → A, CD → C ⊢E DE → E by equational overlap, and vice-versa.
Furthermore, all other equational overlaps are trivial.

This result reflects the fact that implicational overlap is designed to produce a
direct system I(S), which, once fed with a set X , yields its image ϕI(S)(X) in
a single round of forward chaining. Hence, implicational overlap unfolds the for-
ward chaining in the implicational system. Since forward chaining is complete for
Horn logic, it is coherent to expect that the only non-trivial equational overlaps
are those corresponding to implicational overlaps.

Proof. (If direction.) Assume A⇒ B, C ⇒ D ⊢I E ⇒ D. Since B is a singleton
by hypothesis, it must be that the consequent of the first implication and the
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antecedent of the second one overlap on B. Thus, C ⇒ D is BF ⇒ D and
the implicational overlap of A ⇒ B and BF ⇒ D generates AF ⇒ D. The
corresponding rewrite rules are AB → A and BFD → BF , which also overlap
on B yielding the equational overlap

AFD ← ABFD → ABF → AF ,

which generates the corresponding rule AFD → AF .
(Only if direction.) If AB → A, CD → C ⊢E DE → E, the rewrite rules
AB → A and CD → C can overlap in four ways: B ∩ C 6= ∅, A ∩ D 6= ∅,
A ∩ C 6= ∅ and B ∩D 6= ∅, which we consider in order.

1. B ∩C 6= ∅: Since B is a singleton, it must be B ∩C = B, hence C = BF for
some F . Thus, CD → C is BFD → BF , and the overlap of AB → A and
BFD → BF is the same as above, yielding AFD → AF . The corresponding
implications A ⇒ B and BF ⇒ D generate AF ⇒ D by implicational
overlap.

2. A ∩ D 6= ∅: Since D is a singleton, it must be A ∩ D = D or A = DF for
some F . Thus, AB → A is DFB → DF and the overlap is

CF ← CDF ← CDFB → CFB ,

so that CFB → CF is generated. The corresponding implications C ⇒ D

and DF ⇒ B overlap on D and generate CF ⇒ B by implicational overlap.
3. A∩C 6= ∅: Let A = FO and C = OG, so that the rules are FOB → FO and

OGD → OG, with O 6= ∅ and F ∩G = ∅. The resulting equational overlap
is trivial: FOG← FOGD ← FBOGD → FBOG→ FOG.

4. B ∩D 6= ∅: Since B and D are singletons, it must be B ∩D = B = D, and
rules AB → A and CB → C produce the trivial overlap AC ← ABC → AC.

⊓⊔

The “if” direction holds also for non-Horn clauses: suppose A⇒ FO, OG⇒
D ⊢I AG⇒ D by implicational overlap, with O 6= ∅ = F ∩G. The corresponding
rewrite rules AFO → A and OGD → OG also overlap on O, yielding

AGD ← AFOGD → AFOG→ AG ,

which generates the rule AGD → AG corresponding to AG⇒ D.
Let ;I be the deduction mechanism of implicational overlap: S ;I S′ if
S′ = S∪{A⇒ B} and A⇒ B is generated by implicational overlap from impli-
cations in S. Clearly, such a deduction mechanism only features expansion. For
propositional Horn theories, it is reasonable to assume that minimal proofs are
unique, so that complete and saturated, and fair and uniformly fair, coincide. If
minimal proofs are not unique, all our results still hold, provided the hypothesis
of fairness of derivations is replaced by uniform fairness. For an expansion-only
mechanism such as ;I, fairness simply means performing all applicable impli-
cational overlaps eventually. If we apply these concepts to implicational systems
and the ;I deduction mechanism, we have:
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Proposition 1. Given an implicational system S, for all fair derivations S =
S0 ;I S1 ;I · · · , S∞ = I(S).

Proof. By fairness, S∞ is saturated, and therefore closed with respect to im-
plicational overlap. Since ;I deletes nothing, S∞ contains S. Since ;I adds
nothing beside implicational overlaps, S∞ is equal to the smallest system with
these properties, that is, S∞ = I(S). ⊓⊔

Let ;E be the deduction mechanism of equational overlap: R ;E R′ if R′ =
R ∪ {M → N} and M → N is generated by equational overlap from rewrite
rules in R. Equational overlap combines expansion, in the form of the generation
of BC ↔ AD, with contraction – its normalization to M → N , where M ≻ N .
This sort of contraction applied to normalize a newly generated formula, before
it is inserted in the database, is called forward contraction, while the contraction
applied to reduce an equation that was already established is called backward
contraction. Thus, ;E features expansion and forward contraction, and therefore
is expansion-oriented, since contraction is limited to forward contraction. Similar
to ;I, fairness means performing all applicable equational overlaps eventually.
Lemma 1 yields the following correspondence between deduction mechanisms:

Lemma 2. For all implicational systems S, S ;I S′ if and only if RS ;E RS′ .

Proof.

– If S ;I S′ then RS ;E RS′ follows from the if direction of Lemma 1.
– If RS ;E R′ then S ;I S′ and R′ = RS′ follows from the only-if direction

of Lemma 1. ⊓⊔

The next theorem shows that for fair derivations the process of completing S with
respect to implicational overlap, and turning the result into a rewrite system, is
equivalent to the process of translating S into the rewrite system RS , and then
completing it with respect to equational overlap. In other words, completion and
translation commute. For the sake of expressivity, we abuse the notation slightly,
and use (RS)∞ in lieu of R∞ for the limit of a derivation R0 ;E R1 ;E · · ·
where R0 = RS .

Theorem 1. For every implicational system S and for all fair derivations S =
S0 ;I S1 ;I · · · and RS = R0 ;E R1 ;E · · · , we have

R(S∞) = (RS)∞ .

Proof.

(a) R(S∞) ⊆ (RS)∞: for any AB → A ∈ R(S∞), A ⇒ B ∈ S∞ by Definition 3;
then A⇒ B ∈ Sj for some j ≥ 0. Let j be the smallest such index. If j = 0,
or Sj = S, AB → A ∈ RS by Definition 3, and AB → A ∈ (RS)∞, because
;E features no backward contraction. If j > 0, A⇒ B is generated at stage j

by implicational overlap. By Lemma 2 and by fairness of R0 ;E R1 ;E · · · ,
AB → A ∈ Rk for some k > 0. Then AB → A ∈ (RS)∞, since ;E features
no backward contraction.
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(b) (RS)∞ ⊆ R(S∞): for any AB → A ∈ (RS)∞, AB → A ∈ Rj for some
j ≥ 0. Let j be the smallest such index. If j = 0, or Rj = RS , A ⇒
B ∈ S by Definition 3, and A⇒ B ∈ S∞, because ;I features no backward
contraction. Hence AB → A ∈ R(S∞). If j > 0, AB → A is generated at stage
j by equational overlap. By Lemma 2 and by fairness of S0 ;I S1 ;I · · · ,
A ⇒ B ∈ Sk for some k > 0. Then A ⇒ B ∈ S∞, since ;I features no
backward contraction, and AB → A ∈ R(S∞) by Definition 3. ⊓⊔

Since the limit of a fair ;I-derivation is I(S), it follows that:

Corollary 1. For every implicational system S, and for all fair derivations S =
S0 ;I S1 ;I · · · and RS = R0 ;E R1 ;E · · · , we have

R(I(S)) = (RS)∞ .

3.3 Computing Minimal Models

The motivation for generating I(S) from S is to be able to compute, for any
subset X ⊆ V , its minimal S-model ϕS(X) in one round of forward chaining.
In other words, one envisions a two-stage process: in the first stage, S is sat-
urated with respect to implicational overlap to generate I(S); in the second
stage, forward chaining is applied to I(S)∪X to generate ϕI(S)(X) = ϕS(X). In
the rewrite-based framework, these two stages can be replaced by one. For any
X ⊆ V we can compute ϕS(X) = ϕI(S)(X), by giving as input to a completion
procedure the rewrite system RS

X and extracting the rules in the form x→ true.
For this purpose, the deduction mechanism is enriched with contraction rules,
as follows:

Simplification

AC → B C → D

AD → B C → D
AD ≻ B

AC → B C → D

B → AD C → D
B ≻ AD

B → AC C → D

B → AD C → D
,

where A can be empty, and
Deletion

A↔ A
,

which eliminates trivial equalities.

Let ;R denote the deduction mechanism that extends ;E with simplification
and deletion. Thus, in addition to the simplification applied as forward con-
traction within equational overlap, there is simplification applied as backward
contraction to any rule. Accordingly, we consider derivations that are both fair
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and contracting, meaning that both expansion and contraction are applied sys-
tematically.

The following theorem shows that the completion of RS
X with respect to ;R

generates a limit that includes the least S-model of X . As before, we use (RS
X)

∞

in lieu of R∞ for the limit of a derivation R0 ;R R1 ;R · · · where R0 = RS
X .

Theorem 2. For all X ⊆ V , implicational systems S, and fair and contracting
derivations RS

X = R0 ;R R1 ;R · · · , if Y = ϕS(X) = ϕI(S)(X), then

RY ⊆ (RS
X)∞ .

Proof. By Definition 3, RY = {x → true : x ∈ Y }. The proof is by induction
on the construction of Y = ϕS(X).
Base case: If x ∈ Y because x ∈ X , then x→ true ∈ RX , x→ true ∈ RS

X and
x→ true ∈ (RS

X)∞, since a rule in the form x→ true is persistent.
Inductive case: If x ∈ Y because for some A ⇒S B, B = x and A ⊆ Y , then
AB → A ∈ RS and AB → A ∈ RS

X . By the induction hypothesis, A ⊆ Y

implies that, for all z ∈ A, z ∈ Y and z → true ∈ (RS
X)∞. Let j > 0 be the

smallest index in the derivation R0 ;E R1 ;E · · · such that for all z ∈ A, z →
true ∈ Rj . Then there is an i > j such that x→ true ∈ Ri, because the rules
z → true simplify AB → A to x→ true. It follows that x→ true ∈ (RS

X)∞,
since a rule in the form x→ true is persistent. ⊓⊔

Then, the least S-model of X can be extracted from the saturated set:

Corollary 2. For all X ⊆ V , implicational systems S, and fair and contracting
derivations RS

X = R0 ;R R1 ;R · · · , if Y = ϕS(X) = ϕI(S)(X), then

RY = {x→ true : x→ true ∈ (RS
X)∞} .

Proof. If x→ true ∈ (RS
X)∞, then x→ true ∈ RY , and x ∈ Y , by the sound-

ness of equational overlap and simplification. The other direction was established
in Theorem 2. ⊓⊔

Example 7. Let S = {ac⇒ d, e⇒ a, bd⇒ f} and X = ce. Then Y = ϕS(X) =
acde, and RY = {a → true, c → true, d → true, e → true}. On the other
hand, for RS = {acd → ac, ae → e, bdf → bd} and RX = {c → true, e →
true}, completion gives

(
RS

X

)
∞

= {c → true, e → true, a → true, d →
true, bf → b}, where a → true is generated by simplification of ae → e with
respect to e→ true, d→ true is generated by simplification of acd→ ac with
respect to c→ true and a→ true, and bf → b is generated by simplification of
bdf → bd with respect to d→ true. Thus,

(
RS

X

)
∞

includes RY , which is made

exactly of the rules in the form x → true of
(
RS

X

)
∞

. The direct system I(S)
contains the implication ce⇒ d, generated by implicational overlap from e⇒ a

and ac ⇒ d. The corresponding equational overlap of acd → ac and ae → e

gives ce← ace← acde→ cde and, hence, generates the rule cde→ ce. However,
this rule is redundant in the presence of {c→ true, e→ true, d→ true} and
simplification. ⊓⊔
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3.4 Direct-Optimal Systems

Bertet and Nebut [11] refined the notion of direct implicational system into that
of direct-optimal implicational system. In this subsection, we disprove the conjec-
ture that the direct-optimal implicational system corresponds to the canonical
rewrite system with respect to equational overlap and contraction.

Optimality is defined with respect to a measure |S | that counts the sum of
the number of occurrences of symbols on each of the two sides of each implication
in a system S:

Definition 4 (Optimality [11, Section 2]). An implicational system S is
optimal if, for all equivalent implicational system S′, |S | ≤ |S′ | where

|S |
!
=

∑

A⇒SB

|A|+ |B|

and |A| is the cardinality of set A.

From an implicational system S, one can generate an equivalent implicational
system D(S) that is direct, optimal, and has the following properties, shown to
be necessary and sufficient for directness and optimality (cf. [11, Thm. 2]):

– extensiveness: for all A⇒D(S) B, A ∩B = ∅;
– isotony: for all A⇒D(S) B and C ⇒D(S) D, if C ⊂ A, then B ∩D = ∅;
– premise property: for all A⇒D(S) B and A⇒D(S) B′, B = B′;
– non-empty conclusion property: for all A⇒D(S) B, B 6= ∅.

This leads to the following characterization:

Definition 5 (Direct-optimal system [11, Def. 5]). Given a direct system
S, the direct-optimal system D(S) generated from S contains precisely the im-
plications

A⇒∪{B : A⇒S B} \ {C : D ⇒S C ∧D ( A} \A ,

for each set A of propositions – provided the conclusion is non-empty.

From the above four properties, we can deduce an optimization procedure, ap-
plying – in order – the following rules:

Premise
A⇒ B, A⇒ C

A⇒ BC
,

Isotony
A⇒ B, AD ⇒ BE

A⇒ B, AD ⇒ E
,

Extensiveness
AC ⇒ BC

AC ⇒ B
,
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Definiteness
A⇒ ∅

.

The first rule merges all rules with the same antecedent A into one and imple-
ments the premise property. The second rule removes from the consequent thus
generated those subsets B that are already implied by subsets A of AD, to en-
force isotony. The third rule makes sure that antecedents C do not themselves
appear in the consequent to enforce extensiveness. Finally, implications with
empty consequent are eliminated. This latter rule is called definiteness, because
it eliminates negative clauses, which, for Horn theories, represent queries and
are not “definite” clauses.

Clearly, the changes wrought by the optimization rules do not affect the
theory. Application of this optimization to the direct implicational system I(S)
yields the direct-optimal system D(S) of S.

The following example shows that this notion of optimization does not cor-
respond to elimination of redundancies by contraction in completion:

Example 8. Let S = {a ⇒ b, ac ⇒ d, e ⇒ a}. Then, I(S) = {a ⇒ b, ac ⇒
d, e ⇒ a, e ⇒ b, ce ⇒ d}, where e ⇒ b is generated by implicational overlap of
e ⇒ a and a ⇒ b, and ce ⇒ d is generated by implicational overlap of e ⇒ a

and ac ⇒ d. Next, optimization replaces e ⇒ a and e ⇒ b by e ⇒ ab, so that
D(S) = {a ⇒ b, ac ⇒ d, e ⇒ ab, ce ⇒ d}. If we consider the rewriting side,
we have RS = {ab → a, acd → ac, ae → e}. Equational overlap of ae → e

and ab → a generates be → e, and equational overlap of ae → e and acd →
ac generates cde → ce, corresponding to the two implicational overlaps. Thus,
(RS)∞ = {ab→ a, acd→ ac, ae→ e, be→ e, cde→ ce}. The rule corresponding
to e ⇒ ab, namely abe → e, would be redundant if added to (RS)∞, because
it would be reduced to a trivial equivalence by ae → e and be → e. Thus, the
optimization consisting of replacing e ⇒ a and e ⇒ b by e ⇒ ab does not
correspond to a rewriting inference. ⊓⊔

The reason for this discrepancy is the different choice of ordering. The procedure
of [11] optimizes the overall size of the system. For the above example, we have
|{e ⇒ ab} | = 3 < 4 = |{e ⇒ a, e ⇒ b} |. The corresponding proof ordering
measures a proof of a from a set X and an implicational system S by a multiset
of pairs 〈|B|, #BS〉, for each B ⇒S aC such that B ⊆ X , where #BS is the
number of implications in S with antecedent B. A proof of a from X = {e} and
{e⇒ ab} will have measure {{〈1, 1〉}}, which is smaller than the measure {{〈1, 2〉}}
of a proof of a from X = {e} and {e⇒ a, e⇒ b}.

Completion, on the other hand, optimizes with respect to a complete sim-
plification ordering ≻. For {abe → e} and {ae → e, be → e}, we have
ae ≺ abe and be ≺ abe by the subterm property of ≻, so {{ae, e}} ≺L

{{abe, e}} and {{be, e}} ≺L {{abe, e}} in the multiset extension ≻L of ≻, and
{{{{ae, e}}, {{be, e}}}} ≺C {{{{abe, e}}}} in the multiset extension ≻C of ≻L. In-
deed, from a rewriting point of view, it is better to have {ae→ e, be→ e} than
{abe→ e}, since rules with smaller left-hand side are more applicable.
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3.5 Rewrite Optimality

It is apparent that the differences between direct optimality and completion
arise because of the application of the premise rule. Accordingly, we propose
an alternative definition of optimality, one that does not require the premise
property, because symbols in repeated antecedents are counted only once:

Definition 6 (Rewrite optimality). An implicational system S is rewrite-
optimal if ‖S ‖ ≤ ‖S′ ‖ for all equivalent implicational system S′, where the
measure ‖S ‖ is defined by:

‖S ‖
!
= |Ante(S)|+ |Cons(S)| ,

for Ante(S)
!

= {c ∈ A : A ⇒S B}, the set of symbols occurring in antecedents,

and Cons(S)
!

= {{c ∈ B : A ⇒S B}}, the multiset of symbols occurring in
consequents.

Unlike Definition 4, where antecedents and consequents contribute equally, here
symbols in antecedents are counted only once, because Ante(S) is defined as a
set – hence, without repetitions – while symbols in consequents are counted as
many times as they appear, since Cons(S) is a multiset.

Rewrite optimality appears to be an appropriate choice to work with
Horn clauses, because the premise property conflicts with the decomposition
of non-unary implications (e.g., a1 · · · an ⇒ c1 · · · cm) into Horn clauses (e.g.,
a1 · · · an ⇒ ci for 1 ≤ i ≤ n) that we saw in Sect. 2.1. Indeed, if S is a non-
unary implicational system, and SH is the equivalent Horn system obtained by
decomposing non-unary implications, the application of the premise rule to SH

undoes the decomposition.

Example 9. Applying rewrite optimality to S = {a ⇒ b, ac ⇒ d, e ⇒ a} of
Example 8, we have ‖{e ⇒ ab} ‖ = 3 = ‖{e ⇒ a, e ⇒ b} ‖, so that replacing
{e ⇒ a, e ⇒ b} by {e ⇒ ab} is no longer justified. Thus, D(S) = I(S) = {a ⇒
b, ac ⇒ d, e ⇒ a, e ⇒ b, ce ⇒ d}, and the rewrite system associated with D(S)
is (RS)∞ = {ab → a, acd → ac, ae → e, be → e, cde → ce}. A proof ordering
corresponding to rewrite optimality would measure a proof of a from a set X and
an implicational system S by the set of the cardinalities |B|, for each B ⇒S aC

such that B ⊆ X . Accordingly, a proof of a from X = {e} and {e⇒ ab} will have
measure {{1}}, which is the same as the measure of a proof of a from X = {e}
and {e⇒ a, e⇒ b}. ⊓⊔

Thus, we deem canonical the result of optimization without premise rule:

Definition 7 (Canonical system). Given an implicational system S, the
canonical implicational system O(S) generated from S is the closure of S with
respect to implicational overlap, isotony, extensiveness and definiteness.

Let ;O denote the deduction mechanism that features implicational overlap
as expansion rule and the optimization rules except premise, namely isotony,
extensiveness and definiteness, as contraction rules. Then, we have:
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Proposition 2. Given an implicational system S, for all fair and contracting
derivations S = S0 ;O S1 ;O · · · , S∞ = O(S).

Proof. If the derivation is fair and contracting, both expansion and contraction
rules are applied systematically. Hence, the result. ⊓⊔

The following lemma shows that every inference by ;O is covered by an inference
in ;R:

Lemma 3. For all implicational systems S, if S ;O S′, then RS ;R RS′ .

Proof. We consider four cases, corresponding to the four inference rules in ;O:

1. Implicational overlap: If S ;O S′ by an implicational overlap step, then
RS ;R RS′ by equational overlap, by Lemma 2.

2. Isotony: For an application of this rule, S = S′′ ∪ {A⇒ B, AD ⇒ BE} and
S′ = S′′ ∪ {A ⇒ B, AD ⇒ E}. Then, RS = RS′′ ∪ {AB → A, ADBE →
AD}. Simplification applies to RS using AB → A to rewrite ADBE → AD

to ADE → AD, yielding RS′′ ∪ {AB → A, ADE → AD} = RS′ .
3. Extensiveness: When this rule applies, S = S′′ ∪ {AC ⇒ BC} and S′ =

S′′∪{AC ⇒ B}. Then, RS = RS′′ ∪{ACBC → AC}. By mere idempotence
of juxtaposition, RS = RS′′ ∪ {ABC → AC} = RS′ .

4. Definiteness: If S = S′ ∪ {A ⇒ ∅}, then RS = RS′ ∪ {A ↔ A} and an
application of deletion eliminates the trivial equation, yielding RS′ . ⊓⊔

However, the other direction of this lemma does not hold. Although every equa-
tional overlap is covered by an implicational overlap and deletions correspond
to applications of the definiteness rules, there are simplifications by ;R that do
not correspond to inferences in ;O:

Example 10. Assume that the implicational system S includes {de⇒ b, b⇒ d}.
Accordingly, RS contains {deb→ de, bd→ b}. A simplification inference applies
bd→ b to reduce deb→ de to be↔ de, which is oriented into be→ de, if b ≻ d,
and into de → be, if d ≻ b. (Were ;R equipped with a cancellation inference
rule, be ↔ de could be rewritten to b ↔ d, whence b → d or d → b.) The
deduction mechanism ;O can apply implicational overlap to de⇒ b and b⇒ d

to generate de⇒ d. However, de⇒ d is reduced to de⇒ ∅ by the extensiveness
rule, and de⇒ ∅ is deleted by the definiteness rule. Thus, ;O does not generate
anything that corresponds to be↔ de. ⊓⊔

This example can be generalized to provide a simple analysis of simplification
steps, one that shows which steps correspond to ;O-inferences and which do
not. Assume we have two rewrite rules AB → A and CD → C, corresponding
to non-trivial Horn clauses (|B| = 1, B 6⊆ A, |D| = 1, D 6⊆ C), and such that
CD → C simplifies AB → A. We distinguish three cases:

1. In the first one, CD appears in AB because CD appears in A. In other
words, A = CDE for some E. Then, the simplification step is

CDEB → CDE, CD → C

CEB → CE, CD → C
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(where simplification is actually applied to both sides). The corresponding
implications are A ⇒ B and C ⇒ D. Since A ⇒ B is CDE ⇒ B, implica-
tional overlap applies to generate the implication CE ⇒ B that corresponds
to CEB → CE:

C ⇒ D, CDE ⇒ B

CE ⇒ B
.

The isotony rule applied to CE ⇒ B and CDE ⇒ B reduces the latter to
CDE ⇒ ∅, which is then deleted by the definiteness rule. Thus, a combina-
tion of implicational overlap, isotony and definiteness simulates the effects
of simplification.

2. In the second case, CD appears in AB because C appears in A, that is,
A = CE for some E, and D = B. Then, the simplification step is

CEB → CE, CB → C

CE ↔ CE, CB → C
,

and there is an isotony inference

C ⇒ B, CE ⇒ B

C ⇒ B, CE ⇒ ∅
,

which generates the trivial implication CE ⇒ ∅ corresponding to the trivial
equation CE ↔ CE. Both are deleted by definiteness and deletion, respec-
tively.

3. The third case is the generalization of Example 10: CD appears in AB

because D appears in A, and C is made of B and some F that also appears
in A, that is, A = DEF for some E and F , and C = BF . The simplification
step is

DEFB → DEF, BFD → BF

BFE ↔ DEF, BFD → BF
.

Implicational overlap applies

DEF ⇒ B, BF ⇒ D

DEF ⇒ D

to generate an implication that is first reduced by extensiveness to DEF ⇒ ∅
and then eliminated by definiteness. Thus, nothing corresponding to BFE ↔
DEF is generated.

It follows that whatever is generated by ;O is generated by ;R, but may
become redundant eventually:

Theorem 3. For every implicational system S, for all fair and contracting
derivations S = S0 ;O S1 ;O · · · and RS = R0 ;R R1 ;R · · · , for all
FG → F ∈ R(S∞), either FG → F ∈ (RS)∞ or FG → F is redundant in
(RS)∞.
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Proof. For all FG→ F ∈ R(S∞), F ⇒ G ∈ S∞ by Definition 3, and F ⇒ G ∈ Sj

for some j ≥ 0. Let j be the smallest such index. If j = 0, or Sj = S, FG →
F ∈ RS = R0 by Definition 3. If j > 0, F ⇒ G was generated by an application
of implicational overlap, the isotony rule or extensiveness. By Lemma 3 and the
assumption that the ;R-derivation is fair and contracting, FG → F ∈ Rk for
some k > 0. In both cases, FG→ F ∈ Rk for some k ≥ 0. If FG→ F persists,
then FG→ F ∈ (RS)∞. Otherwise, FG→ F is rewritten by simplification and
is therefore redundant in (RS)∞. ⊓⊔

Since the limit of a fair and contracting ;O-derivation is O(S), it follows that:

Corollary 3. For every implicational system S, for all fair and contracting
derivations S = S0 ;O S1 ;O · · · and RS = R0 ;R R1 ;R · · · , and for
all FG → F ∈ RO(S), either FG → F ∈ (RS)∞ or FG → F is redundant in
(RS)∞.

4 Conditional Rewrite Systems

In this section we investigate canonicity in conditional equational theories, fo-
cusing on the ground case. We study conditional reduction and we propose a
notion of reducedness, where also conditions themselves are subject to reduc-
tion, so that it may be possible to “reduce” overly-complex conditions, without
affecting the equality relation. It follows that for conditional equational theories,
unlike for equational ones, being reduced and being contracted are distinct. As a
consequence, perfect systems – complete and reduced – and canonical systems –
saturated and contracted – also differ.

4.1 Decreasing Systems

To use conditional equations for simplification, one needs to establish that the
conditions hold. If testing the validity of the conditions yields a problem that is
as difficult as the one we would like to solve by applying conditional equations,
conditional simplification becomes unpractical. In other words, the complexity
of conditions should be bounded. Therefore, we start with a notion of decreasing-
ness, which appeared in [30] and ensures that testing conditions does not yield
bigger problems:

Definition 8 (Decreasing conditional equation). A ground conditional
equation p1≃ q1, · · · , pn≃ qn ⇒ l≃ r is decreasing if l ≻ r, p1, q1, . . . , pn, qn;
a conditional equation is decreasing if all its ground instances are.

A decreasing inference is an application of the following inference rule:

C ⇒ l≃ r w1 . . . wn

C \ {w1, . . . wn} ⇒ f [l]≃ f [r]
f [l]≃ f [r] ≻C C

where f is any context and w1 . . . wn are equations. If C \ {w1, . . . wn} = ∅, an
equation is deduced; otherwise, a conditional equation is deduced, where those
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conditions that are not discharged remain part of the conclusion. Condition
f [l]≃ f [r] ≻C C characterizes the inference as decreasing. Since ≻ is a simpli-
fication ordering and therefore has the subterm property, f [l]≃ f [r] ≻C l≃ r

also holds. Thus, f [l]≃ f [r] ≻C (C ⇒ l≃ r) follows. On the other hand, the
subproofs of the wi may contain larger premises.

The depth of a decreasing inference is 0 if f [l] = f [r] (a trivial equation
is deduced) or n = 0 (no subproofs). Otherwise, it is 1. The depth of a proof
is the sum of the depth of its inferences, that is, the number of non-trivial
inferences where a conditional equation is applied and some if its conditions are
discharged. Thus, purely equational proofs have depth 0, because they do not
have conditions.

Definition 9 (Equivalence). Given a presentation S of a theory, two terms s

and t are S-equivalent, written s ≡S t, if there is a proof p, such that [p ]Cl =
s≃ t and [p ]Pm ⊆ S, made of decreasing inferences.

We can use minimal elements of S-equivalence classes as their representatives:

Definition 10 (Normal form). The S-normal form of a term t is the ≻-
minimal element of its S-equivalence class.

By the same token, a term t is in normal form with respect to S, if it is its own
S-normal form.

4.2 Reduced Systems

Given a set S of conditional equations, we are interested in a reduced version of
S. Computing a reduced system involves deletion of trivial conditional equations,
subsumption and simplification, as defined by the following inference rules:

Deletion
C ⇒ r≃ r C, l≃ r ⇒ l≃ r

Subsumption

C, D ⇒ u[l]≃u[r] C ⇒ l≃ r

C ⇒ l≃ r

Simplification

C, p≃ q ⇒ l[p]≃ r

C, p≃ q ⇒ l[q]≃ r
p ≻ q

C, p≃ q, u[p]≃ v ⇒ l≃ r

C, p≃ q, u[q]≃ v ⇒ l≃ r
p ≻ q

C, D ⇒ l[u]≃ r C ⇒ u≃ v

C, D ⇒ l[v]≃ r C ⇒ u≃ v
u ≻ v ,
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where the first two simplification rules use a condition to simplify the conse-
quence or another condition of the same conditional equation, while the third
one applies a conditional equation C ⇒ u≃ v to simplify another conditional
equation whose conditions include C. Inferences shown on the left-hand side of
≃ apply also to the right-hand side, since ≃ is symmetric.

These inference rules produce a reduced system according to the following
definition:

Definition 11 (S-reduced). Let S = S′ ⊎ {e} be a presentation, where e =
(C ⇒ l≃ r) is a conditional equation, C = {pi≃ qi}ni=1, and, for convenience,
l ≻ r and pi ≻ qi, for all i, 1 ≤ i ≤ n. Then, e is S-reduced if

1. e is not trivial,
2. no conditional equation in S′ subsumes e,
3. l is in (S′ ∪ C)-normal form,
4. r is in (S ∪ C)-normal form,
5. for all i, 1 ≤ i ≤ n,

(a) pi is in (S′ ∪ (C \ {pi≃ qi}))-normal form and
(b) qi is in (S′ ∪ C)-normal form.

The difference between Item 3 and Item 4 is designed to prevent C ⇒ l≃ r from
simplifying itself. In Item 5, a condition p≃ q ∈ C is normalized also with respect
to the other equalities in C, because all equalities in C must be true to apply a
conditional equation e. Thus, the notion of reducedness incorporates the notion
of reduction with respect to a context as in the conditional contextual rewriting
proposed by Zhang [74]. The difference between Item 5a and Item 5b is meant to
prevent pi≃ qi from simplifying itself. Thus, we can safely define the following:

Definition 12 (Self-reduced). A conditional equation e is self-reduced, if it
is {e}-reduced. The self-reduced form of e is denoted e♭.

Example 11. For S = {e1, e2}, where e1 is a≃ b⇒ c≃ d, and e2 is f(a)≃ f(b)⇒
c≃ d, as in Example 1, both e1 and e2 are S-reduced. ⊓⊔

Definition 13 (Reduced). A presentation S is reduced, if all its elements are
S-reduced.

Definition 14 (Perfect). A presentation S is perfect, if it is complete and
reduced.

Example 12. Let S = {e1, e2}, where e1 is a≃ b ⇒ f(a)≃ c and e2 is a≃ b ⇒
f(b)≃ c, with f > a > b > c. The presentation S is not reduced, because clause
e1 is not. Indeed, the normal form of f(a) with respect to (S \ {e1}) ∪ {a≃ b}
is c, and the reduced form of e1 is the trivial clause a≃ b ⇒ c≃ c. Clause e2 is
reduced. ⊓⊔

Proposition 3. If S is reduced, then it is contracted.
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Proof. Assume that S is not contracted. Then, there exists an e ∈ S, such that
e 6∈ [µPf (S) ]Pm (see Sect. 2.2). In other words, if e ∈ [p ]Pm , then p 6∈ µPf (S).
For each such p, there is a q ∈ µPf (S), such that p > q and e 6∈ [q ]Pm . By
monotonicity of the proof ordering with respect to subproofs (cf. Property 3 in
Sect. 2.2), proof p must contain a subproof involving e, possibly consisting of e

itself, which is replaced by a smaller subproof in q. Thus, proof p and premise
e must contain at least a term that is not in S-normal form. Hence, e is not in
S-reduced form, and S is not reduced. ⊓⊔

On the other hand, a presentation can be contracted but not reduced, as shown
in the following example:

Example 13. If a > b > c, neither a≃ b⇒ b≃ c nor a≃ b ⇒ a≃ c is decreasing.
The presentations S1 = {a≃ b ⇒ b≃ c}, S2 = {a≃ b ⇒ a≃ c}, and S3 =
{a≃ b ⇒ b≃ c, a≃ b ⇒ a≃ c} are equivalent. However, S1 is reduced, whereas
S2 is not, since the S2-reduced form of a≃ b⇒ a≃ c is a≃ b⇒ b≃ c. Neither is
S3 reduced, although it is contracted. Indeed, while a≃ b⇒ b≃ c is S3-reduced,
the S3-reduced form of a≃ b⇒ a≃ c is the trivial clause a≃ c⇒ a≃ c. ⊓⊔

Unlike the ground equational case, where contracted and canonical collapse to
reduced, because all inferences consist of rewriting, in the conditional case con-
tracted and reduced are different (like S3 in Example 13). Furthermore, de-
creasing simplification is “incomplete” with respect to Definition 11, because
non-reduced presentations may not be reducible by decreasing simplification, as
the clauses are not decreasing (like S2 and S3 in Example 13). The following
lemma and theorem follow from the definitions.

Lemma 4. A conditional equation e has a normal-form proof in presentation
S, if the S-reduced form of e♭ is subsumed by a conditional equation in S.

Theorem 4. If S is canonical, then S subsumes the S-reduced form of every
theorem of S.

Example 14. Consider again the three presentations of Example 13, e1 = a≃ b⇒
b≃ c and e2 = a≃ b ⇒ a≃ c. We have e♭

1 = a≃ b ⇒ b≃ c = e♭
2. Thus, both S1

and S3 are complete (and saturated), because they contain a≃ b ⇒ b≃ c. On
the other hand, S2 does not, and therefore it is not complete. In summary, S1

is perfect (reduced and complete), S3 is canonical (contracted and saturated),
whereas S2 is neither. ⊓⊔

In summary, in the conditional case, a perfect system – complete and re-
duced – and a canonical system – saturated and contracted – differ in two ways:
complete is weaker than saturated, and reduced is stronger than contracted.
Since complete/saturated determines how much expansion is required in comple-
tion, whereas reduced/contracted refers to how much simplification completion
should feature, both discrepancies hint that the perfect system is really the best
system, as the name suggests.
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5 Horn Normal Forms

In this section, we survey proof normalization and decision procedures, based
on canonical systems, in Horn theories and beyond. Since Th S is defined based
on proofs (cf. Sect. 2.2), the choice of normal-form proofs is intertwined with
the choice of the deduction mechanism that generates the proofs. This double
choice is guided by the purpose of ensuring that S♯ forms the basis for a decision
procedure. To achieve decidability, the various notions of normal-form proof aim
at minimizing non-deterministic choice-points that require search. Then, Horn
proofs may have the following qualities:

– Linear : in linear resolution proofs at each step a center clause is resolved with
a side clause, to generate the next center clause (see, for instance, Chapter 7
in the book by Chang and Lee [24]). The first center clause, or top clause, is
the goal given by the problem. Linearity eliminates one choice point, because
the main premise of the next step must be whatever was generated by the
previous step.

– Linear input : the choice of side clauses is restricted to input clauses [24].
– Reducing: a linear proof is reducing if each center clause is smaller than its

predecessor in the ordering ≻C – this implies termination [19].
– Unit-resulting: each step must generate a unit clause; thus, all literals but

one must be resolved away, which eliminates the choice of literal in the center
clause, but may require multiple side clauses (traditionally called satellites
or electrons as in the unit-resulting resolution of McCharen, Overbeek and
Wos [65]).

– Confluent : whatever choices are left, such as choice of side premise(s) or
choice of subterm, are irrelevant for finding or not finding a proof, which
means they will never need to be undone by backtracking.

Valley proofs for purely equational theories satisfy all these properties, some
vacuously (like unit-resulting). In this section we survey different choices of
normal-form proofs for Horn theories, and we examine how they yield differ-
ent requirements on canonical presentations, and on the completion procedures
that generate them at the limit.

5.1 Trivial Proofs

If trivial proofs are assumed to be normal-form proofs, closure with respect
to forward chaining gives the canonical presentation. Canonical, saturated and
complete coincide. Given a Horn presentation S, S♯ is made of all ground facts
that follow from S and the axioms of equality by forward chaining. In other
words, S♯ is the least Herbrand model of S, and, equivalently, the least fixed-
point of the mapping associated to program S and the axioms of equality in
the fixed point semantics of logic programming (see the aforementioned surveys
[1,51] or Lloyd’s book [63]).

Existence of the least Herbrand model is a consequence of the defining prop-
erty of Horn theories, namely closure of the family of models with respect to
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intersection. This is also the basis upon which to draw a correspondence be-
tween Horn clauses with unary predicate symbols and certain tree automata,
called two-way alternating tree automata (cf. [25, Sec. 7.6.3]). Tree automata are
automata that accept trees, or, equivalently, terms. Given a Horn presentation
S, the predicate symbols in S are the states of the automaton. As usual, a subset
of states is defined to be final. Then, the essence of the correspondence is that a
ground term t is accepted by the automaton if the atom r(t) is in S♯ and r is fi-
nal. The deduction mechanism for computing the accepted terms is still forward
chaining. It is sufficient to have unary predicate symbols, because the notion of
being accepted applies to one term at a time. This restriction is advantageous
because many properties in the monadic fragment are decidable. For the class
of two-way alternating tree automata, clauses are further restricted to have one
of the following forms:

1. a1(x1), . . . , an(xn) ⇒ c(u), where x1, . . . , xn are (not necessarily distinct)
variables, u is a linear, non-variable term, and x1, . . . , xn ∈ Var(u);

2. a(u)⇒ c(x), where u is a linear term and x is a variable; and
3. a1(x), . . . , an(x)⇒ c(x).

We refer the interested reader to [25] for more details and results.

5.2 Ground-Preserving Linear Input Proofs

According to Kounalis and Rusinowitch [61], normal-form proofs for Horn the-
ories with equality are linear input proofs by ordered resolution and ordered
superposition, where only maximal literals are resolved upon, and only maximal
sides of maximal literals are superposed into and from. Furthermore, in order
to have a normal-form proof, all side clauses p1≃ q1, · · · , pn≃ qn ⇒ l≃ r in the
proof must be ground-preserving: Var(pi≃ qi) ⊆ Var(l≃ r), for all i, 1 ≤ i ≤ n,
and either l ≻ r or r ≻ l, or Var(l) = Var(r).

A conjecture is a conjunction ∀x̄ u1≃ v1, . . . , uk≃ vk, whose negation is a
ground (Skolemized) negative clause ũ1 6≃ ṽ1 ∨ · · · ∨ ũk 6≃ ṽk. If all side clauses
are ground-preserving and the top clause is ground, all center clauses will also
be ground. This, together with the ordering restrictions on resolution and su-
perposition and the assumption that the ordering is a complete simplification
ordering – hence, is total on ground terms, literals and clauses – imply that every
center clause is smaller than its parent center clause, so that proofs are reducing.

Therefore, a finite presentation that features such a normal-form proof for
every conjunction of positive literals is a decision procedure. The Horn comple-
tion procedure of [61], with ordered resolution, superposition, simplification by
conditional equations, and subsumption, generates at the limit a saturated pre-
sentation, which is such a decision procedure, if it is finite and all its clauses are
ground-preserving.

5.3 Linear Input Unit-Resulting Proofs

An approach for Horn logic without equality was studied by Baumgartner in his
book on theory reasoning [9]. Here normal-form proofs of conjunctions of posi-
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tive literals are linear input unit-resulting (UR) resolution proofs. A completion
procedure, called Linearizing Completion, applies selected resolution inferences
and additions of contrapositives to compile the given presentation into one that
offers normal-form proofs for all conjunctions of positive literals. The name “Lin-
earizing” evokes the transformation of UR-resolution proofs (not in normal form)
into linear UR-resolution proofs (in normal form).

If finite, the resulting saturated presentation is used as a decision procedure
for the Horn theory in the context of partial theory model elimination. Similar
to partial theory resolution of Stickel [71], a decision procedure that generates
conditions for the unsatisfiability of a set of literals in the theory, as opposed
to deciding unsatisfiability, suffices. The saturated presentation generated by
Linearizing Completion is a decision procedure in this weaker sense.

5.4 Valley Proofs

If the notion of normal-form proof of the unconditional case is generalized to
the conditional case, normal-form proofs are valley proofs of depth 0, where all
conditions have been solved away. The Maximal Unit Strategy of [31] achieves
this effect by restricting expansion inferences to have at least one unit premise:
it applies superposition between unconditional equations and to superpose un-
conditional equations into maximal terms of conditions.

In the limit, the saturated set contains all positive unit theorems, or, equiv-
alently, all conditional equations are redundant [19], so that there is a normal-
form proof for every theorem. However, such a presentation will be infinite in
most cases, so that the Maximal Unit Strategy is better seen as a semi-decision
procedure for forward-reasoning theorem proving, rather than as a generator of
decision procedures [30].

5.5 Nested Valley Proofs

In [30,31], a normal-form proof of s≃ t is a valley proof, in which each subproof
is also in normal form, and each term in a subproof is smaller than the greater
of s and t. To enforce the latter constraint, only decreasing instances of con-
ditional equations are applied. The Decreasing Strategy of [30,31] simplifies by
decreasing instances of conditional equations and applies ordered paramodula-
tion/superposition of decreasing instances, to generate at the limit a saturated
presentation that features normal-form proofs for all theorems. Our analysis in
Sect. 4 started from this point to develop the notions of reduced and perfect
system, showing the incompleteness of decreasing simplification with respect to
reducedness and the difference between canonical and perfect system.

If we compare this notion of normal-form proof based on decreasingness with
the conditional valley proofs of null depth of Sect. 5.4, we see that decreasingness
allows nested valley proofs, or, equivalently, it does not require that normal-form
proofs have depth 0: this means renouncing linearity.

To compare with the ground-preserving linear input proofs of Sect. 5.2,
consider a conditional equation that is not ground-preserving, such as
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p1≃ q1, · · · , pn≃ qn ⇒ l≃ r, where l ≻ r and either r, or one of the pi’s, or
one of the qi’s, for some i, 1 ≤ i ≤ n, contains a variable that does not occur in
l. Such a conditional equation cannot be decreasing. However, the motivations
for the two conditions are different. The motivation for the ground-preserving
property is to ensure that proofs are reducing. The motivation for decreasing-
ness, which improved upon previous suggestions in [58,57], is to capture exactly
the finiteness of recursive evaluation of terms.

Another significant difference between decreasingness, on one hand, and ear-
lier requirements, on the other, including the ground-preserving condition and
the requirements studied by Kaplan and Rémy [59] or Ganzinger [48], is that they
are static properties of conditional rewrite rules or equations, whereas decreas-
ingness is tested dynamically on the applied instances. This difference resembles
the one between Knuth-Bendix completion [60], where all equations must be
oriented, and Unfailing, or Ordered, Completion, that applies oriented instances
of unoriented equations [21,62,55,6,5,19].

5.6 Quasi-Horn Theories

A generalization of the approach of Sect. 5.2 was given by Bachmair and
Ganzinger in [7], by considering quasi-Horn clauses and replacing the ground-
preserving property with the universally reductive property.

A clause C is quasi-Horn if it has at most one positive equational literal,
and, if there is one – say l≃ r, then (l≃ r)σ is maximal in Cσ for all ground
instances Cσ of C. A general clause C is universally reductive if it contains a
literal L such that (i) Var(C) ⊆ Var(L), (ii) for all ground substitutions σ,
Lσ is strictly maximal in Cσ, (iii) if L is an equational literal, it is a positive
equation s≃ t, such that Var(s≃ t) ⊆ Var(s) and for all ground substitutions
σ, sσ ≻ tσ. Clause C is said to be universally reductive for L. Clearly, if a
quasi-Horn clause that contains a positive equation is universally reductive, it is
universally reductive for the positive equation.

A quasi-Horn clause is more general than a Horn clause, because it allows
more than one positive literal, provided they are not equations: if there is a
positive equation, then it must be unique and maximal. A quasi-Horn clause
C that contains a positive equation l≃ r will be involved only in superposition
inferences into, or from, l≃ r: ordered resolution does not apply to C, because
its non-equational literals are not maximal; ordered factoring and equality reso-
lution,4 are not applicable either, because C has only one positive literal and its
negative literals are not maximal. Furthermore, superposition of C into a clause
without positive equations will produce another clause without positive equa-
tions. In essence, the notion of quasi-Horn clause serves the purpose of making
sure that the equational part of the problem is Horn, and can be dealt with
separately with respect to the non-equational part, which may be non-Horn and
require ordered resolution and ordered factoring.

4 Equality resolution is ordered resolution with x≃ x.
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The notion of goal is generalized from ground negative clause to ground
clause without positive equations, and the notion of normal-form proof for such
a goal is weakened accordingly: the equational reasoning part by ordered su-
perposition is linear, whereas the ordered resolution and ordered factoring part
for the non-equational component is not necessarily linear. A finite saturated
set of universally-reductive quasi-Horn clauses is a decision procedure in that it
provides a normal-form proof for all goals in this form.

5.7 Beyond Quasi-Horn

It is well known that the restrictions of general inferences that are complete for
Horn logic (including linear input resolution, unit resolution, forward chaining)
are not complete for full first-order logic (see [24]). In the non-equational case,
linear input proofs must be replaced by linear proofs, involving also factoring
and ancestor-resolution inferences. In the presence of equality, one needs to deal
with the interplay of the equational and non-equational parts in its full gene-
rality. Nevertheless, completion procedures to generate saturated or canonical
presentations have been investigated also in the unrestricted first-order context.
One purpose is to find whether inference systems or strategies that are not
complete for first-order logic, may become complete if a canonical, or at least
saturated, presentation is given.

An example is the classical resolution with set of support of Wos et al. [72],
where the set of support initially contains the goal clauses (those resulting from
the negation of the conjecture), its complement contains the presentation, and
all generated clauses are added to the set of support. This is complete for res-
olution in first-order logic, but it is not complete for ordered resolution and
superposition in first-order logic with equality. However, it is well known that, if
the presentation is saturated, then the set of support strategy is complete also
for first-order logic with equality and ordered inferences, for the simple reason
that all inferences from the saturated presentation are redundant.

For first-order theories, in general, there is no finite canonical presentation
that forms the basis for a decision procedure. Obtaining decision procedures for
fragments of first-order logic rests on some combination of saturation by com-
pletion and syntactic constraints on the presentation. A survey can be found in
[43]. More recent results based on syntactic constraints include those of Comon-
Lundh and Courtier in [26]. In [41], Dowek studied proof normalization in the
context of a sequent calculus modulo a congruence on terms, where normal-form
proofs are cut-free proofs.

Another thread of research on decision procedures is that of satisfiability
modulo a theory (SMT), where T -satisfiability is the problem of deciding satisfi-
ability of a set of ground literals in theory T . Armando et al. [3,2] proved that
a rewrite-based inference system for first-order logic with equality is guaranteed
to generate finitely many clauses when applied to T -satisfiability problems in
several theories of data structures, and any of their combinations. Thus, such
an inference system equipped with a fair search plan yields a decision procedure
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for T -satisfiability in those theories. Bonacina and Echenim generalized this ap-
proach to T -satisfiability in theories of recursive data structures [15], extended
it to decide T -satisfiability of arbitrary ground formulæ [16], and investigated
how using a rewrite-based inference system as a pre-processor for an SMT-solver
yields decision procedures [17]. Lynch and Morawska [64] combined the approach
of [3] with syntactic constraints to obtain complexity bounds for some theories.
Bonacina, Lynch and de Moura obtained more decision procedures by equip-
ping a theorem prover that integrates superposition into an SMT-solver with
speculative inferences [20].

5.8 Knowledge Representation

In the context of knowledge representation, various forms of knowledge compi-
lation have been studied to transform a given knowledge base into a normal
form that enables efficient reasoning. Roussel and Mathieu [69] investigated the
problem of “completing” a knowledge base, so that forward chaining becomes
complete also in the first-order case (without equality). An achieved knowledge
base corresponds to a saturated presentation, and the process that generates it
is called achievement.

Clearly, in many instances an achieved knowledge base that is equivalent
to the original one will be infinite, so that one has to resort to either partial
achievement or total achievement techniques. Partial achievement produces a
finite knowledge base by setting a limit on either the depth of instances, or the
length of chains of literals, that may be produced. Total achievement relaxes, in
a controlled way, the requirement that the achieved base be equivalent to the
original one. More recently, Furbach and Obermaier [45] considered knowledge
compilation in description logics.

6 Discussion

Knuth-Bendix completion [60,56,55,6,5,19] was designed to derive decision pro-
cedures for validity in algebraic theories. Its outstanding feature is the use of
inferred rules to continuously reduce equations and rules during the inference
process. As a byproduct, the resulting reduced convergent system is unique –
given a well-founded ordering of terms for orienting equations into rules [36] –
and appropriately viewed as canonical.

In the ground equational case, reduction and completion are one and the same
[62,46,67,8,14]. The natural next step up is to consider what canonical ground
Horn presentations might look like. Here, we take a new look at ground Horn
theories from the point of view of the theory of canonical inference initiated in
[34,14]. Of course, entailment of equational Horn clauses is also easily decidable
in the propositional [42] and ground [47] cases. However, it turns out that reduced
and canonical – hence, reduction and completion – are distinct in this case.

For implicational systems, we analyzed the notions of direct and direct-
optimal implicational system in terms of completion and canonicity. We com-
pared implicational systems with inference mechanisms featuring implicational
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overlap and optimization, and rewrite systems with inference mechanisms featur-
ing equational overlap and simplification. We found that a direct implicational
system corresponds to the canonical limit of a derivation by completion that
features expansion by equational overlap and contraction by forward simplifi-
cation. When completion also features backward simplification and is given a
subset of the alphabet as input, together with the implicational system, it com-
putes the image of the subset with respect to the closure operator associated
with the implicational system. In other words, it computes the minimal model
that satisfies both the implicational system and the subset. On the other hand, a
direct-optimal implicational system does not correspond to the limit of a deriva-
tion by completion, because the underlying proof orderings are different and
therefore normalization induces two different notions of optimization. Accord-
ingly, we introduced a new notion of optimality for implicational systems, termed
rewrite optimality, that corresponds to canonicity defined by completion up to
redundancy.

Although limited to the propositional level, our analysis is complementary to
those of [29,38,18,40] in a few ways. First, previous studies primarily compared
answering a query with respect to a program of definite clauses, interpreted by
SLD-resolution, as in Prolog, with answering a query with respect to a pro-
gram of rewrite rules, interpreted by linear completion, with equational overlap,
with or without simplification. Thus, from an operational point of view, those
analyses focused on backward reasoning from the query, whereas ours concen-
trates on optimizing and completing presentations by forward reasoning. Sec-
ond, SLD-resolution involves no contraction, so that earlier comparisons placed
an inference mechanism with contraction (linear completion) side-by-side with
one without. The treatment in [18] included the case where the Prolog interpreter
is enriched with subsumption, but it was only subsumption between goals, with
no contraction of the presentation. Here we have also compared different forms
of contraction, putting optimization of implicational systems and simplification
of rewrite systems in parallel. The present analysis agrees with prior ones in
indicating the rôle of simplification in differentiating reasoning by completion
about equivalences from reasoning about implications. Indeed, as we have seen,
the canonical rewrite system can be more reduced than the rewrite-optimal im-
plicational system (cf. Theorem 3).

Future work includes generalizing this analysis to non-ground Horn theories,
similar to what was done in [22] to extend the application of the abstract frame-
work of [34,14] from ground completion to standard completion of equational
theories. Other directions may be opened by exploring new connections between
canonical systems and decision procedures.
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