
Annals of Mathematics and Artificial Intelligence 29 (2000) 223–257 223

A taxonomy of parallel strategies for deduction ∗

Maria Paola Bonacina a,∗∗

a Department of Computer Science
The University of Iowa

Iowa City, IA 52242-1419, USA
E-mail: bonacina@cs.uiowa.edu

This paper presents a taxonomy of parallel theorem-proving methods based on
the control of search (e.g., master-slaves versus peer processes), the granularity of
parallelism (e.g., fine, medium and coarse grain) and the nature of the method (e.g.,
ordering-based versus subgoal-reduction). We analyze how the different approaches
to parallelization affect the control of search: while fine and medium-grain methods,
as well as master-slaves methods, generally do not modify the sequential search plan,
parallel-search methods may combine sequential search plans (multi-search) or ex-
tend the search plan with the capability of subdividing the search space (distributed
search). Precisely because the search plan is modified, the latter methods may pro-
duce radically different searches than their sequential base, as exemplified by the
first distributed proof of the Robbins theorem generated by the Modified Clause-
Diffusion prover Peers-mcd. An overview of the state of the field and directions for
future research conclude the paper.

1. Introduction

The field of Strategies for Automated Deduction is concerned with the con-

trol component of deductive methods, that is, with the search strategies employed
to search for a solution (e.g., a proof in theorem proving, a model in model build-
ing, a normal form in term rewriting).

The definition of the search problem in theorem proving is well known. The
availability of a sound and refutationally complete inference system I guarantees
the existence of a proof (a derivation of a contradiction), for any inconsistent set
H∪{¬ϕ}, whereH is a set of assumptions and ϕ a conjectured theorem. However,
given an initial state withH and ¬ϕ, I can generate many derivations, because an
inference system is non-deterministic. The search problem is how to control I so
that a proof can be found (fairness) using as few resources as possible (efficiency).

∗ This is an extended version of “Ten years of parallel theorem proving: a perspective,”
invited paper, Notes of the Workshop on Strategies in Automated Deduction, Federated Logic
Conference, 3–15, Trento, Italy, July 1999.

∗∗ Supported in part by the National Science Foundation with grants CCR-97-01508 and EIA-
97-29807.



224 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

In this search problem, states contain partial proofs, successful states contain
complete proofs, and the transformation rules, or production rules, are the given
inference rules. The latter can be formalized as functions f :P(LΘ) → P(LΘ) ×
P(LΘ), where Θ is a first-order signature, LΘ is a Θ-language of sentences, or
clauses, or equations, depending on the problem, P(LΘ) is its powerset, and f
takes as argument a set of premises, and returns a set of elements to be added
and a set of elements to be deleted in the current state.

Let States denote the set of all possible states of a theorem-proving search
problem. Given a set of inference rules I, a search plan Σ is made of at least
three components:

• a rule-selecting function ζ:States∗ → I, which selects the next rule to be
applied based on the history of the search so far;

• a premise-selecting function ξ:States∗ → P(LΘ), which selects the elements
of the current state the inference rule should be applied to;

• a termination-detecting function ω:States → Bool, which returns true if the
given state is successful, false otherwise.

If the current state is not successful, ζ selects a rule f and ξ selects premises
X = {ψ1, . . . , ψn}, the next step will consist of adding π1(f(X)) and/or deleting
π2(f(X)), where π1 and π2 are the projections π1(x, y) = x and π2(x, y) = y (e.g.,
Si+1 = Si ∪ π1(f(X)) − π2(f(X))). The function ζ also controls backtracking,
in search plans that feature it. The sequence of states thus generated (e.g.,
S0 ⊢ S1 ⊢ · · ·Si ⊢ · · ·) forms the derivation by I controlled by Σ from the given
input, and the combination of I and Σ forms a deterministic procedure called a
theorem-proving strategy.

One approach to the problem of designing new forms of control of the infer-
ences has been to investigate the parallelization of theorem proving. In this paper
we give a taxonomy of parallel theorem-proving strategies and we study how the
different approaches to parallelization affect the notion of search plan: given a
sequential strategy C = 〈I,Σ〉, and its parallelization C′ = 〈I,Σ′〉, we investigate
what Σ′ is, depending on the applied parallelization principle. Methods that par-
allelize the inner algorithms used by the strategy (e.g., parallel rewriting), and
methods that schedule in parallel the inference steps prescribed by the sequen-
tial search plan, generally do not modify the search plan itself. On the other
hand, methods that launch multiple search processes in parallel need to mod-
ify the search plan (otherwise they would execute n copies of the same search!),
and are therefore the most interesting from the point of view of the control of
search. We distinguish between multi-search strategies, that assign to each paral-
lel process a different search plan, and distributed-search strategies, that assign to
each parallel process a different portion of the search space. The two approaches
are not mutually exclusive, and both require communication (multi-search with-
out communication is trivial and distributed search without communication is
incomplete).



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 225

If the parallelization changes the search plan, the parallel strategy generates
different searches, rather than executing faster the same steps of the sequential
search. Thus, if the sequential search is not optimal, a super-linear speed-up
may occur. As an example of this phaenomenon, we report on an experiment
with our distributed prover Peers-mcd, which is the parallelization of McCune’s
prover EQP based on the Modified Clause-Diffusion methodology [16,14]. We
tried Peers-mcd on the theorem Robbins algebras are Boolean, which was proved
first by EQP [81], and we observe that the distributed prover shows super-linear
speed-up with respect to EQP with all other factors being equal (same hardware,
same version of EQP, same inference system).

Instances of super-linear speed-up by parallel provers may provide a lead
into further research in sequential search plans, since one would like to find a
sequential search plan that reproduces the faster search generated in parallel. We
emphasize that finding a general and fully automated solution – without giving
“hints” to the sequential prover in the form of additional lemmas or patterns in
the input file – is hard. It is the inverse of the problem we are studying in this
survey: given a parallel plan Σ, find a sequential plan Σ′ that simulates it.

Previous surveys or collections on parallel deduction include [54,94,21]. The
main classification criterion of [94] is whether the parallel components cooperate
or compete to find a solution. This criterion appears to have been inspired by
the classical distinction between AND-parallelism and OR-parallelism in subgoal-
reduction strategies (and logic programming), and was designed to supersede it.
One of the criteria of our taxonomy is the distinction of parallelism at the term

level, at the clause level, and at the search level, introduced in [21]. If AND-
parallelism (try in parallel the conjuncts of the current goal) or OR-parallelism
(try in parallel different clauses with the selected literal of the current goal) is
applied within one search process, it is an instance of parallelism at the clause
level1. If, on the other hand, parallel search processes, each developing its own
derivation, employ different AND-rules or different OR-rules, then we have an
instance of parallel search.

The survey presented in this paper differs from the one in [21] in several
ways. First, it studies the effect of parallelization on the search plan, which was
not investigated in [21]. For this purpose, it distinguishes between those ap-
proaches that separate the control of parallelism from the control of deduction
and those approaches that combine them. Furthermore, it distinguishes between
multi-search and distributed search within parallel search. Both dichotomies did
not appear in [21]. Second, since approaches based on parallel search modify the
sequential notion of search plan, it proposes formal definitions ofmulti-search plan

and distributed-search plan that match the surveyed strategies. Third, it covers
many papers (e.g., [1,31,30,42,40,52,55,57,65,72,74,83,91,93,95,99,102,104]) that

1 AND-parallelism may also be considered as parallelism at the term level, since the data ac-
cessed in parallel are the literals of a goal clause, hence subexpressions of formulae.



226 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

have appeared since [21] was written in 1992, offering an up to date survey of
the field. Last, the analysis in [21] emphasized the difficulty of parallelizing
contraction-based strategies, and was more optimistic on the parallelization of
subgoal-reduction strategies. After eight years of additional research by several
authors, we reassess our evaluation of the difficulty of parallelizing theorem prov-
ing, including also subgoal-reduction strategies.

2. Sequential theorem-proving strategies

We begin by recalling basic concepts and terminology that will be referred
to in the following. Surveys on the subject include [12,47,53,85,11,49,84,59,24,6,
34,20], where the interested reader may find extensive bibliographies.

based
strategies

on clauses or chainsexpansion-
oriented
strategies

contraction-

(synthetic)based

linear strategies

strategies

tableaux-based strategiessemantic
or supported
strategies

(analytic)

(synthetic)
instance-

theorem-proving strategies

linear-input strategiestarget-oriented strategies

subgoal-reduction strategiesordering-based strategies

Figure 1. A taxonomy of theorem-proving strategies.

Ordering-based strategies (see Figure 1) include the strategies resulting from
the merging of the resolution-paramodulation paradigm with the term-rewriting
and Knuth-Bendix paradigm. We call them ordering-based to emphasize that
exactly because the strategy works with a set of clauses, it can use a well-founded

ordering to order them, and possibly delete clauses that are greater than and
entailed by others. These strategies work by adding clauses to the set – expan-

sion inferences such as resolution and paramodulation – and deleting clauses or
replacing them by smaller ones – contraction inferences, such as subsumption and
normalization by rewriting. The state of a derivation contains the set of clauses
that have been generated and kept (i.e., not deleted by contraction). Since this
set typically grows very large, the strategy may employ eager-contraction search
plans to keep it maximally reduced, and indexing techniques to retrieve elements.

Strategies that feature only expansion rules, or apply contraction rules only
for forward contraction (i.e., normalization of newly generated data with respect



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 227

to the existing set), are called expansion-oriented. Strategies with both forward
and backward contraction (i.e., normalization of data already in the set with re-
spect to the new insertions), and an eager-contraction search plan, are called
contraction-based. Ordering-based strategies are not goal-sensitive in general:
semantic or supported strategies use semantics to introduce some goal-sensitivity;
target-oriented strategies are equational strategies that may employ heuristic syn-
tactic criteria to enhance goal-sensitivity.

By generating and keeping clauses, an ordering-based strategy builds many

proof attempts implicitly; only when an empty clause is generated, the strategy
reconstructs the proof (i.e., an ancestor-graph of ✷) from the set of generated
clauses, starting from the empty clause and proceeding backward towards the
input clauses.

Subgoal-reduction strategies include those based on linear resolution, model
elimination, hence Prolog Technology Theorem Proving (PTTP), problem reduc-
tion format methods, and tableaux-based methods. The name subgoal-reduction

strategies emphasizes that each step in the derivation consists in reducing a goal
to subgoals (e.g., the current center clause in linear resolution, the current chain
in model elimination, the selected leaf in a tableau), so that these strategies are
goal-sensitive. The state of a derivation contains the current proof attempt (e.g.,
a linear deduction, a tableau). Since subgoals may repeat and cause redundant
inferences, various forms of lemmatization, or caching, may be used to save al-
ready computed solutions and limit repetitions.

Linear resolution and model elimination are linear strategies: they search
for a linear ancestor-graph of ✷. While ordering-based strategies restrict the
search, by imposing local requirements on each inference step (e.g., resolve only
on maximal literals), linear strategies restrict the search by imposing require-
ments on the shape of the proof (i.e., linear). Furthermore, model elimination
is a linear-input strategy. Linear resolution and model elimination with chains
are synthetic strategies, because they generate clauses from clauses and chains
from chains, respectively. All ordering-based strategies are synthetic. Subgoal-
reduction strategies based on tableaux, on the other hand, are analytic, because
they build a survey of interpretations by decomposing formulae into subformulae,
and obtain a proof of unsatisfiability by showing that no interpretation is a model
(closed tableau)2. In synthetic strategies, most general unifiers apply to the gen-
erated data (clauses or chains), while in analytic strategies most general unifiers
apply to the entire tableau, because the variables of a formula may appear on
more than one branch in the tableau. Some authors refer to this characteristic
by saying that variables in tableaux are rigid. Some features of ordering-based
and subgoal-reduction strategies are summarized in Table 1.

Instance-based strategies implement directly the Herbrand theorem by gen-

2 Model elimination with chains can be interpretated in this fashion also, since a chain encodes
a candidate model.



228 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

Ordering-based Subgoal-reduction

Data set of objects one goal-object at a time

Proof attempts built many implicitly one at a time

Proof-confluent yes no

Goal-sensitive no yes

Contraction yes no

Generated search space all generated clauses all tried proof attempts

Active search space all kept clauses the current proof attempt

Generated proof the ancestor-graph of ✷ the closed proof attempt

Table 1
Some features of ordering-based and subgoal-reduction strategies.

erating sets of ground instances of the existing clauses and testing them for un-
satisfiability by propositional methods. We place them in a separate class in the
middle between ordering-based and subgoal-reduction strategies (see Figure 1),
because they have something in common with both. On one hand, they are syn-
thetic (e.g., generate instances) like ordering-based strategies; on the other hand,
they resemble tableau-based strategies because of the way the latter close the
tableau by progressively instantiating the formulae.

We consider next the search plans. Ordering-based strategies typically
use best-first search, with various heuristic functions. Because they accumulate
all generated non-redundant data, ordering-based strategies are proof-confluent,
meaning that if the inference system (including contraction) is complete, and the
search plan is fair, the order of inferences does not affect completeness3. These
strategies do not need backtracking, and whatever they do may further one of
the implicit proof attempts. As an example, consider the basic control algorithm
used in ordering-based provers such as Otter, with a list of clauses to-be-selected
(conceptually, the frontier of the search) and a list of clauses already-selected.
Assume that the search plan is depth-first, so that to-be-selected is handled as a
stack4. Even with depth-first search this kind of strategy does not need back-
tracking, because if it selects a clause ϕ that produces no children (i.e., a clause
that “fails”), all it has to do is to move ϕ to already-selected and select another
clause.

Some authors call this control saturation-based, but we find this name po-

3 The notion of proof-confluence is analogous to the notion of confluence in rewriting: in a
confluent term rewriting system the order of rewrites does not affect the normal form, if one
exists.

4 This strategy is obviously incomplete.



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 229

tentially misleading in a few ways. First, it suggests that the goal of the strategy
is to generate a saturated set of clauses5, whereas the goal of the strategy is to
find a proof. Second, it suggests that all searches are exhaustive (e.g., level satu-
ration in resolution-based theorem proving means breadth-first search), whereas
all non-trivial results by these strategies were obtained by using non-exhaustive
heuristics (e.g., best-first search with heuristic function weight and deletion of all
clauses above a certain weight in Otter and similar provers). Third, the strategy
terminates with a non-trivial saturated set, only if it fails to find a proof, because
the input set is satisfiable and has a finite saturated set. In many satisfiable cases
the saturated set is infinite, so that the strategy does not halt. In either case, it
seems odd to name a theorem-proving strategy by a feature that it displays when
it fails to find a proof. Of course, one can say that the strategy generates a sat-
urated set also when it finds a proof, because ✷ subsumes all other clauses, and
{✷} is saturated. This is a correct and elegant solution from a purely theoretical
point of view that considers the inference system only, but it is not satisfactory
from a point of view that aims at combining theory and practice, and also takes
the search plan into account: when the strategy halts having generated ✷, it is
not true in general that it has saturated the search space, and no theorem prover
subsumes all generated clauses by ✷. Rather, it uses them to reconstruct the
proof.

Subgoal-reduction strategies typically use depth-first search with backtrack-

ing and iterative deepening (DFID). In principle, one can search for a linear
refutation, or a closed tableau, by any search plan, including breadth-first and
best-first search plans. Such a search plan, however, requires the strategy to gen-
erate and keep in memory a set of proof attempts (linear deductions or tableaux),
which represents the frontier of the search. Depth-first search, with iterative deep-

ening to preserve fairness, is usually preferred because it requires the program
to keep in memory only one proof attempt at a time, and the others will be
considered upon backtracking. If no step applies to the current linear deduc-
tion or tableau, or the current limit of iterative deepening has been reached, the
search plan backtracks. The use of backtracking means that the strategy is not

proof-confluent.
Ordering-based strategies use best-first search because each node in the

search space is a clause, but keeping in memory the whole frontier when each
node in the search space is a deduction, or a tableau, may be more onerous.

In addition, the linearity requirement leads to depth-first search and appears
at odd with other search plans: take best-first search, let D1, . . . ,Dn be the linear
deductions being pursued, and let ϕ1, . . . , ϕn be the current goals (i.e., current
center clauses) of D1, . . . ,Dn, respectively. Assume that ϕ1 and an ancestor of
ϕ2 generate the empty clause: it would be natural to generate it and conclude the

5 A set of clauses is saturated with respect to an inference system and a notion of redundancy if
all clauses that could be derived by the system are redundant.



230 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

search, but the strategy forbids such a move, because the generated refutation
would not be linear.

In analytic tableaux [89] (or equivalently the basic cut-free Gentzen system G
[89,90]), which may be considered as an ancestor of subgoal-reduction strategies,
backtracking is not an issue, because after trying a proof attempt (e.g., a set
of applications of the γ-rule to instantiate the universally quantified variables),
one switches to the next one simply by extending the tableau with fresh copies
of the universally quantified formulae. Mechanical subgoal-reduction strategies
instantiate universally quantified variables by unification. If they use depth-first
search and therefore keep in memory only one proof attempt at a time, they need
to undo the unsuccessful instantiation of variables and switch to a new proof
attempt by backtracking6.

We have emphasized best-first search for ordering-based strategies and DFID
for subgoal-reduction strategies, because they are the most commonly used, and
in this paper we are interested in the parallelization of the strategies used in prac-
tice. In principle, however, all types of inference can be matched with search plans
other than the dominating ones, and one of the purposes of studying parallelism
is precisely to investigate new forms of control.

3. Principles of parallelization

In parallelism at the term level, the data accessed in parallel are subexpres-
sions of a formula such as terms or literals (here a “formula” means the basic unit
of the language the inference system is for), and the parallel operations are sub-
tasks of an inference step. Thus, parallelism happens below the inference level, as
in parallel matching, parallel unification and parallel term rewriting. The rationale
for parallelism at the term level is that since a strategy executes these low-level
operations very frequently, if one can make them very fast by parallelism, the
overall performance of the strategy should improve.

In parallelism at the clause level, the data accessed in parallel are formulae,
and the parallel operations are inferences, so that parallelism is at the inference

level. Theorem-proving methods with parallel inferences within a single search

(e.g., parallel resolution steps) belong to this category. The motivation is to
speed-up the execution of the strategy by doing many inferences at each step.

In parallelism at the search level, multiple deductive processes search in
parallel the space of the problem until one of them finds a proof. Each process
executes a strategy, develops a derivation and builds its own set of data.

6 In recent years, there has been some progress in the design of proof-confluent subgoal-reduction
strategies [13,8,10]: the approach of [10], however, still needs to rely on the γ-rule for univer-
sally quantified variables; the approach of [13,8] resembles the instance-based approach of
[75]: unification is used to generate instances, but subsumption cannot be applied to remove
redundant instances.



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 231

Parallelism at the term, clause, and search level aim at representing fine-
grain, medium-grain and coarse-grain parallelism for deduction, respectively, be-
cause the distinction is based on the granularity of the parallel operations and
the data they manipulate, as shown in Table 2.

Parallelism Data accessed in parallel Parallel operations

At the term level subexpressions of formulae subtasks of inference

At the clause level formulae inferences

At the search level sets of formulae derivations

Table 2
Granularities of parallelism in deduction.

The border between parallelism at the term and clause level may not be
always clear cut. For instance, parallel term rewriting overlaps with both paral-
lelism at the term level (the data accessed in parallel are terms), and parallelism
at the clause level (if each rewrite step is regarded as an inference). Thus, its
classification is affected also by the application: in a context where the whole
computation is a reduction one may consider parallel term rewriting as paral-
lelism at the clause level; this may be the case for parallel rewriting machines
(e.g., [62,48,73,1,2]) and parallel interpreters of functional languages (e.g., [71]).
In the context of theorem proving, where the whole computation is better seen as
a search, and each normalization, rather than each rewrite step, may constitute
an inference, it is more natural to consider parallel term rewriting as parallelism
at the term level.

A key factor in classifying methods with parallel search is how they differ-
entiate and combine the activities of the deductive processes. A possibility is to
subdivide the search space among the processes by subdividing the inferences or
decomposing the problem: we call this principle distributed search, using the word
“distributed” in its literal meaning of “giving each a share of something”. Dis-
tributed search needs communication to preserve completeness and load-balance;
its aim is to obtain a speed-up over the sequential search by ensuring that each
parallel process has to search only a part of the whole space.

Another possibility is to let each process handle the problem in its entirety
and differentiate them by having each process use a different search plan: we
call this principle multi-search, because multiple plans are applied. Multi-search
needs communication to allow every process to take advantage of the results of
others, and also for completeness, if some processes employ unfair search plans.
The intuition behind multi-search is that parallel processes executing different



232 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

search plans will search the space of the problem in a different order. Thus,
multi-search aims at obtaining a speed-up over sequential search by letting each
process take advantage of data earlier than its search plan would allow, because
such data has been generated and communicated by other processes following
different plans. Note that also distributed search may induce this effect, because
a process barred from exploring a certain part of the search space may reach
sooner deeper parts of its allowed portion, and send to other processes not only
data that they would not generate because of the partition, but also data that
they would generate much later. Distributed search and multi-search are not
mutually exclusive: a strategy may feature instances of both principles.

A third option is to let each process have the same problem and search plan,
but assign them different inference systems, leading to what is called a hetero-

geneous system. A motivation for heterogeneous systems is to use parallelism to
combine subgoal-reduction and ordering-based strategies, typically by enabling
subgoal-reduction processes to use clauses generated by the ordering-based pro-
cesses as lemmas (e.g., see [25] for a study of lemmatization as combination of
forward and backward reasoning and more references). Another possibility is to
combine a theorem-proving strategy with a model-building strategy (e.g., [32]
for the idea of simultaneous search for refutations and models, with a sequential
control). If a heterogeneous system is combined with multi-search, each pro-
cess executes a different theorem-proving strategy. On the other hand, parallel
search approaches where all processes have the same inference system are called
homogeneous. Figure 2 summarizes this classification of parallelization principles.

parallelism at
the term level

parallel

distributed

matching

parallel
rewriting

parallelism at
the clause level

AND-parallelism

inferences

parallelism at
the search level

parallel
unification

of parallel
other forms

OR-parallelism

parallelism in deduction

homogeneous
inference systems

heterogeneous
inference systems

multi-searchsearch

Figure 2. Types of parallelism in deduction.

While in theory everything can be implemented in either shared memory or
distributed memory, most methods with parallelism at the term or clause level



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 233

use shared memory, and most parallel search methods use distributed memory.
For this reason, distributed deduction and distributed strategies have been used
for methods with parallelism at the search level, implemented in environments
with distributed memory (e.g., networks of workstations), regardless of whether
the method employs distributed search or multi-search. In this taxonomy, we
use “distributed” for distributed search. Tools for parallel programming often let
the high-level application programmer ignore whether the memory is physically
shared or distributed. For example, the definition of a parallel-search strategy
typically requires separate data bases and communication by message passing;
however, the latter can be implemented over a network or in a shared memory,
depending on the architecture (e.g., network of workstations or shared-memory
multi-processor) specified at compilation time. Thus, what is relevant is not the
physical memory, but the logical view of the memory: for instance, for ordering-
based strategies, whether the method assumes a shared data base of clauses, or
separate data bases and communication by message passing. In the following,
we use shared and distributed referring to the definition of a method, not its
implementation on either type of physical memory.

4. The search plan and parallelism at the term level

We begin by considering parallel term rewriting. Strategies for term rewrit-

ing can be seen as linear-input subgoal-reduction strategies: given a set R of
rewrite rules, and a term t0 to be normalized, states are pairs (R, ti), where ti is
the reduced form of t0 after i steps, and the search plan has the form: Σ = 〈ξ, ω〉,
where ξ selects the redex for the next step and ω((R, ti)) = true if ti is R-
irreducible. If R is confluent, the normal form is unique regardless of the order of
rewriting, and therefore there is no need for backtracking. In theorem proving,
in general, one cannot assume that R is confluent, and seeks any R-irreducible
form without backtracking. Since there is only one inference rule (simplification
by rewriting) and no backtracking, there is no need for ζ.

A parallel search plan for rewriting could be defined as a pair Σ′ = 〈ξ′, ω〉,
where ξ′ selects a set of redexes to be rewritten in parallel. The question is how
to determine such a set. Given a term to be rewritten t, and two rewrite rules
l1 → r1 and l2 → r2 that apply to t, their redexes are overlapping if the two rules
overlap, that is, l1 unifies with a non-variable subterm of l2 (e.g., given the term
f(h(a, a), a), the subterms f(h(a, a), a) and h(a, a) are overlapping redexes for
the rewrite rules h(x, x) → x and f(h(z, y), z) → y, because h(x, x) unifies with
h(z, y)). Otherwise, the redexes are non-overlapping. Non-overlapping redexes
include disjoint redexes (e.g., given the term f(h(a, a), g(b)), the subterms h(a, a)
and g(b) are disjoint redexes for the rewrite rules h(x, x) → x and g(b) → c), and
redexes such that the two rules overlap at a variable position (e.g., the rewrite
rules h(x, x) → x and f(y, c) → y overlap at a variable position in f(h(a, a), c),



234 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

so that f(h(a, a), c) and h(a, a) are non-overlapping redexes).
If terms are represented as trees, all and only the disjoint redexes can be

rewritten in parallel without causing conflicts. In concurrent rewriting [73] terms
are represented as dags (direct acyclic graphs); in a dag, all and only the non-

overlapping redexes can be rewritten in parallel without causing conflicts. It
follows that dags allow more parallelism than trees. One could then say that tree-
behavior corresponds to a ξ′ that selects all disjoint redexes, and dag-behavior
corresponds to a ξ′ that selects all non-overlapping redexes (maximal concurrent

rewriting). However, it appears that ξ′, hence Σ′, are superfluous, in the sense
that the data structure chosen for terms dictates what is done in parallel.

The data-driven nature of this sort of parallelism becomes even more appar-
ent considering the implementations of concurrent rewriting in [73,1] and condi-
tional concurrent rewriting in [2]: concurrent rewriting was realized by a network
where processes and communication channels correspond, respectively, to nodes
and arcs of the dag of the term to be rewritten. Thus, there is a process for each
symbol in the signature, and each process performs actions based on messages
received from its neighbors in the term structure.

This fine-grained philosophy was extended to concurrent ground comple-

tion in [72,86]: the network implements the dags representing the sides of the
equations and all their subterms, and, in addition to subterm-arcs, there are
equality-arcs to represent the equations (since a total ordering on ground terms
is assumed, all equations can be oriented into rewrite rules, and the equality-
arcs are rewrite-arcs). The entire computation is driven by message-passing. By
exchanging messages, neighbor processes detect configurations that satisfy the
conditions to perform inference steps (i.e., a superposition, or a rewrite, although
in the ground case superposition steps also reduce to rewrite steps). Once such
a configuration has been detected, the inference is executed: new equations are
generated by adding arcs; symmetrically, deletions of equations by backward
contraction would correspond to deletions of arcs. However, arcs cannot be ac-
tually deleted, but a time-stamp mechanism is in place to enable the processes
to recognize arcs that were made obsolete by contraction, and are therefore dis-
abled. From the point of view of our analysis, the most relevant aspect is that
there is no notion of a process executing a search plan: given a network of terms
all conflict-free inferences happen concurrently, so that concurrency replaces the
control provided by a search plan.

The method of [52] may be considered parallelism at the clause level rather
than at the term level, because each node holds a clause. However, its approach
to the control issue resembles that of [73,1,2,72,86], in the sense that it is another
case where data-driven concurrency replaces the search plan. For instance, unit
resolution for propositional Horn clauses (the method is described for expansion-
oriented strategies, mostly for propositional logic) is realized by having nodes
broadcast unit clauses; all nodes resolve received unit clauses with their clauses
and broadcast the unit clauses thus generated, until some node generates an



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 235

empty clause.
While using the concurrency of the data structures to replace the search plan

may be attractive for ground inferences, it is problematic for general theorem
proving, where the role of the search plan is fundamental. The fine-grained
concurrent completion of [72,86] has not been extended to the non-ground case
for several reasons. As pointed out also in [86], this approach is very demanding in
terms of communication, because even subtasks of inferences, such as unifiability
tests (which reduce to identity tests in the ground case), require the nodes to
exchange messages. In the implementation of this method in the CWD system
[86] care has been taken to reduce the amount of message-passing with respect
to the theoretical definition, but it remains very high. This problem would get
much worse in the general case, where substitutions also need to be computed and
communicated. Another obstacle mentioned in [86] is that in the representation
of terms as dags variables are shared, so that a rather complicated mechanism
should be designed for variable renaming.

In our analysis these difficulties depend on a granularity of parallelism that
is too small for theorem proving. The amount of communication is too high,
because each node holds too little information (i.e., a single symbol), and unifica-
tion, orientation, and rewriting are small tasks with respect to a theorem-proving
derivation, so that having to perform communication to achieve these basic op-
erations represents too much overhead. The difficulty with variable renaming is
an aspect of the problem of managing the growth of the network of terms be-
cause of expansion. In term rewriting, there is no generation of new equations
by expansion inferences. In ground completion, the generation of new equations
consists in recognizing that certain ground terms are in the same congruence
class7, and this can still be handled by adding arcs between nodes. In theorem
proving also, at least in principle, this might be done, because the signature is
static, and all new terms are formed with the given function symbols, but there
are at least two difficulties. First, each equation needs its own variables, leading
to the variable renaming problem mentioned above. Second, a very high number
of equations can be generated, yielding an extremely complex network, since each
new equation means an additional arc and arcs are communication channels.

A third potential problem is related to backward contraction. In theorem
proving, and completion, every equation normalized by backward-contraction
needs to be applied to backward-contract the other clauses in the data base, so
that each backward contraction step may induce many. This avalanche growth
of contraction steps may cause a backward-contraction bottleneck [21], if many
processes ask for write-access to a shared data base to do backward contraction.
The method of [72,86] is completely distributed, and therefore the problem with
backward-contraction could not appear in form of a bottleneck in shared memory.

7 Computing the completion of a set of ground equations consists in computing a congruence
closure [60].



236 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

However, backward-contraction in the non-ground case would represent a problem
for the time-stamp mechanism devised in [72,86] to keep track of deletions: the
network would not only grow very complex because of additions of equations, but
many arcs would become obsolete because of backward-contraction, resulting in
high overhead from the time-stamp mechanism.

A different approach was exemplified by the fine-grained parallelization of
rewriting and completion in PaReDux [29,31]. PaReDuX implements completion
on top of a low-level implementation of parallel rewriting using threads. The
philosophy of PaReDux is to be strategy-compliant, in the sense that inferences
are guaranteed to occur in the same order as in the sequential strategy. In other
words, if C = 〈I,Σ〉 is a sequential strategy, and C′ is the strategy executed by
a strategy-compliant parallel implementation of C, then C′ = C. The aim of this
type of approach is to obtain a speed-up by executing faster the same steps in
the same order, but the downside is excluding the use of parallelism to explore
the search space in different ways8.

In summary, exactly because parallelism at the term level is below the level
where the search plan makes decisions, either the search plan is replaced by a
low-level data-driven form of concurrency, as in concurrent term rewriting, or the
search plan is left untouched, as in strategy-compliant parallelizations.

5. The search plan and parallelism at the clause level

In parallelism at the clause level, the common philosophy is to consider
inferences, or groups thereof, as tasks, and conceive the control problem as a
task scheduling problem. This approach emerges from studying clause-level par-
allelizations of both ordering-based and subgoal-reduction strategies.

For the ordering-based strategies, we consider the parallel prover ROO
[77,78] as a paradigmatic example. ROO was designed to parallelize the well-
known Otter theorem prover [79]. The core of Otter’s control is a main loop,
which works with a list of clauses to be selected, called sos for historical reasons
(the set of support strategy), and a list of clauses already selected, called usable,
because these clauses can be used for inferences. At each iteration, Otter selects a
clause ϕ – called the given-clause – from sos, generates all the clauses that can be
generated by the active expansion inference rules from ϕ and clauses in usable,
inserts the non-trivial normal forms of these clauses into sos (forward contrac-
tion), applies them to contract clauses in sos and usable (backward contraction),
and appends ϕ to usable. In the backward-contraction phase, reducible clauses
are removed from sos and usable, and their non-trivial normal forms are inserted
into sos and also applied as backward-contractors. The iteration halts when sos

is empty. By default, the given-clause is the lightest in sos, corresponding to

8 See also Section 6.1 for later developments of PaReDuX.



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 237

a best-first search with the weight of clauses as evaluation function, where the
default definition of “weight” is the number of symbols.

The basic idea of ROO was to have several given-clauses active in parallel.
Let Task A be the task of performing the body of the main loop of Otter for
a given-clause: in ROO multiple parallel processes execute Task A, each with a
different given-clause, on shared sos and usable. Clearly, this causes conflicts

among the parallel inferences, hence among the parallel processes accessing the
shared lists. A first type of conflict arises when different processes executing Task
A need to append generated clauses to sos. A second type of conflict happens
between expansion and contraction: assume processes p1 and p2 generate a set
S1 and a set S2, respectively, of new clauses; the clauses in S1 are not reduced
with respect to the clauses in S2 and vice versa; if the processes are allowed to
insert them into sos, the conflict is solved in favor of expansion (eager parallel
expansion), but the data base is not inter-reduced. A third type of conflict
(between contraction inferences) occurs when different processes executing Task
A need to delete backward-contracted clauses in sos and usable.

The first two problems were addressed in ROO by having a third list, called
k-list, and establishing that all processes append clauses to k-list rather than
sos. The third one was addressed by establishing that the processes executing
Task A do not perform deletions on sos and usable, but append the identifiers
of the clauses they need to delete to a fourth list, called to-be-deleted. A
different task, Task B, was defined to handle k-list and to-be-deleted, with
the provision that only one process can execute Task B at any given time. Thus,
Task B consisted of extracting a clause from k-list, forward-contracting it,
inserting its normal form into sos, using it for backward-contraction, and deleting
the clauses whose identifier is in to-be-deleted. In essence, in order to avoid
conflicts among parallel inferences, backward-contraction inferences were handled
sequentially (i.e., only one process executes Task B). The problem with this
solution was that if a high amount of backward contraction was required (e.g.,
in equational theories), Task B would become a backward-contraction bottleneck

and all the other processes scheduled to execute Task A would starve.
From the point of view of the search plan, the control of ROO is obtained

by breaking the activities of Otter into tasks: each given-clause is a task of
type A (the expansion inferences with that given-clause), and each clause in the
k-list is a task of type B (the contraction inferences with that clause). Then, a
parallel search plan is a scheduler that assigns tasks to parallel processes. Similar
considerations apply to other approaches based on parallelism at the clause level
such as PARROT [70], which was a predecessor of ROO for expansion-oriented
strategies, and the parallel implementation of completion in [103], where each
inference rule of completion was considered a type of task or transition.

A more recent example in the instance-based family is the clause-level par-
allelization of hyper-linking in [102]. Hyper-linking [75] interleaves instance gen-
eration by hyperlinking (similar to hyperresolution, but every step generates an



238 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

instance of the nucleus, not a hyperresolvent) and unsatisfiability testing by the
Davis-Putnam algorithm [38,37]. Two approaches for introducing parallelism
were considered in [102]: one consisted in running the Davis-Putnam phase in
parallel with the subsequent hyperlinking phase (e.g., generate Si+1 while testing
the unsatisfiability of Si); the other one consisted in performing parallel hyper-
linking steps within each phase of hyperlinking.

The second approach yields in turn three variants, depending on the sequen-
tial implementation of hyperlinking being parallelized. If the sequential imple-
mentation is list-based (clauses and literals stored in lists, with hyperinstances
generated by list traversal), the parallelization adopts clause-level parallelism,
where each parallel process selects a nucleus and generates all its hyperinstances,
with the lists in shared memory. If the sequential implementation is net-based (a
net of literals, similar in spirit to discrimination nets, with hyperinstances gen-
erated by having each literal traversing the net), the parallelization may adopt
either literal-level parallelism or flow-level parallelism. In the former, each paral-
lel process takes care of one literal, and in the latter, each parallel process takes
care of a path in the net. In both cases, the net is held in shared memory and
the two approaches can also be combined. In all three approaches critical regions
and semaphores are used to control access to the shared memory.

In hyperlinking, contraction is limited to forward unit subsumption and
clausal simplification. These contraction inferences can be implemented as tests
during the generation of a hyperinstance, and a backward-contraction bottleneck
does not occur. However, there are still the problems of concurrent insertion of
hyperinstances in the shared data base and insertion of duplicate hyperinstances.
These are solved by endowing each process with a local memory, where it stores
temporarily its hyperinstances, and updating the shared list, or net, sequentially.
What is most relevant to our discussion is that in all three medium-grain paral-
lel hyperlinking techniques (clause-level, literal-level and flow-level), the control
component is a scheduler that assigns to processes clauses, literals or paths, re-
spectively.

The notion of controlling parallel inferences via task scheduling is common
also to subgoal-reduction strategies with parallelism at the clause level, where
the tasks are the subgoals. Since subgoal-reduction strategies try one proof at
a time, backtrack upon failure and try another one, the first idea to introduce
parallelism in such strategies was to try in parallel the proof attempts that would
be tried sequentially. Because upon backtracking the strategy tries another proof
by trying another clause (another rule in Prolog terminology), this idea leads to
trying clauses in parallel, that is OR-parallelism. The first prover based on this
principle was PARTHENON [28], soon followed by PARTHEO [88], in a tableau-
based context, and METEOR [3], in the context of PTTP. In these systems, the
shared structure is the stack of goal literals (e.g., in PARTHENON and the version
of METEOR in shared memory), each goal literal is a task, and the essential part
of the parallel search plan is the mechanism that assigns tasks to processes (e.g.,



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 239

task stealing).
Two more recent instances of parallelism at the clause level are the HOT

prover [74] for higher-order analytic tableaux (as opposed to first-order model-
elimination tableaux as in PARTHEO), and the system of [65] to parallelize the
Gentzen-style (propositional) proofs generated as subproofs during an interactive
proof with the Nuprl system [51]. The above considerations on the search plan
as a scheduler still apply, as well as the notion of task: regardless of whether we
consider a model-elimination tableau, or an analytic tableau, or a Gentzen-style
proof, the leaf of every open branch is a task. The shared structure is a blackboard

[50] in HOT, whereas the system of [65] uses both messages and shared memory
with locks.

In summary, because parallelism at the clause level parallelizes the inferences
within one derivation, and the inferences within one derivation are precisely what
the search plan is supposed to order, a parallel search plan for parallelism at the
clause level is essentially a scheduler that assigns inferences to parallel processes.

6. The search plan and parallelism at the search level

In parallelism at the search level, each process generates a derivation, and
therefore needs to execute a search plan. In addition to deduction, parallel search
involves controlling communication (for both multi-search and distributed search)
and subdivision of the work (for distributed search). If the control of deduction
and the control of parallelism are separate, the search plan is responsible only
for the control of deduction like in the sequential case, and therefore the par-

allelization does not modify the search plan. This happens in master-and-slaves

approaches, where the master is responsible for communication, subdivision of
work and no deduction, while each slave generates a derivation according to a
sequential search plan. If the control of deduction and the control of parallelism
are combined, the search plan needs to control both, and therefore a different no-

tion of search plan is necessary. This happens in approaches where the processes
are peers.

6.1. Parallel search with master and slaves

In the master-slave organization, all communication happens between the
master and each slave. A typical way of applying it to distributed search is to
let the master process subdivide the work, and assign work batches to the slaves.
This was the case for instance in PSATO [104], a distributed-search master-
slave implementation of the Davis-Putnam algorithm [38,37] for propositional
satisfiability. For this algorithm, the search space is the static and finite tree of
its recursive calls, so that the distribution consisted in assigning subtrees to slaves.
If a slave reports “satisfiable”, the master halts all slaves, whereas only when all
slaves have reported “unsatisfiable”, can the master declare the set unsatisfiable.



240 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

All the following methods are for theorem proving, and therefore it is sufficient
that a deductive process finds a proof to terminate the parallel search.

If multi-search and master-slave hierarchy are combined, the slaves try differ-
ent search plans on the whole problem, and the master process is responsible for
merging their results. An example of this approach was the Team-Work method,
originally conceived for ordering-based equational strategies [39,4,5,46,44,42], and
later extended to a framework for applications in distributed artificial intelligence
[45]. The master process, called supervisor, assigns to every slave the theorem-
proving problem, a time period, and a different search plan. The slaves, called
experts, develop their derivations. When the time period expires, each slave inter-
rupts its derivation, evaluates it based on heuristics, and sends the result of the
evaluation to the master. The master determines which slave had the best result,
and broadcasts this information, so that this slave becomes the new master, and
the other slaves send it their “best” equations based on heuristics. The master
adds them to its data base and then broadcasts it to the slaves, together with a
time period and a search plan for the new round of deductions. Team-Work seeks
to achieve a speed-up by interleaving search plans (e.g., slave pi applies search
plan Σi to a data base produced in the previous round by a search plan Σj), and
also combining their results (because selected equations from all slaves are added
to the new common data base). In Team-Work the master-slave hierarchy is not
rigid, since the role of master floats, but the method belongs to this class because
it has a central control. The PaReDux system also evolved from the fine-grained
approach of [31,29] to a master-slave concept à la Team-Work [30].

For subgoal-reduction strategies, the “nagging” technique of [91] combined
AND-parallelism, master-slave organization and multi-search in the context of
PTTP. The well-known drawback of AND-parallelism at the clause level is the
dependencies induced by variables shared among the conjuncts. The “nagging”
technique assumes that the master is a standard PTTP prover, which, however,
may fork slave processes to try different permutations of the current goal, and
if a permutation fails the slave sends a message to the master to force it to
backtrack. Thus, AND-parallelism is employed only for early failure detection.
We interpret “nagging” as multi-search, because trying different permutations can
be understood as assigning different AND-rules (i.e., different ξ) to the processes.

In heterogeneous systems with a master-slaves organization, the slaves try
different sets of inference rules, and the master combines their results. For in-
stance, the HPDS system of [92] had three deductive processes, one executing
Guided Linear Deduction (GLD), which is similar to model elimination, one ex-
ecuting hyperresolution (HR), and one executing unit-resulting resolution (UR).
All three processes featured forward and backward subsumption, and a depth-
first search plan with iterative deepening. Every process sends the clauses it
generates, including subsumed clauses tagged as such, to a deduction controller

(the master), which forwards to the GLD and HR processes the unit clauses gen-
erated by the UR process, and feeds the latter with the clauses generated by



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 241

the other two. Clauses generated by GLD may be forwarded to the HR process,
but not vice versa: clauses derived by the HR or UR processes play the role of
lemmas for the GLD process, and by sending only unit clauses to the latter, the
deduction controller restricts lemmatization to unit lemmas. Furthermore, the
deduction controller gives every process information on clauses subsumed by the
other processes.

Another approach with a master-slave organization and heterogeneous in-
ference systems was the Distributed Larch Prover (DLP) [95], a coarse-grain
parallelization of the Larch Prover (LP) [61]. Since LP is interactive, a main mo-
tivation for the design of DLP was to enhance the user productivity by enabling
the experimenter to launch and monitor multiple proof attempts in parallel. For
this purpose, the master operates as a coordinator, which on one hand provides
the user with a global interface to control the parallel proofs, and on the other
hand is responsible for assigning to the slaves, called workers, the proof tasks
specified by the user.

In summary, the master-slave philosophy is to separate the control of par-

allelism and the control of deduction: in most methods, each slave executes a
sequential search plan to generate its derivation, and all other control issues
(e.g., subdivision, communication, selection of “good” data, user interface) are
dealt with in a centralized way by the master, which does not perform deduc-
tions. Thus, a parallel search plan for such strategies can be seen as a collection

of sequential search plans, one per slave. If C = 〈I,Σ〉 is a sequential strategy,
and C′ = 〈I,Σ′〉 is a parallel-search master-slaves parallelization of C, we have
Σ′ = 〈Σ1, . . . ,Σn〉, if there are n slaves. In the case of distributed search with no
multi-search, it is Σ1 = · · · = Σn, and the activities of the slaves are differentiated
only by subdivision decided by the master.

6.2. Parallel search with peer processes

The master-slaves hierarchy is attractive, precisely because of the simplicity
gained by separating the control of parallelism from the control of deduction. It
worked well in PSATO [104], because there was no need for communication among
slaves and the partition of the search tree was well-understood. In ordering-
based theorem proving, the subdivision is much more difficult, because the search
space is generally an infinite, highly redundant and dynamic graph (because of
pruning by contraction [26]). Slaves need to be aware of the contractions made by
other slaves, which means the master may become a communication bottleneck.
If the master alone is responsible for contraction, it may become a backward-

contraction bottleneck. Also in multi-search the master-slaves hierarchy induces
some overhead (e.g., the periodical interruption of the slaves, and reconstruction
of a common data base at the master in Team-Work).

For these reasons, more recent approaches to parallel search adopt peer
processes. In multi-search, the search plan executed by each peer needs to control



242 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

communication and deduction, and a multi-search plan is a collection of n such
plans. In distributed search, the search plan executed by each peer needs to
control also the subdivision of work.

6.2.1. Multi-search plan

A theorem proving strategy with parallel search features, in addition to the
inference system I, a set M of communication operators, including at least send
and receive. We define the communication operators in such a way that they are
as similar as possibile to inference rules. First, assuming that all processes exe-
cute sound inferences, there is no difference, from a logical point of view, between
clauses received from another process and clauses generated locally. Second, from
an operational point of view, if process pk sends a clause ϕ to process pj and pj
receives it, the effect is that ϕ is added to the database of pj, which is not so
different from adding ϕ because it was deduced. Third, since we view communi-
cation as a responsibility of the search plan, we want to include communication
steps in the derivation, and for this purpose we would like their effect to be as
similar as possible to that of inferences.

Based on this motivation, we define send and receive as functions that
return a set of clauses to be added and a set of clauses to be deleted (like the
inference rules), where addition and deletion refer to the data base of the process
executing the communication step. For the domain, the argument of send is
the set of data being sent, so that the type is send:P(LΘ) → P(LΘ) × P(LΘ).
Since send does not modify the data base of the sender, we have that for all
X, send(X) = (∅, ∅). If pk executes a send at step i, defining Sk

i+1 = Sk
i ∪

π1(send(X)) − π2(send(X)) gives Sk
i+1 = Sk

i as desired.
Since the set of data being received is not known until after it has been

received, we define receive: IN → P(LΘ)×P(LΘ), where the argument is a natural
number that may represent the identifier of a channel (similar to the identifiers
of streams used to implement input/output in functional programming languages
such as ML), or the address of a receiving buffer (similar to one of the arguments
of the functions for send and receive in MPI [63]). If pk executes a receive at
step i, n is an identifier of a channel or buffer for pk, and X is the set of data
pending to be received through n, receive(n) = (X, ∅), and defining Sk

i+1 =

Sk
i ∪ π1(receive(X)) − π2(receive(X)) gives Sk

i+1 = Sk
i ∪X as desired.

Since the search plan is in charge of communication, the rule-selecting func-
tion ζ may select not only inference rules, but also communication operators,
yielding ζ:States∗ → I ∪M , or ζ:States∗ × IN× IN → I ∪M , where the second
and third arguments are the identifier of the process which is doing the selection
and the number of processes, respectively.

Thus, a search plan with communication for a set I of inference rules and a
set M of communication operators has the form Σ = 〈ζ, ξ, ω〉, where



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 243

• ζ:States∗ × IN × IN → I ∪M selects an inference rule or a communication
operator for the next step;

• ξ:States∗ × IN× IN → P(LΘ) selects a set of premises from the current state
(e.g., ξ((S0, . . . , Si), n, k) ⊆ Si); and

• ω:States→ Bool returns true if and only if the given state is successful.

A multi-search plan, or multi-plan for short, is a collection of search plans
with communication, one per peer process: Σ = 〈Σ0, . . . ,Σn−1〉.

6.2.2. Multi-search strategies with peer processes

Concrete instances of the above notions are offered by the successors of
Team-Work (e.g., [40,55,41]), where the periodical reconstruction of a common
data base was replaced by a communication scheme where every process may send
clauses to another process during the derivation. A multi-plan for these strategies
may combine premise-selecting functions ξi’s that employ different goal-oriented
heuristics (e.g., [43]), or different heuristics to decide which clauses deserve to
be sent (e.g., TECHS [41] or CPTHEO [57,100]). Although mentioned in some
papers, heuristics to decide which clauses to receive do not appear practical,
because they require the receiver to use the received data to determine whether
it is worth keeping it (e.g., a heuristic that rates an equation as “good” if it
contracts many equations).

The method of [55], called requirement-based cooperative theorem proving,
provides for two peer processes, one executing the SPASS prover [96], which
implements ordering-based strategies for first-order logic with equality, and one
executing DISCOUNT, the sequential base of the Team-Work prover for equa-
tional logic [5]. The two processes communicate by expansion requests (e.g.,
process p0 sends to p1 clause ϕ and p1 replies by sending all resolvents between ϕ
and the clauses in its usable list9), and contraction requests (e.g., p0 sends to p1
clause ϕ and p1 replies by sending all its clauses that contract ϕ), which fit in our
formal description of processes sending clauses. This system also features some
distributed search in the form of problem decomposition by splitting clauses.

The TECHS system [40,41] aims at combining heterogeneous provers while
minimizing changes to the provers themselves, to the extent that provers commu-
nicate by writing and reading files. TECHS combines SPASS and DISCOUNT
with the model-elimination tableau-based prover SETHEO [76,82]. SETHEO and
SPASS exchange subgoals (from SETHEO to SPASS) and lemmas (from SPASS
to SETHEO), while SPASS and DISCOUNT exchange equations. Heuristics to
select clauses to send include favoring unit lemmas and equations (from SPASS to
SETHEO, because ordering-based provers handle equality better than tableau-
based provers), and favoring short, general equations that one hopes may induce
much contraction and little expansion (between SPASS and DISCOUNT). Ac-

9 These provers adopted the terminology of Otter, with sos renamed to-be-selected.



244 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

cording to [40], SETHEO profites the most from the cooperation thanks to the
lemmatization effect. TECHS is used within the ILF environment that integrates
automated and interactive provers, model checkers, and tools for proof presenta-
tion [36].

A movement from fine or medium-grain to coarse-grain parallelism, and
from master-slaves to peer processes, occurred also in subgoal-reduction strate-
gies. The research begun with PARTHEO [88], which was based on OR-
parallelism at the clause level10, continued with SPTHEO [93], P-SETHEO [99]
and CPTHEO [57,100], towards heterogeneous, multi-search systems. CPTHEO
launches SETHEO and the resolution-based prover Delta, introduced as a pre-
processor for SETHEO in [87], in parallel. Since clauses generated by Delta are
used by SETHEO as lemmas, CPTHEO is also a descendant of HPDS [92], with
the master-slaves structure of HPDS replaced by peer processes in CPTHEO.
Assume that p0 is a SETHEO process and p1 a Delta process; p0 sends to p1 sub-
goals that it could not solve in the given resource (e.g., depth) limit of iterative
deepening; p1 replies by sending lemmas that unify with those subgoals; and p0
restarts with its next round of iterative deepening. In a different scheme, p0 sends
to p1 all open leaves in its current tableau, and p1 replies by sending lemmas that
appear “similar” to those leaves according to the criteria of [56]. In either case
p1 ranks and selects lemmas based on size (small term complexity is preferred),
size of proof (lemmas whose proof was large are preferred, because they are like
products with more added value, since more work was done by Delta to produce
them), and the similarity-based criteria of [56].

As another example, the “nagging” technique11 of [91] turned to emphasize
peer processes and multi-search over time, making the slaves first-class deductive
processes, which may complete the proof, rather than being used only for early
detection of failures.

6.2.3. Distributed-search plan

A distributed-search plan needs an additional component to handle the sub-
division. Since the search space of a theorem-proving problem is infinite and
unknown, at each stage Si of a derivation the search plan subdivides the infer-
ences that can be done in Si. Thus, the subdivision is built dynamically during the
derivation. We reason that from the point of view of each process pk, an inference
is either allowed (it is assigned to pk in the subdivision), or forbidden (it is assigned
to others). Therefore, a distributed-search plan features a subdivision function

α: IN × I × P(LΘ) → Bool, where α(k, f,X) = true/false means that pk is
allowed/forbidden to apply rule f to premises X. However, the subdivision func-
tion may keep the partial history of the derivation and the number of processes
into account, yielding α:States∗×IN×IN×I×P(LΘ) → Bool. We require that α

10 See Section 5.
11 See Section 6.1.



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 245

is total on generated clauses (i.e., α((S0, . . . , Si), n, k, f,X) 6=⊥ if X ⊆
⋃i

j=0 Sj),
and monotonic, in the sense of not changing the status of a step after it has been
decided (i.e., α((S0, . . . , Si), n, k, f,X) ⊑ α((S0, . . . , Si+1), n, k, f,X) where ❁ is
the partial ordering ⊥❁ false and ⊥❁ true).

Thus, a distributed-search plan for a set I of inference rules and a set M
of communication operators has the form Σ = 〈ζ, ξ, α, ω〉, where 〈ζ, ξ, ω〉 is a
search plan with communication, and α is a subdivision function. This notion of
distributed-search plan covers, for instance, the requirement-based theorem prov-
ing of [55], where inferences may be allowed/forbidden based on tags attached to
the premises to signify that the clause belongs to a certain subproblem generated
by splitting, and the Clause-Diffusion strategies of the next section.

6.2.4. Distributed-search strategies with peer processes

DARES [33] can be considered an early approach with distributed-search
and peer processes. The main idea was to subdivide the problem among the
processes, and let each process ask the others for more clauses, if it runs out
of applicable resolution inferences, or is not making sufficient progress towards
the proof according to heuristic measures. However, the method was described
very informally, and especially the subdivision part was unclear. The issue of
fairness of communication and subdivision, hence completeness of the distributed
strategy, was not treated. Furthermore, DARES was designed for resolution with
at most forward subsumption, at a time when it was already understood that
resolution with both forward and backward subsumption is generally preferable,
so that DARES avoided the difficulty of backward contraction, and parallelized
a sub-optimal sequential strategy, against the principle of parallelizing the best
existing sequential procedure.

The most long-lasting heritage of DARES has been the idea of demand-
driven communication, or that a process should receive clauses only if it needs
them. The critical point of this notion is what it means that a process “needs
clauses”, and whether the notion of “need” and the ensuing communication are
strong enough to ensure completeness in the presence of a subdivision of the
data. Not surprisingly, this notion of demand-driven communication has had
more fortune with multi-search strategies, such as those in Section 6.2.2, where
completeness can be preserved easily by choosing fair sequential search plans.

The Clause-Diffusion methodology of [15,22,23] pioneered distributed search
for contraction-based strategies. In addition to concrete strategies, it offered a
framework where distributed strategies, distributed derivations and their prop-
erties, such as distributed fairness, were defined and studied formally. Clause-
Diffusion was conceived as a methodology to transform a given sequential strategy
C = 〈I,Σ〉 into a distributed strategy C′ = 〈I,Σ′〉, in such a way that if C is com-
plete, C′ is also complete. A Clause-Diffusion strategy subdivides the search space
by assigning generated clauses to processes and partitioning the inferences among
the processes based on the ownership of clauses. For example, a process is al-



246 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

lowed to do a paramodulation step only if it owns the clause paramodulated into.
Unlike in a master-slave organization, where the master distributes the data to
the slaves, the allocation of clauses to processes is achieved by having each pro-
cess executing the same allocation algorithm for each clause it generates. The
resulting partition of clauses is logical, not physical as in DARES, in the sense
that every clause belongs to only one process, but may appear in the data base of
many. To emphasize this point, the term allocation algorithm was replaced later
by subdivision criterion [14].

In order to preserve completeness, the processes communicate clauses by
messages, called inference messages, because receiving a clause triggers the al-
lowed inferences. Sufficient conditions for fairness, hence completeness, include
broadcasting all persistent non-redundant clauses12. As soon as a process finds a
proof, it broadcasts a halting message so that all processes terminate.

While it applies to ordering-based strategies in general, the Clause-Diffusion
methodology was designed having contraction-based strategies for logics with
equality in mind. This brought the problem of the parallelization of contraction
to the forefront. It was in this context that the backward-contraction bottleneck

was identified, contributing to the choice (and the definition) of parallelism at the
search level. This led in turn to defining the problem of distributed global con-

traction, or how to keep a distributed data base inter-reduced. Several distributed
global contraction schemes were proposed in [15,22]. The scheme eventually im-
plemented in both Aquarius [23] and Peers [27] was the simplest: every process
retains the received inference messages so that its local data base mirrors the
global one, and keeps its data base inter-reduced13. While the main idea was dis-
tributed search, Clause-Diffusion also allowed processes to apply different search
plans (e.g., [23]).

Clause-Diffusion evolved into Modified Clause-Diffusion [16], which im-
proved subdivision of inferences, communication and proof reconstruction.
Clause-Diffusion subdivided only expansion inferences, whereas Modified Clause-
Diffusion subdivides also backward-simplification inferences, by establishing that
any process can delete a reducible clause ϕ, but only the owner of ϕ can generate
its reduced form ϕ′. If ϕ′ is persistent, it will be broadcast and the other pro-
cesses will receive it. In this way the subdivision of inferences is finer, without
preventing or delaying the deletion of redundant clauses. For communication,
Clause-Diffusion featured, in addition to inference messages, messages to bring
clauses to their owners. In Modified Clause-Diffusion also this purpose is achieved
by inference messages, reducing both types and number of messages. This is pos-
sible because clauses are broadcast as inference messages not when selected for

12 This is for distributed uniform fairness [22,16]; if the fairness condition were weakened, the
communication requirement would be weakened also; see [24] for a study of non-uniform fair-
ness.

13 This corresponds to the “localized image sets” with “direct contraction” scheme of [15,22].



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 247

inferences, as in Clause-Diffusion, but right after generation and forward con-
traction. This, together with better naming schemes (i.e., the rules to assign
identifiers to clauses across the distributed data base) contributed to achieving
the property of distributed proof reconstruction: the successful process can recon-
struct the proof consulting only its data base.

Modified Clause-Diffusion was implemented in Peers-mcd [17], with the Ar-
gonne prover EQP [80] as sequential base. Peers-mcd implements the ancestor-

graph oriented (AGO) criteria to assign clauses to processes [14,18]. An issue with
the subdivision of the search space is to prevent the search spaces explored by
the different processes from overlapping too much. Some overlap is unavoidable
in asynchronous distributed search: even if every inference is assigned to only one
process, there may be duplicate inferences, because the processes can generate in
different ways distinct variants of the same clauses, producing distinct variants
of the same logical inference, before the variants are eliminated by distributed
global contraction. Thus, the AGO criteria are heuristics that aim at limiting
the overlap, and are among the features that allowed Peers-mcd to generate the
first distributed proof of the Robbins theorem, as shown in the next section.

7. First distributed proof of the Robbins theorem

The problem of proving that Robbins algebras are Boolean dates back to
1933, when E.V. Huntington demonstrated [68,69] that the equation

n(n(x) + y) + n(n(x) + n(y)) = x (H)

is sufficient to present Boolean algebra, together with associativity and commu-
tativity of +. Herbert Robbins conjectured that the equation

n(n(x+ y) + n(x+ n(y))) = x (R)

is also sufficient. Since a proof of the conjecture was not found, an algebra defined
by equation (R) with associativity and commutativity of + was called a Robbins

algebra. Equations (H) and (R) were called Huntington axiom and Robbins axiom,
respectively. The problem of determining whether a Robbins algebra is Boolean
remained open, and eventually became known in the theorem proving community
as the Robbins problem [101].

In the early 90’s, Steve Winker proved by hand that each of the following
two conditions:

∃x∃y x+ y = x (FWC)

∃x∃y n(x+ y) = n(x) (SWC)

termed First Winker Condition and Second Winker Condition, respectively, in
[80], is sufficient to make a Robbins algebra Boolean [97,98], but such lemmas
remained beyond the possibilities of automated theorem provers.



248 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

In 1996 the automated prover EQP of William McCune proved that Robbins
algebras are Boolean, as reported in [81]. The proof was obtained by showing
that:

• The First Winker Condition implies the Huntington axiom (FWC ⇒ H).

• The Second Winker Condition implies the First Winker Condition (SWC ⇒
FWC).

• The Robbins axiom implies the Second Winker Condition (R ⇒ SWC).

This mechanical proof has been explained in mathematical terms in [35].
In the following we compare EQP (version 0.9d) and Peers-mcd (a version

of April 1999 based on EQP0.9d) on the three parts of the proof, on workstations
HP series C360 with 1 G of memory. In Table 3, speed-up is the ratio t/t′ if t is the
CPU time of EQP and t′ the CPU time of the peer that finds the proof. Efficiency
is the ratio t/(t′ × n), where n is the number of machines (i.e., workstations),
hence peer processes, one per machine, used by Peers-mcd.

Lemma EQP Peers-mcd Speed-up Efficiency

FWC ⇒ H 294 73 4 2
(4 min 54 s) (1 min 13 s)

SWC ⇒ FWC 85,890 23,713 3.62 1.81
(23 h 51 min 30 s) (6 h 35 min 13 s)

R ⇒ SWC 64,210 34,792 1.85 0.92
(17 h 50 min 10 s) (9 h 39 min 52 s)

Table 3
CPU times (in seconds) of EQP and Peers-mcd with 2 processes.

Since Peers-mcd used 2 processes, the speed-up was super-linear in the first
two lemmas and almost linear in the third. Peers-mcd can prove SWC ⇒ FWC
in 16,928 s with 4 processes (speed-up = 5, efficiency = 1.25) and in only 3,720
s with 6 processes (speed-up = 23, efficiency = 3.83). Using more processes did
not improve the performance for the other two lemmas.

We emphasize that the proofs found by EQP were not used as a guidance
for Peers-mcd: the two provers were given the same input equations on each
lemma. In terms of the applied strategies, the inference system included AC-
paramodulation, AC-simplification, subsumption, and deletion by weight, with
parameter max-weight equal to 30, 34, and 50, in the three proofs, respectively,
for both provers. EQP used basic paramodulation [7], for FWC ⇒ H and
R ⇒ SWC, and plain paramodulation for SWC ⇒ FWC. This is the best
choice for EQP. McCune also used basic paramodulation for FWC ⇒ H [80],
plain paramodulation for SWC ⇒ FWC [80], and basic paramodulation for



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 249

R ⇒ SWC [81]. Peers-mcd used plain paramodulation for FWC ⇒ H and
SWC ⇒ FWC, and basic paramodulation for R ⇒ SWC. Thus, the only
difference in the choice of inference system for the results in Table 3 is that EQP
used basic paramodulation, and Peers-mcd did not, on FWC ⇒ H, the easiest
of the three lemmas.

We also ran Peers-mcd on FWC ⇒ H with basic paramodulation: with 2
processes, it obtained a proof in 200 s (speed-up = 294/200 = 1.47, efficiency =
0.73). Symmetrically, we ran EQP on FWC ⇒ H with plain paramodulation,
which took 614 s, so that the speed-up of Peers-mcd was actually 614/73=8.41,
with an efficiency of 4.2.

The search plan was the pair algorithm [81] for all the experiments by both
provers. Pairs of equations were selected by best-first search with the length of
the pair as heuristic evaluation function, but in the proof of R ⇒ SWC both
provers assigned value 4 to the parameter pick-given-ratio, which means that
the search plan selected the oldest candidate pair every 4 choices. The proof of
R ⇒ SWC was obtained by both provers by assigning value 0 to the parameter
AC-superset-limit, which implies the highest degree of pruning of AC-unifiers.

Peers-mcd used the AGO criteria majority, in the proofs of FWC ⇒ H
and SWC ⇒ FWC, and all-parents in the proof of R ⇒ SWC. The majority
criterion assigns an equation ϕ to the process that owns a majority of its an-
cestors, with ties broken arbitrarily. The rationale of this criterion is that such
process is already most active in the area of the search space where ϕ appears,
and assigning ϕ to others could augment the overlap. The all-parents criterion
assigns ϕ to the process numbered id(ψ1) + id(ψ2) mod n, if ϕ was generated
by paramodulation from ψ1 and ψ2, to the process numbered id(ψ) mod n, if ϕ
was generated by backward contraction of ψ, where n is the number of processes
and id(ψ) is the identifier of ψ. The intuition behind this criterion is that clauses
which have the same parents are spatially close in the search graph, and therefore
should be assigned to the same process to limit the overlap. More details on these
criteria can be found in [14].

8. Discussion

While parallel automated theorem proving is still a young field, several ap-
proaches to parallelization have been tried for various classes of strategies: Fig-
ure 3 summarizes the state of the art by combining Figures 1 and 2, with dotted
lines linking types of parallelism and classes of strategies they have been applied
to.

Reading the dotted lines in Figure 3 from top to bottom and from left
to right, we see that parallelism at the term level was applied to parallel
term rewriting (e.g., [62,48,73,71,1,2]), and to contraction-based strategies (e.g.,
[29,31,72,86]). AND-parallelism and OR-parallelism were applied to subgoal-



250 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

oriented
contraction-
based

parallelism at
the term level

parallel
matching

parallel
rewriting

parallelism at
the clause level

AND-parallelism

inferences

parallelism at
the search level

parallel
unification

of parallel
other forms

OR-parallelism

parallelism in deduction

homogeneous
inference systems

heterogeneous
inference systems

multi-searchsearch
distributed

subgoal-reduction

strategies

ordering-based

instance-based
or supported
semantic

expansion-

Figure 3. Matching parallelization principles and classes of strategies.

reduction strategies, in the context of PTTP (e.g., [28,3] for OR-parallelism,
[91] for AND-parallelism) and tableau-based strategies (e.g., [88]). Other forms
of parallelism at the clause level were applied to instance-based strategies (e.g.,
[102]), expansion-oriented strategies (e.g., [70]), contraction-based strategies (e.g.,
[77,78,103]), and other subgoal-reduction-style strategies, such as the higher-order
analytic tableaux of [74] and the Gentzen proofs of [65]. Distributed search
with homogeneous inference systems was applied to expansion-oriented strate-
gies (e.g., [33,104]), and contraction-based strategies (e.g., [22,23,27,16]). Multi-
search with homogeneous inference systems was applied to subgoal-reduction



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 251

strategies (e.g., [91]) and contraction-based strategies (e.g., [4,5,46,44,42]). Het-
erogeneous systems, possibly with multi-search, were obtained by combining
subgoal-reduction strategies with expansion-oriented strategies (e.g., [92,57,100]),
subgoal-reduction strategies with contraction-based strategies (e.g., [40,41]), and
different contraction-based strategies (e.g., [95,55]).

This study is dedicated to parallel fully-automated theorem proving, and
does not cover other subfields of automated deduction, such as interactive proof
assistants and model generation systems. It is important, however, that par-
allelism has been applied also in those domains, e.g., [95,83,65] for the former
and [58,64,104] for the latter. We also refer to [67,66] for the neighbour field of
parallel symbolic computation.

8.1. Summary

In this paper, we have analyzed the impact of parallelization on the con-

trol of search. We observed that since parallelism at the term level is below the
level where the search plan makes decisions, approaches with parallelism at the
term level tend to replace the search plan by low-level data-driven forms of con-
currency (e.g., [72,86,52]), or produce strategy-compliant parallelizations (e.g.,
[31,29]). The potential problem is a loss of control for the former, and an ex-
cess of control for the latter. Data-driven concurrency may be appropriate for
ground computations that are guaranteed to converge (e.g., computing a congru-
ence closure for ground completion), but may represent a counter-productive loss
of control in general theorem proving, where the essence, from a practical point
of view, is not saturation (i.e., do all the steps, with the order being a secondary
issue), but effective search (i.e., find a good order to do the steps in order to avoid
doing them all). Strategy-compliant parallelizations, on the other hand, may be
too conservative: they avoid the risk of mixing search with parallelism, but they
renounce using parallelism to try to generate better searches.

For parallelism at the clause level, we noted that since it is precisely at
the level of the inferences, it turns the search plan into a scheduler of parallel
inferences, which assign inferences – viewed as tasks – to a pool of parallel pro-
cesses. One reason why this type of approach was appealing is that it allowed
one to apply to theorem proving scheduling techniques (e.g., task stealing) de-
fined for generic scheduling problems. However, such general techniques may
not take specific theorem-proving knowledge into account (e.g., the differences
between expansion tasks and contraction tasks). More importantly, the problem
is granularity, that is, whether processing a given-clause (e.g., [77]) or a subgoal
(e.g., [28,88,3]) is a sufficiently large task. Such tasks are likely to be too small
with respect to the amount of work required by the theorem-proving problem,
so that too much time is spent in task scheduling and not in inference making.
Furthermore, this problem becomes worse as the difficulty of the theorem-proving
problem grows, against the expectation that parallel theorem proving makes a



252 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

difference precisely on the hardest searches (e.g., the more clauses or subgoals the
problem requires us to handle, the smaller is the task of handling one of them).

This difficulty seems less severe in parallel hyperlinking [102], because a
derivation by this method is broken into hyperlinking rounds interleaved with
propositional unsatisfiability tests, and the task of taking care of a clause or literal
may not be too small with respect to a single hyperlinking round. However,
another problem is that the process in charge of scheduling and updating the
shared data base may become a bottleneck.

For parallelism at the search level, we note from Figure 3 that while both
distributed-search and multi-search ordering-based strategies exist, distributed
search does not seem to have been applied to subgoal-reduction strategies. A
possible explanation lies in the differences between the kinds of control most
commonly adopted for the two classes of strategies, as discussed in Section 2.
Ordering-based strategies work with a set of objects, and build many proof at-
tempts implicitly; therefore, it is quite natural to think of subdividing the set of
objects, or, better, the inferences they permit, in order to subdivide the search
space, hence the proof attempts. On the other hand, subgoal-reduction strate-
gies work on one goal object at a time, building a proof attempt at a time, so
that there is no room for a coarse-grain subdivision that subdivides the proof
attempts. If one applies the idea of subdivision within the single proof attempt,
it may fall back on OR-parallelism or other forms of parallelism at the clause
level, whose granularity is too small for theorem proving.

The application of distributed search to subgoal-reduction strategies would
require us to design distributed-search plans for such strategies. A distributed-
search subgoal-reduction strategy should feature parallel processes, each of whom
develops a derivation, hence a sequence of proof attempts (e.g., tableaux), and
whose activities are differentiated by a distributed-search plan with a subdivision
function that subdivides the inferences, hence the tableaux, among the processes.
Communication in such a method could consist of exchanging lemmas: envision
two processes pi and pk such that a sub-tableau X with root labelled by literal
A is forbidden for pi and allowed for pk, because the inference that extends A
is assigned to pi by the subdivision function. If X fails to close, it is safe for
pi to ignore it; if pk succeeds in closing X , pk sends to pi the corresponding
lemma14 ¬A. If it comes to communication of lemmas, however, the question
remains of whether having multiple subgoal-reduction processes exchanging lem-
mas may pay off, or whether it may be better to resort to heterogeneous systems,
having ordering-based components generating lemmas for the subgoal-reduction
components (e.g., [57,40,41]).

Furthermore, it seems that in order to be fair a distributed-search subgoal-
reduction strategy would need to generate and accumulate tableaux, that is, it

14 All lemmas are unit lemmas in Horn logic, in first-order logic closing X may correspond to
proving a lemma ¬A ∨ C, where C is a disjunction of literals.



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 253

should adopt a best-first, rather than depth-first, plan. A similar experience
was made in [9] for contraction, where the idea of applying subsumption among
tableaux assume that more than one tableau is generated and kept.

We recall that the analysis of [21] suggested that while subgoal-reduction
strategies may be amenable to all three types of parallelism (term-level, clause-
level and search-level), parallelism at the term level is too fine-grained for
expansion-oriented strategies, and both parallelism at the term level and par-
allelism at the clause level are too fine-grained for contraction-based strategies.
The study of how parallelization affects the search plan in this paper suggests
that the granularity of parallelism at the term and clause level may be too small
also for subgoal-reduction strategies. Moreover, the consideration of the nature
of the respective searches in this paper leads us to conjecture that while both
distributed search and multi-search are applicable to ordering-based strategies,
only the latter may be suitable for subgoal-reduction strategies with a depth-first
search plan that tries one proof attempt at a time.

The activity in the field since 1992, when the material in [21] was first writ-
ten, shows a movement from fine or medium-grain parallelism towards coarse-
grain parallelism, and from master-slaves hierarchies to peer processes (e.g.,
PaReDux, from fine-grain parallelism [29,31] to an approach à la Team-Work
[30], the parallelization of SETHEO [76,82] from OR-parallelism at the clause
level [88] to parallel search and cooperation of theorem provers [93,99,57,100]).
Also research programs that were aiming at parallel search since their inception
have evolved in this direction further (e.g., Team-Work, from a master-slave or-
ganization [4] to peer processes [55], heterogenous systems, from master-slaves
[92] to peer processes [57,40,41], and the evolution from Clause-Diffusion [22] to
Modified Clause-Diffusion [16]).

8.2. Directions for future work

While it appears more suitable for theorem proving than finer forms of
parallelism, parallel search is not free of obstacles. Problems include the cost of

communication, the overlap of the parallel searches, and the scalability.
In distributed search, communication is required for completeness, leading to

search plans that eventually broadcast all persistent non-redundant clauses. This
may be a high amount of communication, although not as high as in approaches
that combine distributed memory with finer granularities and need message-
passing also to achieve individual inferences. In multi-search and combinations
of theorem provers, it is difficult to design heuristics that are effective in deter-
mining which data are “good”, and therefore should be communicated. If the
heuristics are relaxed, communication may become too intense; if they are strict,
too little may be communicated, so that it does not make a difference and the
processes ignore each other; if the heuristics are complex, they may introduce too
much overhead. In combinations of theorem provers the problem is compounded



254 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

by the usage of different inference systems and even different logics.
If the parallel processes end up exploring overlapping areas of the search

space, their efforts are partly wasted. In distributed search, it is impossible to
partition the search space into disjoint parts, and in practice it is hard even to
minimize the overlap. In multi-search, the overlap may be an even more serious
problem, because the processes visit the same search space, only in a different
order. The search plans may not be sufficiently different, or seemingly different
search plans may generate very similar searches on some inputs. Part of the
problem is that most known fair search plans are exhaustive, and it may be rare
to get significantly different searches from plans that are all exhaustive in nature.

Scalability is difficult in parallel search, because the addition of a new process
may dramatically change the searches of the others. In distributed search, one
would expect that if we add more processes the performance improves, because
each process should get a smaller portion of space to search. However, this is
not guaranteed to happen, because increasing the number of processes changes
the subdivision not only quantitatively, but also qualitatively. The search space
allowed to process pk in a search with 2n processes may be radically different than
the search space allowed to pk in a search with n processes, and the performance
is not guaranteed to improve, because the subdivision with 2n processes may be
worse from the point of view of finding a proof (e.g., it may break the search
space in a way that delays pk in generating the proof found with n processes). In
multi-search, one expects that a process pi, executing plan Σi, takes advantage of
receiving from a process pj, executing plan Σj, data that Σi would only generate
later. However, it may also happen that receiving data from pj forces pi to
consider data that does not help to find a proof sooner than pi alone would, so
that the performance does not improve. In heterogeneous systems, enriching the
pool with an additional inference system may not help, if the added rules are not
useful for the problem at hand.

For parallel search to be beneficial, however, it may not be necessary to
limit communication and overlap globally: for instance, in the experiments on
the Robbins problem reported in Section 7, each parallel process generates far
fewer clauses than the sequential process. This may indicate that the subdivision
induced by the AGO criteria is effective, and enables the parallel process that
finds the proof to ignore many clauses that may not be redundant with respect
to all proofs, but are redundant with respect to the generated proof. In such
experiments, the lack of scalability may be the price to pay for the super-linear
speed-up.

Many directions for future work are open. In addition to continuing ad-
dressing the problems above, Figure 3 shows that not much work has been done
in combining parallel search with target-oriented and semantic strategies. For in-
stance, one may envision combining parallelism with semantic information, such
as parallel processes reasoning under different interpretations.

A formal analysis weighting the disadvantages of communication and overlap



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 255

with the advantages of the subdivision of search in distributed-search contraction-

based strategies was begun in [19], applying the bounded search spaces methodology

of [26]. That analysis tried to determine whether distributed search may make
the bounded search space smaller by doing at least as much contraction as the
sequential process and adding the effect of the subdivision. However, distributed
search may take advantage of performing steps in different order, especially con-
traction steps, hence producing different search spaces and different proofs. Thus,
a direction for further research is to analyze this reordering of the search in both
distributed search and multi-search.

Acknowledgements

I wish to thank Bernhard Gramlich, Hélène Kirchner and Frank Pfenning, for
their invitation to give a talk at the Third Workshop on Strategies in Automated
Deduction, which gave me the opportunity to write this paper; the KI Group
of the Fakultät Informatik of the Technische Universität Dresden, and the KI
Group of the Fachbereich Informatik of the Universität Koblenz-Landau, where
I worked on this paper; Peter Baumgartner and Ulrich Furbach for bringing
to my attention proof confluence as a criterion of strategy classification; and the
anonymous referees for their suggestions and remarks that allowed me to improve
the paper significantly.

References

[1] Iliès Alouini. Concurrent garbage collector for concurrent rewriting. In Jieh Hsiang, editor,
Proceedings of the 6th RTA, volume 914 of LNCS, pages 132–146. Springer Verlag, 1995.

[2] Iliès Alouini. Étude et mise en oeuvre de la réecriture conditionnelle concurrente sur des
machines parallèles à mémoire distribuée. PhD thesis, Université Henri Poincaré Nancy
1, May 1997.

[3] Owen L. Astrachan and Donald W. Loveland. METEORs: high performance theorem
provers using model elimination. In Robert S. Boyer, editor, Automated Reasoning: Essays
in Honor of Woody Bledsoe. Kluwer Academic, 1991.

[4] Jürgen Avenhaus and Jörg Denzinger. Distributing equational theorem proving. In Claude
Kirchner, editor, Proceedings of the 5th RTA, volume 690 of LNCS, pages 62–76. Springer
Verlag, 1993.

[5] Jürgen Avenhaus, Jörg Denzinger, and Matthias Fuchs. DISCOUNT: a system for dis-
tributed equational deduction. In Jieh Hsiang, editor, Proceedings of the 6th RTA, volume
914 of LNCS, pages 397–402. Springer Verlag, 1995.

[6] Leo Bachmair and Harald Ganzinger. A theory of resolution. Technical Report MPI-I-
97-2-005, Max Planck Institut für Informatik, 1997. To appear in J. Alan Robinson and
Andrei Voronkov, eds., Handbook of Automated Reasoning.

[7] Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Snyder. Basic paramod-
ulation. Information and Computation, 121(2):172–192, 1995.

[8] Peter Baumgartner. Hyper tableaux — the next generation. In Harrie de Swart, editor,
Proceedings of TABLEAUX-98, volume 1397 of LNAI, pages 60–76. Springer, 1998.



256 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

[9] Peter Baumgartner and Stefan Brüning. A disjunctive positive refinement of model elim-
ination and its application to subsumption deletion. Journal of Automated Reasoning,
19:205–262, 1997.

[10] Peter Baumgartner, Norbert Eisinger, and Ulrich Furbach. A confluent connection calcu-
lus. In Harald Ganzinger, editor, Proceedings of the 16th CADE, volume 1632 of LNAI,
pages 329–343. Springer, 1999.

[11] Wolfgang Bibel and Elmer Eder. Methods and calculi for deduction. Pages 68–183 in Vol.
1 of [59].

[12] Wolgang Bibel. Automated Theorem Proving. Friedr. Vieweg & Sohn, 2nd edition, 1987.
[13] Jean-Paul Billon. The disconnection method. In Pierangelo Miglioli, Ugo Moscato, Daniele

Mundici, and Mario Ornaghi, editors, Proceedings of TABLEAUX-96, volume 1071 of
LNAI, pages 110–126. Springer, 1996.

[14] Maria Paola Bonacina. Experiments with subdivision of search in distributed theorem
proving. Pages 88–100 in [66].

[15] Maria Paola Bonacina. Distributed automated deduction. PhD thesis, Department of
Computer Science, State University of New York at Stony Brook, December 1992.

[16] Maria Paola Bonacina. On the reconstruction of proofs in distributed theorem proving: a
modified Clause-Diffusion method. Journal of Symbolic Computation, 21:507–522, 1996.

[17] Maria Paola Bonacina. The Clause-Diffusion theorem prover Peers-mcd. In William W.
McCune, editor, Proceedings of the 14th CADE, volume 1249 of LNAI, pages 53–56.
Springer, 1997.

[18] Maria Paola Bonacina. Mechanical proofs of the Levi commutator problem. In Pe-
ter Baumgartner et al., editor, Notes of the CADE-15 Workshop on Problem Solving
Methodologies with Automated Deduction, pages 1–10, 1998.

[19] Maria Paola Bonacina. A model and a first analysis of distributed-search contraction-based
strategies. Annals of Mathematics and Artificial Intelligence, 27(1–4):149–199, 1999.

[20] Maria Paola Bonacina. A taxonomy of theorem-proving strategies. In Michael J.
Wooldridge and Manuela Veloso, editors, Artificial Intelligence Today, volume 1600 of
LNAI, pages 43–84. Springer, 1999.

[21] Maria Paola Bonacina and Jieh Hsiang. Parallelization of deduction strategies: an ana-
lytical study. Journal of Automated Reasoning, 13:1–33, 1994.

[22] Maria Paola Bonacina and Jieh Hsiang. The Clause-Diffusion methodology for distributed
deduction. Fundamenta Informaticae, 24:177–207, 1995.

[23] Maria Paola Bonacina and Jieh Hsiang. Distributed deduction by Clause-Diffusion: dis-
tributed contraction and the Aquarius prover. Journal of Symbolic Computation, 19:245–
267, 1995.

[24] Maria Paola Bonacina and Jieh Hsiang. Towards a foundation of completion procedures
as semidecision procedures. Theoretical Computer Science, 146:199–242, 1995.

[25] Maria Paola Bonacina and Jieh Hsiang. On semantic resolution with lemmaizing and
contraction and a formal treatment of caching. New Generation Computing, 16(2):163–
200, 1998.

[26] Maria Paola Bonacina and Jieh Hsiang. On the modelling of search in theorem proving –
towards a theory of strategy analysis. Information and Computation, 147:171–208, 1998.

[27] Maria Paola Bonacina and William W. McCune. Distributed theorem proving by Peers. In
Alan Bundy, editor, Proceedings of the 12th CADE, volume 814 of LNAI, pages 841–845.
Springer Verlag, 1994.

[28] Soumitra Bose, Edmund M. Clarke, David E. Long, and Spiro Michaylov. Parthenon: a
parallel theorem prover for non-Horn clauses. Journal of Automated Reasoning, 8(2):153–
182, 1992.

[29] Reinhard Bündgen, Manfred Göbel, and Wolfgang Küchlin. Parallel ReDuX→ PaReDuX.



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 257

In Jieh Hsiang, editor, Proceedings of the 6th RTA, volume 914 of LNCS, pages 408–413.
Springer Verlag, 1995.

[30] Reinhard Bündgen, Manfred Göbel, and Wolfgang Küchlin. A master-slave approach to
parallel term-rewriting on a hierarchical multiprocessor. In Jacques Calmet and Carla
Limongelli, editors, Proceedings of the 4th DISCO, volume 1128 of LNCS, pages 184–194.
Springer Verlag, 1996.

[31] Reinhard Bündgen, Manfred Göbel, and Wolfgang Küchlin. Strategy-compliant multi-
threaded term completion. Journal of Symbolic Computation, 21(4–6):475–506, 1996.

[32] Ricardo Caferra and N. Zabel. A method for simultaneous search for refutations and
models by equational constraint solving. Journal of Symbolic Computation, 13:613–641,
1992.

[33] Susan E. Conry, D. J. MacIntosh, and R. A. Meyer. DARES: a Distributed Automated
REasoning System. In Proceedings of the 11th AAAI, pages 78–85, 1990.

[34] Marcello D’Agostino, Dov M. Gabbay, Reiner Hähnle, and Joachim Posegga, Eds. Hand-
book of Tableau Methods. Kluwer, 1998.

[35] Bernd Ingo Dahn. Robbins algebras are Boolean: a revision of McCune’s computer-
generated solution of Robbins problem. Journal of Algebra, 208:526–532, 1998.

[36] Bernd Ingo Dahn, J. Gehne, Th. Honigmann, and Andreas Wolf. Integration of automated
and interactive theorem proving in ILF. In William W. McCune, editor, Proceedings of
the 14th CADE, volume 1249 of LNAI, pages 57–60. Springer, 1997.

[37] Martin Davis, G. Logemann, and Donald W. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394–397, 1962.

[38] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

[39] Jörg Denzinger. Teamwork: a method to design distributed knowledge based theorem
provers. PhD thesis, Universität Kaiserslautern, 1993.

[40] Jörg Denzinger and Bernd Ingo Dahn. Cooperating theorem provers. In Wolfgang Bibel
and Peter H. Schmitt, editors, Automated Deduction – A Basis for Applications, volume 2.
Kluwer Academic, 1998.

[41] Jörg Denzinger and Dirk Fuchs. Cooperation of heterogeneous provers. In Proceedings of
IJCAI-99, pages 10–15. Morgan Kaufmann, 1999.

[42] Jörg Denzinger, Marc Fuchs, and Matthias Fuchs. High performance ATP systems by
combining several AI methods. In Proceedings of IJCAI-97, pages 102–107. Morgan Kauf-
mann, 1997.

[43] Jörg Denzinger and Matthias Fuchs. Goal-oriented equational theorem proving using
Team-Work. In Proceedings of the 18th KI, volume 861 of LNAI, pages 343–354. Springer,
1994.

[44] Jörg Denzinger and Martin Kronenburg. Planning for distributed theorem proving: the
teamwork approach. In Steffen Hölldobler, editor, Proceedings of the 20th KI, volume 1137
of LNAI, pages 43–56. Springer, 1996.

[45] Jörg Denzinger and Jürgen Lind. Twlib: a library for distributed search applications. In
Chu-Sing Yang, editor, Proceedings of ICS-96, pages 101–108, 1996.

[46] Jörg Denzinger and Stephan Schulz. Recording and analyzing knowledge-based distributed
deduction processes. Journal of Symbolic Computation, 21(4–6):523–541, 1996.

[47] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, pages 243–320. Elsevier,
1990.

[48] Nachum Dershowitz and Naomi Lindenstrauss. An abstract concurrent machine for rewrit-
ing. In Hélène Kirchner and W. Wechler, editors, Proceedings of the 2nd ALP, volume
463 of LNCS, pages 318–331. Springer Verlag, 1990.



258 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

[49] Norbert Eisinger and Hans Jürgen Ohlbach. Deduction systems based on resolution. Pages
184–273 in Vol. 1 of [59].

[50] R. Engelmore and T. Morgan, Eds. Blackboard Systems. Addison Wesley, 1988.
[51] Robert L. Constable et al. Implementing Mathematics in the NuPRL Proof Development

System. Prentice Hall, 1986.
[52] Michael Fisher. An alternative approach to concurrent theorem proving. In James Geller,

Hiroaki Kitano, and Christian B. Suttner, editors, Parallel Processing for Artificial Intel-
ligence 3, pages 209–230. Elsevier, 1997.

[53] Melvin Fitting. First-order Logic and Automated Theorem Proving. Springer, 1990.
[54] Bertram Fronhöfer and Graham Wrightson, Eds. Parallelization in Inference Systems.

Number 590 in LNAI. Springer-Verlag, 1990.
[55] Dirk Fuchs. Requirement-based cooperative theorem proving. In Jürgen Dix, Luis

Fariñas del Cerro, and Ulrich Furbach, editors, Proceedings of the 6th JELIA, volume
1489 of LNAI, pages 139–153. Springer, 1998.

[56] Marc Fuchs. Controlled use of clausal lemmas in connection tableau calculi. Journal of
Symbolic Computation, 29(2):299–341, 2000.

[57] Marc Fuchs and Andreas Wolf. Cooperation in model elimination: CPTHEO. In Claude
Kirchner and Hélène Kirchner, editors, Proceedings of the 15th CADE, volume 1421 of
LNAI, pages 42–46. Springer, 1998.

[58] M. Fujita, Ryuzo Hasegawa, Miyuki Koshimura, and H. Fujita. Model generation theorem
provers on a parallel inference machine. In Proceedings of FGCS-92, pages 357–375, 1992.

[59] Dov M. Gabbay, Christopher J. Hogger, and J. Alan Robinson, Eds. Handbook of Logic
in Artificial Intelligence and Logic Programming (Vol. 1 & 2). Oxford University Press,
1993.

[60] Jean Gallier, Paliath Narendran, David A. Plaisted, Stan Raatz, and Wayne Snyder. Find-
ing canonical rewriting systems equivalent to a finite set of ground equations in polynomial
time. Journal of the ACM, 40(1):1–16, 1993.

[61] Stephen J. Garland and John V. Guttag. An overview of LP. In Nachum Dershowitz,
editor, Proceedings of the 3rd RTA, volume 355 of LNCS, pages 137–151. Springer Verlag,
1989.

[62] Joseph A. Goguen, José Meseguer, Sany Leinwand, Timothy Winkler, and Hitoshi Aida.
The rewrite rule machine. Technical Report SRI-CSL-89-6, Computer Science Laboratory,
SRI International, March 1989.

[63] William Gropp and Ewing Lusk. User’s guide for mpich, a portable implementation of
MPI. Technical Report 96/6, MCS Division, Argonne National Laboratory, 1996.

[64] Ryuzo Hasegawa and Miyuki Koshimura. An AND parallelization method for MGTP and
its evaluation. Pages 194–203 in [67].

[65] Jason Hickey. Fault-tolerant distributed theorem proving. In Harald Ganzinger, editor,
Proceedings of the 16th CADE, volume 1632 of LNAI. Springer, 1999.

[66] Markus Hitz and Erich Kaltofen, Eds. Proceedings of the 2nd PASCO. ACM Press, 1997.
[67] Hoon Hong, Ed. Proceedings of the 1st PASCO, volume 5 of Lecture Notes Series in

Computing. World Scientific, 1994.
[68] E. V. Huntington. Boolean algebra: A correction. Transactions of the AMS, 35:557–558,

1933.
[69] E. V. Huntington. New sets of independent postulates for the algebra of logic. Transactions

of the AMS, 35:274–304, 1933.
[70] A. Jindal, Ross Overbeek, and W. Kabat. Exploitation of parallel processing for imple-

menting high-performance deduction systems. Journal of Automated Reasoning, 8:23–38,
1992.

[71] Owen Kaser, Shaunak Pawagi, C. R. Ramakrishnan, I. V. Ramakrishnan, and R. C. Sekar.



Maria Paola Bonacina / A taxonomy of parallel strategies for deduction 259

Fast parallel implementations of lazy languages – the EQUALS experience. In Proceedings
of the ACM Conf. on LISP and Functional Programming, pages 335–344, 1992.

[72] Claude Kirchner, Christopher Lynch, and Christelle Scharff. Fine-grained concurrent
completion. In Harald Ganzinger, editor, Proceedings of the 7th RTA, volume 1103 of
LNCS, pages 3–17. Springer Verlag, 1996.

[73] Claude Kirchner and Patrick Viry. Implementing parallel rewriting. Pages 123–138 in
[54].

[74] Karsten Konrad. HOT: a concurrent automated theorem prover based on higher-order
tableaux. In J. Grundy and M. Newey, editors, Proceedings of TPHOLs, volume 1479 of
LNCS, pages 245–262. Springer Verlag, 1998. Also: SEKI Report SR-98-03, Fachbereich
Informatik, Universität des Saarlandes.

[75] Shie-Jue Lee and David A. Plaisted. Eliminating duplication with the hyperlinking strat-
egy. Journal of Automated Reasoning, 9:25–42, 1992.

[76] Reinhold Letz, Johann Schumann, S. Bayerl, and Wolfgang Bibel. SETHEO: a high
performance theorem prover. Journal of Automated Reasoning, 8(2):183–212, 1992.

[77] Ewing L. Lusk and William W. McCune. Experiments with ROO: a parallel automated
deduction system. Pages 139–162 in [54].

[78] Ewing L. Lusk, William W. McCune, and John Slaney. ROO: a parallel theorem prover.
In Deepak Kapur, editor, Proceedings of the 11th CADE, volume 607 of LNAI, pages
731–734. Springer Verlag, 1992.

[79] William W. McCune. Otter 3.0 reference manual and guide. Technical Report 94/6, MCS
Division, Argonne National Laboratory, 1994.

[80] William W. McCune. 33 Basic test problems: a practical evaluation of some paramod-
ulation strategies. In Robert Veroff, editor, Automated Reasoning and its Applications:
Essays in Honor of Larry Wos, pages 71–114. MIT Press, 1997.

[81] William W. McCune. Solution of the Robbins problem. Journal of Automated Reasoning,
19(3):263–276, 1997.

[82] M. Moser, O. Ibens, Reinhold Letz, J. Steinbach, C. Goller, Johann Schumann, and
K. Mayr. The model elimination provers SETHEO and E-SETHEO. Journal of Automated
Reasoning, 18(2), 1997.

[83] Roderick Moten. Exploiting parallelism in interactive theorem provers. In J. Grundy
and M. Newey, editors, Proceedings of TPHOLs, volume 1479 of LNCS, pages 315–330.
Springer Verlag, 1998.

[84] David A. Plaisted. Equational reasoning and term rewriting systems. Pages 273–364 in
Vol. 1 of [59].

[85] David A. Plaisted. Mechanical theorem proving. In Ranan B. Banerji, editor, Formal
Techniques in Artificial Intelligence. Elsevier, 1990.

[86] Christelle Scharff. Deduction avec contraintes et simplification dans les theories equation-
nelles. PhD thesis, Université Henri Poincaré Nancy 1, September 1999.

[87] Johann Schumann. Delta: a bottom-up pre-processor for top-down theorem provers. In
Alan Bundy, editor, Proceedings of the 12th CADE, volume 814 of LNAI, pages 774–777.
Springer Verlag, 1994.

[88] Johann Schumann and Reinhold Letz. PARTHEO: a high-performance parallel theorem
prover. In Mark E. Stickel, editor, Proceedings of the 10th CADE, volume 449 of LNAI,
pages 28–39. Springer Verlag, 1990.

[89] Raymond M. Smullyan. First-Order Logic. Dover, 1995. (Republication of the work
first published as “Band 43” Series Ergebnisse der Mathematik und ihrer Grenzgebiete,
Springer Verlag, 1968).

[90] Rolf Socher-Ambrosius and Patricia Johann. Deduction systems. Springer, 1997.
[91] David Sturgill and Alberto Maria Segre. Nagging: a distributed, adversarial search-



260 Maria Paola Bonacina / A taxonomy of parallel strategies for deduction

pruning technique applied to first-order inference. Journal of Automated Reasoning,
19(3):347–376, 1997.

[92] Geoff Sutcliffe. A heterogeneous parallel deduction system. In Ryuzo Hasegawa and
Mark E. Stickel, editors, Proceedings of the FGCS Workshop on Automated Deduction:
Logic Programming and Parallel Computing Approaches, pages 5–13, 1992.

[93] Christian B. Suttner. SPTHEO: a parallel theorem prover. Journal of Automated Rea-
soning, 18:253–258, 1997.

[94] Christian B. Suttner and Johann Schumann. Parallel automated theorem proving. In
L. Kanal et al., editor, Parallel Processing for Artificial Intelligence. Elsevier, 1994.

[95] Mark T. Vandevoorde and Deepak Kapur. Distributed Larch prover (DLP): an experiment
in parallelizing a rewrite-rule based prover. In Harald Ganzinger, editor, Proceedings of
the 7th RTA, volume 1103 of LNCS. Springer, 1996.

[96] Christoph Weidenbach, B. Gaede, and G. Rock. SPASS & FLOTTER. In Michael McRob-
bie and John Slaney, editors, Proceedings of the 13th CADE, volume 1104 of LNAI, pages
141–145. Springer, 1996.

[97] Steve Winker. Robbins algebra: conditions that make a near-Boolean algebra Boolean.
Journal of Automated Reasoning, 6(4):465–489, 1990.

[98] Steve Winker. Absorption and idempotency criteria for a problem in near-Boolean alge-
bras. Journal of Algebra, 153(2):414–423, 1992.

[99] Andreas Wolf. P-SETHEO: strategy parallelism in automated theorem proving. In Harrie
de Swart, editor, Proceedings of TABLEAUX-98, volume 1397 of LNCS, pages 320–324.
Springer, 1998.

[100] Andreas Wolf and Reinhold Letz. Strategy parallelism in automated theorem proving. In
Proceedings of FLAIRS-98, 1998.

[101] Larry Wos. Searching for open questions. Newsletter of the AAR, 15, May 1990.
[102] Chih-Hung Wu and Shie-Jue Lee. Parallelization of a hyper-linking based theorem prover.

Journal of Automated Reasoning, 26(1):67–106, 2001.
[103] Katherine A. Yelick and Stephen J. Garland. A parallel completion procedure for term

rewriting systems. In Deepak Kapur, editor, Proceedings of the 11th CADE, volume 607
of LNAI, pages 109–123. Springer Verlag, 1992.

[104] Hantao Zhang, Maria Paola Bonacina, and Jieh Hsiang. PSATO: a distributed proposi-
tional prover and its application to quasigroup problems. Journal of Symbolic Computa-
tion, 21:543–560, 1996.


