
A note on the analysis of theorem-proving strategies

Maria Paola Bonacina

(bonacina@cs.uiowa.edu)

In recent work [3] David Plaisted proposed an approach to analyze the complexity of theorem-

proving strategies, and applied it to Horn propositional logic. Most of the research in complexity

of theorem proving studies the complexity of propositional proofs, while most of the work on

search concentrates on the design of heuristics1. To my knowledge, Plaisted’s approach has been

the first one to treat the complexity of searching for a proof. This note is a comment on this

ground-breaking work. The framework of [3] is a starting point to discuss open problems that need

to be addressed in order to analyze theorem-proving strategies in first-order logic. These include

the formalization of the search plan, the representation of contraction, the duality of forward and

backward reasoning, and the definition of complexity measures for infinite search spaces.

A theorem-proving strategy is made of an inference system and a search plan. The inference

system defines the possible inferences, and the search plan selects at each step of a derivation

the inference rule and the premises for the next step. Contraction-based strategies include the

strategies that integrate resolution, Knuth-Bendix completion and term rewriting. These strate-

gies work primarily by forward reasoning. They use expansion rules such as resolution to generate

consequences from existing clauses. Forward-reasoning methods do not generally distinguish goal

clauses from the others, seeking to obtain a contradiction from the whole set. Generated clauses

are kept and used for further inferences, so that the strategy works on a database of clauses. A

major source of redundancy for these methods is that they generate and retain clauses that do not

contribute to proving the theorem. Contraction-based strategies counter this problem by using

contraction rules, such as simplification and subsumption, to delete redundant clauses. Since the

inference system features multiple inference rules, and generated clauses are kept, creating many

possible choices of premises, the search plan plays an important role. Forward-reasoning strate-

gies admit various search plans, which sort the inferences by different criteria. Contraction-based

strategies employ eager-contraction search plans, that give priority to contraction over expansion,

in order to maintain the database minimal with respect to the contraction rules.

Subgoal-reduction strategies include model elimination, tableau-based methods, Prolog techno-

logy theorem proving, the MESON strategy, and the problem-reduction-format strategies. These

strategies work by reducing the goal to subgoals. Each inference step involves the current goal

and at most another premise. The current goal is initially a selected input clause, and then the

most recently generated goal. If no rule applies to the current goal, the strategy backtracks to the

previous one. Since generated clauses are goals retained for backtracking, the strategy works on a

stack of goals. Since there is no database, the application of contraction is limited, and the search

plan is fixed, usually depth-first search with iterative deepening. A source of redundancy for these

strategies is that by focusing on the most recently generated goal, they may reduce repeatedly

the same subgoals. Subgoal-reduction methods counter this problem by using techniques for

lemmaizing or caching, that enable them to keep track of already solved or failed subgoals.

1See [3] and [1] for most references relevant to this note.

1

Plaisted’s approach to the analysis of strategies

The model of the search space

A theorem-proving strategy is formalized in [3] as a 5-tuple < S, V, i, E, u >, where S is a set of

states, and E is a set of pairs of states, in such a way that < S,E > forms a directed graph. The

component V is a set of labels for the states in S. The component i is a mapping from the set of

input clauses to S, which identifies the initial state(s). The component u is a function from S to

{true, false}, where u(s) = true if and only if s is a state where unsatisfiability is detected. It

is assumed that u is an almost trivial test, such as recognizing that a set of clauses contains the

empty clause. A more precise definition of V and u depends on the specific strategy. A function

label, such that label(s) denotes the label of state s, is also used. It is required that no two distinct

edges (s1, t1) and (s2, t2) in E have t1 = t2. This implies that the directed graph is a set of trees.

A strategy is said to be linear if for all states s, there is a unique state t such that (s, t) ∈ E, that

is, every state has unique successor.

Given a strategy G =< S, V, i, E, u > and an input set of clauses R, a state s ∈ S is reachable

from R if there is a path from a state in i(R) to s. S(R) denotes the subset of S containing

all states that are reachable from R, and E(R) denotes the restriction of E to S(R). Then,

G(R) =< S(R), E(R) > is the search space for the theorem-proving problem R according to the

strategy G.

For resolution, the labels of the states are finite sets of clauses. If R is the input set of clauses,

and s0 ∈ S is the state with label R, the input function i:R → S is the function such that

i(ψ) = s0 for all ψ ∈ R. In other words, all input clause are mapped to a single initial state,

whose label is the set of input clauses. It follows that G(R) is a tree with R as the label of the root.

An arc connects state s to state t if the label of t is the union of the label of s and all the resolvents

in s according to the inference system. This means that each state has a unique successor, that

is, the tree G(R) for resolution degenerates to a list. Accordingly, all resolution-based strategies

are linear in [3]. The function u is defined by u(s) = true if and only if the label of s contains the

empty clause.

For model elimination, each state is labelled by a single chain2, which is the current goal in

that state. If R = {ψ1, . . . , ψn} is the input set of clauses, there are states s1, . . . , sn with labels

{ψ1}, . . . , {ψn}, respectively, and i(ψj) = sj, for all 1 ≤ j ≤ n. In other words, there is an initial

state for each input clause. This captures the fact that any input clause can be chosen as the

initial chain. It follows that G(R) is a set of trees, one for each possible initial chain. An arc

connects state s to state t if the chain labelling t is generated from the chain labelling s in one ME-

step (ME-extension or ME-reduction or ME-contraction). The function u is defined in the same

way as for resolution. The strategies based on model elimination are not linear, because an arc

represents a single step, and more than one step may be applicable to a chain (e.g., ME-extension

steps with different input clauses).

2A chain is a sorted clause with plain literals, called B-literals, and framed literals, called A-literals for ancestors.

2

The complexity measures to evaluate and compare the strategies

The measures of complexity of search proposed in [3] aim at measuring the total size of the search

space. The total size of G(R) is defined as ||G(R)|| =
∑

s∈S(R) |label(s)|. For resolution, the labels

are finite sets of clauses, and therefore ||G(R)|| is the sum of the cardinalities of the sets of clauses

labelling the nodes of G(R). For model elimination, the labels are singleton sets, so that ||G(R)||

is equal to the number of nodes in G(R).

The measure ||G(R)|| is refined into three measures, called duplication by iteration, duplication

by case analysis and duplication by combination. Duplication by iteration is the maximum length

of a path in G(R). Duplication by case analysis is the maximum size of a subset of S(R) no two

elements of which are on the same path. Duplication by combination is the maximum cardinality

of a label of a state in S(R), i.e., maxs∈S(R)|label(s)|. Since G(R) is a tree or a set of trees,

duplication by case analysis reduces to the number of paths, and ||G(R)|| is bounded by the

product of duplication by iteration, duplication by case analysis and duplication by combination.

The analysis proceeds by establishing whether these measures are exponential or linear or constant

in the length of the input set R read as a single string.

The analysis of the strategies in Horn propositional logic

According to the analysis in [3], basic resolution strategies have linear duplication by iteration

and exponential duplication by combination. The duplication by case analysis is trivially constant

(more precisely, equal to 1), because each state has unique successor. The exponential duplication

by combination captures the complexity of generating and keeping clauses, since resolvents are

generated by combining in different ways the input literals. Since one of the measures is expo-

nential, resolution strategies are regarded as inefficient. For positive hyperresolution, however,

the duplication by combination is linear, because positive hyperresolvents in Horn logic are unit

clauses, so that all generated clauses are unit clauses, and literals are not combined. Also, the

duplication by combination of positive resolution reduces from exponential to linear if the strategy

is equipped with an ordering on predicate symbols, and only the negative literals with smallest

predicate are resolved upon. In summary, resolution strategies are either efficient, but not goal-

sensitive (e.g., positive hyperresolution and positive resolution), or goal-sensitive, but not efficient

(e.g., negative resolution), or neither efficient nor goal-sensitive (e.g., ordered resolution). These

results are worst-case results. For instance, ordered resolution is efficient for some sets of clauses

and orderings (e.g., all well-ordered sets3), but there are sets for which an ordering that makes

the strategy efficient cannot be found. The same is true for goal-sensitivity.

Model elimination has exponential duplication by iteration and exponential duplication by

case analysis. The duplication by combination is trivially constant (equal to 1), because each

state is a singleton. The exponential duplication by iteration captures the redundancy of solving

subgoals repeatedly. Duplication by case analysis is also exponential because a state may have

multiple successors. Thus, resolution and model elimination are sort of dual: resolution has low

3A set of Horn clauses is well-ordered if there is a partial ordering < such that if P :−P1, . . . , Pn is a clause in

the set then Pi < P for all i, 1 ≤ i ≤ n.

3

duplication by case analysis and iteration, but high duplication by combination, and vice versa

for model elimination.

If model elimination is enriched with unit lemmaizing4, duplication by iteration becomes linear,

because lemmaizing prevents solving repeatedly the same successful subgoals. Lemmatization

adds a forward-reasoning character to the strategy, because lemmas are generated and retained. In

the framework of [3] this means exponential duplication by combination and constant duplication

by case analysis, so that model elimination with lemmaizing has the same duplication as the

resolution strategies. In Horn logic model elimination can be enhanced with caching5. The

use of caching reduces the duplication further, because not only successful subgoals (success

caching), but also failed subgoals (failure caching) are not repeated. Assuming depth-first search

with iterative deepening, duplication by combination becomes linear (more precisely, quadratic).

Similar results apply to the other subgoal-reduction strategies. In summary, subgoal-reduction

strategies are inefficient, but goal-sensitive. Subgoal-reduction strategies with caching are efficient

and goal-sensitive.

A caveat Working by worst-case analysis means exhibiting a set of clauses where a strategy

performs poorly. Examples are the parametric sets S2
n and An that give the exponential upper

bounds on duplication by combination for negative resolution and ordered resolution, respectively.

Worst-case sets may display regularities of structure, such as symmetries, or recurrence relations.

The worst-case sets used in [3] incorporate recurrence relations on the indices of the literals in

the clauses. The recurrence relations have exponential solution, and this is used in the proofs of

the exponential behaviour of the strategies. It is not known whether these patterns occur in real

derivations, and how often. Also, worst-case sets are hard from a combinatorial point of view

for the targeted strategy, but may be easy in the practice of theorem proving. S2
n is satisfiable

and contains no positive clauses, so that positive hyperresolution or positive resolution would not

apply a single inference and establish that the set is satisfiable in the time needed to read it.

Similarly, An is satisfiable and contains neither positive nor negative clauses, so that it is trivial

also for negative resolution.

Discussion

The following comment is written having first-order logic in mind, which is also the final purpose

of the approach of [3].

Infinite search spaces

The complexity of search is measured in [3] by measuring the total size of the search space in the

worst-case. The total size of the search space can be measured only if the search space is finite,

as in the propositional problems considered in [3]. Thus, the first problem is:

4In Horn logic all lemmas generated by lemmaizing are unit lemmas.
5Caching is not consistent with ME-reduction, which is necessary for the completeness of model elimination in

first-order logic. In first-order logic one may use lemmaizing or more complicated caching schemes.

4

1. Explore complexity measures and modes of analysis that are suitable for infinite search

spaces, such as those of first-order problems, whose total size cannot be measured.

The search plan

Since the intent of [3] is to measure the total size of the search space, and the latter depends on

the inference system, not on the search plan, the model of search in [3] does not represent the

search plan and its application. However, the search plan is important in the practice of first-order

theorem proving. A prover may find a proof with a certain search plan and run out of memory

with another, or find a proof hours later. Therefore, the following questions remain open:

2. Give the mathematical definition of a search plan.

3. Represent the application of a search plan to a search space, that is the search process.

4. Compare strategies with the same inference system but different search plans.

Contraction

The analysis in [3] considers first all resolution-based methods as expansion-only strategies. Re-

sults for strategies with subsumption and clausal simplification are obtained by modifying the

results for the expansion-only versions of the strategies. For most strategies, the analysis of con-

traction in [3] consists in showing that subsumption and clausal simplification do not apply in

the sets of clauses used to establish the worst-case results, e.g., S2
n and An for negative resolution

and ordered resolution, respectively. For positive resolution, since in Horn logic positive clauses

are unit clauses, each positive-resolution step generates a resolvent that subsumes its non-unit

parent. Thus, if a positive resolution strategy applies subsumption after each resolution step, the

duplication by combination reduces from exponential to linear.

Because the analysis is conducted in this way, the formalism of [3] does not include contraction

inferences as a basic element. The arcs in the directed graph represent only expansion inferences,

such as the addition of resolvents, or the generation of a successor chain from a chain in model

elimination. The choice of representing resolution inferences by arcs that add all resolvents is

an obstacle to including contraction in the model. For instance, the search space of a strategy

that applies subsumption after every resolution step cannot be represented in this model, because

subsumption by a resolvent may delete the parent clauses of other resolution steps that were

originally enabled.

Contraction is most useful in practice in equational logic and first-order logic. For these

problems the search space is infinite. Therefore, the approach of exhibiting a worst-case set and

showing that contraction does not affect it may not apply, so that the following problem remains:

5. Provide a model of the search space and search process which includes contraction as a basic

element.

5

Contraction-based and subgoal-reduction strategies

The search space of subgoal-reduction strategies has been traditionally represented as a tree (e.g.,

AND/OR-tree). The nodes are labelled by the goals (e.g. the chains of model elimination),

and the input clauses are viewed as “operators” that may be applied to reduce the goals. The

treatment of subgoal-reduction strategies in [3] follows this pattern. On the other hand, there is

no standard for the representation of the search space of contraction-based strategies (e.g., the

model of [2] is for expansion-only strategies). The search space formalism of [3] does not change

this state of affairs.

The approach of [3] stipulates that an arc represents the addition of all the resolvents, and

the search space of resolution is a list. (If an arc represents a single resolution inference, the

search space is a general graph as in [2].) This move of [3] may appear surprising. First, it

makes the semantics of the formalism ambiguous, because an arc represents an inference for

model elimination and all the possible inferences in the given state for resolution. Second, it has

the counterintuitive effect that resolution is linear, whereas model elimination is not. A possible

interpretation of this move is that the approach of [3] implicitly envisions resolution as a subgoal-

reduction strategy, where the whole database of clauses is the goal (to be reduced to the empty

clause) and the only operator is adding all resolvents. This interpretation is supported by the

following observations:

• The tree structure, which is natural for subgoal-reduction strategies, but not for contraction-

based strategies, is assumed already in the general characterization of a strategy as a tuple

< S, V, i, E, u >. Then, the search space of subgoal-reduction strategies is represented

properly as a set of trees, while the search space of resolution is reduced to a list.

• Resolution has a very high degree of non-determinism, because of all the possible selections

of clauses in the database. However, it is represented as a completely deterministic strategy.

On the other hand, the “degrees of freedom” of model elimination (e.g., choice of input

clause for ME-extension steps and choice of initial chain) are represented (e.g., a state may

have multiple successors and there is a tree for each choice of initial chain).

• The importance of the search plan is directly proportional to the degree of non-determinism

of the inference system. Thus, the choices of making resolution deterministic and excluding

the search plan from the representation are related. This does not affect subgoal-reduction

strategies, for which depth-first search with iterative deepening is assumed. On the other

hand, the search plan is fundamental for the modelling of forward-reasoning strategies.

• The positive effect of lemmaizing and caching in reducing the duplication of subgoal-

reduction strategies is successfully captured. On the other hand, contraction, which counters

the duplication of forward reasoning, is not included in the model.

Thus, we have the following problem:

6. Provide a common framework which is sufficiently rich to analyze subgoal-reduction, expan-

sion-only and contraction-based strategies.

6

A different approach to the modelling of search and the analysis of strategies appeared in [1].

It presents the beginning of an approach to Problems 1, 2, 3, and 5. More problems remain open,

as the field of strategy analysis is only at its infancy.

Acknowledgements

Thanks to David Plaisted, for answering my questions on his paper, and to Jieh Hsiang, for our

discussions on Plaisted’s work.

References

[1] M. P. Bonacina and J. Hsiang. On the representation of dynamic search spaces in theo-

rem proving. In C.-S. Yang (ed.), Proc. of the Int. Computer Symposium, 85–94, 1996, and

Technical Report, Dept. of Computer Science, Univ. of Iowa, 95-05.

[2] R. Kowalski. Search strategies for theorem proving. In B. Meltzer and D. Michie (eds.),

Machine Intelligence 5, 181–201, Edinburgh University Press, 1969.

[3] D. A. Plaisted. The search efficiency of theorem proving strategies. In A. Bundy (ed.), Proc.

of CADE-12, Springer Verlag, LNAI 814, 57–71, 1994, and Technical Report MPI I-94-233.

7

