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In the November 1990 issue of this Newsletter [15], Larry Wos described a problem in Lukasie-
wicz logic as a challenge problem for theorem provers. This note is intended to provide additional
information to anyone interested in attacking the problem with an automated prover. We present
three problems in Lukasiewicz logic and the results obtained so far in proving them automatically.

Lukasiewicz logic is many-valued propositional logic, i.e. logic with n truth values. This is
actually a family of logics L1, Lo, ..., Lyp,...,Ly,, where L,, n > 1, is propositional logic with n
truth values. Ly, has infinitely many truth values. A logic L,, n > 1, is the set of all sentences
satisfied by the structure £, =< A,,g, f > with domain

Ap={75510<k<n-1}
and two functions

g: Ay, = Ay, g(x) =1—2x and

f1Ay x Ay = Ay, f(z,y) =min(l —x+y,1),
where —, + and min are subtraction, addition and minimum on the rational numbers. The
domain A, is the set of truth values of the logic. The function g gives the complement of its
argument with respect to 1, while f(x,y) adds the complement of = to y, truncating it to 1 if
it exceeds 1. Lo is the classical two-valued propositional logic, with domain Ay = {0,1}, g(z)
is negation and f(z,y) is implication. The functions g(x) and f(z,y) are a form of generalized
negation and generalized implication respectively, that specialize to the classical connectives only
if n = 2. As n increases, the domain A,, grows, whereas the set L, of true sentences becomes

smaller and smaller. At the limit, the logic Ly, has the interval [0, 1] of rational numbers as its
set of truth values.

Lukasiewicz conjectured that the following axioms, together with modus ponens, are an ax-
iomatization for Ly,:

L p=(¢=p)

2. p=a=(g=r)=@=>r)
3. (=49 =9={¢=p)=0p)
4. (not(p) = not(q)) = (¢ = p)

5 (p=q9) = (¢=p)=(¢=>p)

where not and = are interpreted as g and f in the model Ly,. These axioms and the original
description of many-valued logic can be found in [14]. A more recent treatment is in [11]. The
conjecture that the above axioms with modus ponens are an axiomatization of Ly, has been
proved first by Wajsberg, then independently by Rose and Rosser in [13] and by Chang in [4].



First problem: Dependency of the Fifth axiom (original presentation)

The first challenge problem is to derive the fifth axiom in the above list from the
other four. This result has been proved independently by Meredith [9] and Chang [5]. It has
been called, somewhat imprecisely, “Fifth Lukasiewicz conjecture” in [1] and thus in [15]; we shall
rather call it “Dependency of the Fifth axiom”. To our knowledge, no automated proof of this
problem in this formulation has been obtained so far. Extensive experimentation with Otter [8]
has been and is currently being conducted at the Argonne National Laboratory.

Second problem: Dependency of the Fifth Axiom (equational presentation)

Lukasiewicz logic is related to several families of algebras: the MV-algebras, introduced by
Chang in [4] to prove Lukasiewicz’s conjecture about the axiomatization of Ly,; the AFC*-
algebras (approximately finite dimensional C*-algebras), with applications in quantum mechanics
[10] and the Wagsberg algebras [6, 12]. The problem of proving the dependency of the fifth
axiom can be reformulated as an equational problem in Wajsberg algebras. The following set of
equations, that we call W, is the axiomatization of Wajsberg algebras [6]:

1. true=>x===x

2. (x=y)=> ((y=2)= (x = 2)) == true
. (r=2y=2>y==UY=>z)=>z

4. (not(z) = not(y)) = (y = z) == true

Axioms 2, 3 and 4 correspond to axioms 2, 3 and 4 in the original presentation of Ly, by
Lukasiewicz. The fifth axiom

((p=q) = (¢=p) = (¢=p) == true
can be written more conveniently as
(x = y)V(y=>z) ==true
by introducing the connective V defined as
zVy==(r=y) =y
Thus the problem is to derive (x = y) V (y = x) == true from W. The operation z V y is

interpreted as maz(x,y): if we replace = by its interpretation we get

, , min(l—14+y,)=yify>=x
1-— 1-— 1 1) =
i.e. mazx(z,y). A dual operator A can be defined as
x Ay == not(not(zx) V not(y))

and its interpretation is 1 — max(1 — z,1 — y)), i.e. min(x,y). The connectives V and A are not
the only operators that can be defined starting from = and not. Another way to introduce a
connective for disjunction is

x or y==not(x) =y



with a dual operator and defined by
x and y == not(not(x) or not(y)).

By replacing = by its interpretation min(l — x + y,1), we can see that or is interpreted as
min(l — (1 —z) + y,1) = min(z + y,1), i.e. it is the rational sum of z and y truncated to 1
if it exceeds 1. Interestingly, x and y gives the difference between = + y and min(z + y, 1), i.e.
the information lost by using the truncated sum: the interpretation of z and y is 1 — (min(1 —
z+1—-y,1)). f min(z+y,1) =x+y, then min(l —x+1—y,1) =1 and z and y = 0. If
min(x +y,1) = 1, i.e. x+y =1+ a for some a, then min(l—z+1-y,1)=1—-x+1—y
andrzandy=1—-1+x—-1+y=x+y—1=a. The two pairs V and A and or and and are
two different pairs of connectives. Only if the domain of interpretation is {0,1}, i.e. the logic is
two-valued, V collapses onto or and A collapses onto and.

The theorem (z = y)V (y = x) == true is interpreted as maxz(min(l—z+y,1),min(l —y +
x,1)) == 1, that is intuitively true, since the left hand side evaluates to maz(1 —x +y,1) =1 if
x>yand tomar(l —y+x,1)=1ify > x.

The first automated proof of the Dependency of the Fifth Axiom (equational pre-
sentation)

The first automated proof of the dependency of the fifth axiom in Wajsberg algebras appeared
in [1]. The proof has been obtained by using the theorem prover SBR3. SBR3 is based on the AC-
Unfailing Knuth-Bendix completion procedure [7, 3] with several significant enhancements that
are described in part in [1, 2]. In completion based theorem proving the principle of completion is
applied not to generate a canonical system, but to prove refutationally a specific, given theorem.

The proof in [1] also uses the knowledge that the following lemmas are true in any Wajsberg
algebra [6]:

l. 2= 2 ==true

2. ifr=>y==y=x==truethenx ==y

3. x = true == true

4. == (y = x) == true

5. if x = y ==y = z == true then x = z == true
6. (x=y)=>((z=>2)=>(z=y)) ==true
T.z=@y=z2)==y=(r=2)

8. x = false == z = not(true) == not(x)

9. not(not(x)) ===

10. not(z) = not(y) ==y =«



We list them here as additional, simpler problems for experimenting in Wajsberg algebras with
an equational prover. All of them except lemma 7 have been derived by SBR3 from W in a few
seconds . Lemma 7 is treated below. The proof of the dependency of the fifth axiom in [1] is
done incrementally through five executions:

1. Prove lemma 9 not(not(x)) == x from W.

During the proof the lemmas 1, 3, 4 and 8 are also generated automatically. The running
time is 58 secs.

2. Prove lemma 10 not(x) = not(y) == y = = with W and lemmas 1, 3 and 9 as input. The
running time is 11 secs.

3. Introduce the operator and defined implicitly by
(x and y) = z == (z = (y = 2))

and prove that and is commutative from W and lemmas 1, 3, 4, 8, 9 and 10. Lemma 7
= (y = z) ==y = (z = z) is an immediate consequence. The running time is 17 secs.

4. Introduce the operator or defined as = or y == not(z) = y, and prove that it is asso-
ciative and commutative from W and lemmas 7, 9 and 10. This proof is very easy and
can be done quickly also by hand. As a side-effect it produces the equation: z and y =
not(not(x) or not(y)), that defines and in terms of or and shows that and is also AC. Note
that lemma 9 implies that = or y == not(z) = y is equivalent to x = y == not(x) or y
and thus allows us to express implication in terms of or.

5. Prove (x = y) V (y = =) == true from W, lemmas 1, 3, 9, x = y == not(z) or y, where
or is AC, and z V y == (z = y) = y. The running time is 22 minutes and 30 secs.

This proof shows just one successful approach to the problem. Other proofs may be sought.
Especially, it remains open the problem of finding a proof without resorting to the auxiliary
operators or and and, i.e. working only with the basic operators = and not.

Another approach to an automated proof of the Dependency of the Fifth Axiom
(equational presentation)

The dependency of the fifth axiom in Wajsberg algebras has been proved by SBR3 in less
than 1 minute, by using a different axiomatization of Wajsberg algebras, that we shall call W'.
The basic connectives in W' are and and ezclusive or, that we denote by &. The axiomatization
W' has been generated and proved equivalent to YW by SBR3 [2]. This experimentation has been
conducted by Siva Anantharaman. We assume to have already performed all the steps of the
previous proof but the last one, namely we have lemmas 9, 10, 7, the AC operators and and or
and we can express = in terms of or. Then, we define

THYy==2x and Yy == not(?’LOt(CC) or TLOt(y)) and

'All running times are for a SUN 3/260 and refers to the very first run of this proof in Fall 89. The current
version of SBR3 is much more efficient.



z @y == (z and not(y)) or (not(z) and y).

If we add to W these two definitions, plus © = y == not(x) or y and the knowledge that and
and or are AC, we can prove by SBR3 all the theorems in the following set W'

1. not(z) ==z d1

2.200===x

3. xDx ==

4. zxl==x

5. x %0 ==

6. (1@x)*xx ==

7.20(10y)==(al)dy

8. (1dx)*xy)d)xy==(1®y)*xx)®1)*x

where % is AC, while @ is commutative only. Furthermore, the prover generates the definition of
or in terms of &:

zory=1a((1dz)*x(1dy)).
Inversely, if we start with W' as axiomatization and we add the definition:

(z=y) =10 (zx(1dy)),
we obtain by SBR3 all the equations of W as theorems. This proves that the sets W and W' are
equivalent axiomatizations. The axiomatization W' is partly resemblant of the system of axioms
for the Boolean ring given by J. Hsiang. However, there are substantial differences, as W' is
an axiomatization for many-valued logic, whereas the axioms for the Boolean ring apply to the
Boolean case, i.e. two-valued logic. The product * is not idempotent. This can be easily checked

by recalling that  is just an alias for and and thus is interpreted as 1 —min(l —xz+1—1y,1): for
instance for x = 0.3, x *x =0 and for t = 0.7, x xx = 0.4 !

The most important property that is missing is distributivity:
(x and y) or z == (x or z) and (y or z) and
(x or y) and z == (x and z) or (y and z)

do not hold, as can be easily seen by assigning for instance 0.05 to z, 0.2 to y and 0.9 to z.
Similarly, distributivity does not hold if or is replaced by @. Also, @ is only commutative in W/,
whereas it is AC in the Boolean case. The above assignment to z, y and z is also a counterexample
for associativity of @. The absence of these properties is clearly related: if distributivity were
true, associativity of & would follow and many-valued logic would collapse on two-valued logic.



The lattice structure of Wajsberg algebras

A simple, manual proof of the dependency of the fifth axiom in Wajsberg algebras is sketched
in [6]. We describe here this approach as it may provide hints for other automated proofs. Also,
the proof uses a second bunch of lemmas that may be used for further experiments. The proof is
based on regarding Wajsberg algebras as lattices. The relation defined by

x <y if and only if z = y == true

is a partial order: lemmas 1, 2 and 5 establish reflexivity, antisymmetry and transitivity of this
relation. If we interpret as usual x = y as min(l —x +y, 1) and true as 1 on the rational interval
[0,1], we see that this order is just the standard ordering on the rational numbers. Indeed, the
connectives V and A, that are interpreted as max and min on the rational numbers, are the
supremum and infimum with respect to this order. The following theorems are given in [6] and
proved by using the properties of lattices:

—_

.ifx<ythenz=2>y==z
2.iffzr<ythenz=>zx<z2=>y

. x<y=zifandonlyify<z =z
4. not(x Vy) == not(z) A not(y)

5. not(x A y) == not(z) V not(y)

6. (xVy)=z==(z=>2)AN(y=2)
T.x2=(yYANz)==(x=>y)A(r=2)
8. (z=y)V (y=xz)==true

9. 2= (yVz)==(z=y)V(r=2)
10. (zAy)=>z==(x=2)V(y=2)
11. (zAy)Vz==(xV2)A(yV=2)

12. (zAy)=>z==(z=y)=(x=2)

Theorem 8 is the dependency of the fifth axiom and theorem 11 is distributivity, that hold between
V and A whereas it does not for or and and. Assuming to have proved the theorems preceding
it in the above list, the dependency of the fifth axiom can be proved as follows: by instantiating
first z to y and then z to = in theorem 6, we obtain respectively

r=>y==(xVy)=>y and y=>zx==(zVy) ==z
Then we have

=y =>W=>z)==((=Vy) =y)=>(=Vy) =)
by using the two above equations,

((xVy)=vy) = ((zVy) = x) == (not(y) = not(x Vy)) = (not(x) = not(x Vy))



by lemma 10,

(not(y) = not(z Vy)) = (not(x) = not(x Vy)) == not(z) = ((not(y) = not(x Vy)) =
not(x Vy))

by lemma, 7,
not(x) = ((not(y) = not(x Vy)) = not(x Vy)) == not(x) = (not(y) V not(x Vy))
by the definition of V,
not(x) = (not(y) V not(z V y)) == not(not(y) V not(z Vy)) = x
by lemma 10,
not(not(y) Vnot(xVy)) =z==(yA(xVy)) =z
by theorem 4 in the above list and lemma 9,
(YA(zVy)=>z==y=2
by the absorption law, so that finally we have proved
(z=y)=y=12)=(y= ) ==true
that is the fifth axiom.

Third problem: a “one variable problem”
The problem is to prove from the four axioms of W, the following theorem
not((z * (22)) or (22)) == not(x) x (2not(z)) or (not(z)?),

where * is an alias for and, 2z is a short hand for x or = and 22 is a short hand for = * . We
call it “one variable problem” because just one variable appears. A way to split this problem into
easier tasks is:

1. assume x or x == true and prove the theorem from W and x or © == true,
2. assume not(x) or not(x) == true and prove the theorem from W and not(z) or not(x) ==
true.

In principle, in order to have a fully automated proof, one should also prove
(x or x == true) V (not(x) or not(x) == true)

from W. SBR3 has proved Step 1 in 19 sec. and Step 2 in 15 sec. from W, lemmas 1, 3, 9, 10,
(x and y) = z == (r = (y = 2)) and = = y == not(x) or y with or AC.

The theorem prover SBR3 is available through ftp: all interested readers may send mail to
bonacina@sbcs.sunysb.edu or to hsiang@sbcs. sunysb.edu for instructions.

Acknowledgements

Prof. Daniele Mundici introduced me to Lukasiewicz logic and suggested the dependency of
the fifth axiom and the “one variable problem” as problems for theorem provers.



References

[1]

[2]

(3]

[4]

[5]
[6]

[7]

(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

S.Anantharaman and M.P.Bonacina, Automated Proofs in Lukasiewicz Logic, Technical
Report, Department of Computer Science, SUNY at Stony Brook, November 1989.

S.Anantharaman and M.P.Bonacina, An Application of the Theorem Prover SBR3 to Many-
valued Logic, to appear in M.Okada, S.Kaplan (eds.), Proceedings of the Second Interna-
tional Workshop on Conditional and Typed Rewriting Systems, Montreal, Canada, June
1990.

S.Anantharaman and J.Mzali, Unfailing Completion modulo a set of equations, Technical
Report, LRI, Université de Paris Sud, 1989.

C.C.Chang, in Transactions American Mathematical Society, No. 88, 467-490, 1958 and
ibidem No. 93, 74-80, 1959.

C.C.Chang, in Transactions American Mathematical Society, No. 87, 55-56, 1958.

J.M.Font, A.J.Rodriguez and A.Torrens, Wajsberg algebras, Stochastica, Vol. 8, No. 1, 5-31,
1984.

J.Hsiang and M.Rusinowitch, On word problems in equational theories, in Th.Ottman (ed.),
Proceedings of the Fourteenth International Conference on Automata, Languages and Pro-
gramming, Karlsruhe, West Germany, July 1987, Springer Verlag, Lecture Notes in Com-
puter Science 267, 54-71, 1987.

W.W.McCune, OTTER 2.0 Users Guide, Technical Report ANL-90/9, Argonne National
Laboratory, Argonne, Illinois 1990.

C.A.Meredith, in Transactions American Mathematical Society, No. 87, 54, 1958.

D.Mundici, Interpretation of AFC*-algebras in Lukasiewicz sentential calculus, Journal of
Functional Analysis, No. 65, 15-63, 1986.

N.Rescher, Many valued logic, McGraw Hill, New York 1969.

A.J.Rodriguez, A.Torrens and Verdu, Lukasiewicz logic and Wajsberg algebras, Bulletin of
the Polish Academy of Sciences, Sect. Logic, 51-55, June 1990.

A.Rose and J.B.Rosser, in Transactions American Mathematical Society, No. 87, Chapter
13, 1-53, 1958.

A Tarski and J.Lukasiewicz, Investigations into the sentential calculus, Chapter IV in
A.Tarski, Logic, Semantics and Metamathematics, 3856, Clarendon Press, Oxford, 1956.

L.Wos, New Challenge Problem in Sentential Calculus, AAR Newsletter, No. 16, November
1990.



