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a b s t r a c t 

Because outliers are very different from the rest of the data, it is natural to represent outliers by their 

distances to other objects. Furthermore, there are many scenarios in which only pairwise distances are 

known, and feature-based outlier detection methods cannot directly be applied. Considering these ob- 

servations, and given the success of Isolation Forests for (feature-based) outlier detection, we propose 

Proximity Isolation Forest, a proximity-based extension. The methodology only requires a set of pairwise 

distances to work, making it suitable for different types of data. Analogously to Isolation Forest, outliers 

are detected via their early isolation in the trees; to encode the isolation we design nine training strate- 

gies, both random and optimized. We thoroughly evaluate the proposed approach on fifteen datasets, 

successfully assessing its robustness and suitability for the task; additionally we compare favourably to 

alternative proximity-based methods. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Outlier Detection (OD) aims to identify those objects in a 

ataset which behaviour deviates from the rest of the data [1] . Like 

n classification and regression, many outlier detectors work with 

 feature-based representation. However, there are some scenarios 

n which the latter cannot be used, such as when the input data 

onsists of a matrix containing pairwise distances/similarities be- 

ween the objects, and the original representation is not known. 

n such cases, the task can be carried out using proximity-based 

utlier detectors, techniques which only need a set of pairwise 

istances to solve the problem. As also highlighted in recent sur- 

eys [2,3] , the field of proximity-based OD is rather extensive, also 

ue to the common assumption that outliers tend to be distant 

rom the rest of the data and/or lie in low density areas. Indeed 

uch notions are easier to be captured by pairwise distances, i.e. it 

s straightforward to think about an object in terms of how simi- 

ar (or dissimilar) it is to another object, than to use features. The 

atter is especially true when dealing with data which structure 

s more complex, e.g. non-vectorial data, where defining features 

ould lead to severe information loss. 

The above observations motivate the further expansion of 

roximity-based OD, which is the topic of this manuscript. Our 
∗ Corresponding author. 
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031-3203/© 2023 Elsevier Ltd. All rights reserved. 
tarting point is that one of the best feature-based outlier detec- 

ors [4,5] is Isolation Forest (iForest) [6] : an unsupervised tech- 

ique based on Random Forests (RFs) aimed at separating each 

bject from the rest. The core concept is that outliers tend to be 

ew and different from the inliers, and thus are likely to be iso- 

ated soon in a tree-based structure. Even though iForests have 

een thoroughly used and extended, the focus has never shifted to 

roximity-based outlier detection using RF. Indeed, to our knowl- 

dge only [7] proposes a framework based on K-ary trees that 

orks with distance measures, which are constrained to belong to 

 Locality-Sensitive Hashing family. 

For the above-mentioned scenario, we propose Proximity Isola- 

ion Forest (ProxIF), a proximity-based extension of iForest, which 

nput is a set of pairwise distances that do not have to satisfy any 

athematical constraints –differently from Zhang et al. [7] . ProxIF 

an therefore manage all types of data for which a distance mea- 

ure is defined, including –but not limited to– non-vectorial data. 1 

he proposed methodology leverages some successful ideas from 

he field of classification and regression, where proximity-based 

Fs have proven to be successful [9–12] . After introducing the 

odel, we describe how to train and test a ProxIF, focusing on ran- 
1 A preliminary version of this paper was published in [8] , which we extend 

ethodologically and experimentally. As to the former, we provide more thorough 

nd organized descriptions, and define several novel training criteria. As to the lat- 

er, we study 7 additional datasets and compare to 4 recent competitors, in addition 

o enriching our analyses statistically. 

https://doi.org/10.1016/j.patcog.2023.109334
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109334&domain=pdf
mailto:antonella.mensi@univr.it
https://doi.org/10.1016/j.patcog.2023.109334


A. Mensi, D.M.J. Tax and M. Bicego Pattern Recognition 138 (2023) 109334 

d

q

i

e

1

T

d

F

l

w

S

o

s

e

I

i

f

2

w

w

t

o

r

c

w

I

c

t

p

2

m

(

a

a

a

i

a

v

h

p

o  

w  

t  

t

t

t

w

f

a

s

i

s

fi

s

a

w

o

d  

a  

a

r

f

a

g

t

T

o  

t

K

b

a

g

L

u

a

O

b

t

d

o

o

o  

t  

n

i

L

n

t

f

d

a

t

t

n

t

t

s

r

s

t

c

j  

w

I  

o

w  

i

t

e

i

f

n

s

c

m

2

i

t

om training strategies to achieve isolation via distances. Subse- 

uently, we present seven advanced training strategies that make 

nformed decisions to achieve isolation. We carried out a thorough 

xperimental evaluation: all designed criteria have been tested on 

5 datasets employing a great variety of parametrization settings. 

he methodology is confirmed to be sound: results are robust in- 

ependently of the parametrization, aside from few exceptions. 

urther, we make a comparison with other proximity-based out- 

ier detectors: results confirm that using ProxIF is beneficial when 

orking with distances. 

The rest of the manuscript is organized as follows: in 

ection 2 we review proximity-based OD; in Section 3 we thor- 

ughly present how to train and test a Proximity Isolation Forest 

tarting from its base components, Proximity Isolation Trees, and 

nding with a detailed description of advanced training strategies. 

n Section 4 we make a thorough experimental evaluation. Lastly, 

n Section 5 we draw some conclusions and discuss some ideas for 

uture research. 

. Proximity-based outlier detection 

In this section, we review proximity-based outlier detection, 

hich comprises all methodologies that work with distances and 

hich do not require a feature representation. As defined in one of 

he latest surveys [3] , a proximity-based outlier detector identifies 

utliers by looking at how an object behaves compared to the sur- 

ounding objects. In particular, [3] splits these methods into two 

ategories: neighborhood and clustering-based methods. Actually, 

e can add a third category which consists of hybrid techniques. 

n the following, we briefly describe each category, highlighting the 

ore concepts, advantages and disadvantages, and presenting in de- 

ail those methods to which we compare in Section 4 –for a com- 

rehensive list of techniques, refer to [2,3,13] . 

.1. Neighborhood-based methodologies 

In the literature, there have been many attempts to separate 

ethods which use information related to the Nearest Neighbors 

NN) into distance and density -based, often leading to overlapping 

nd/or contrasting definitions. However, as explained in [2,3] , they 

re all non-parametric methods which estimate the density within 

 region using distances. 

One of the first and simplest neighborhood-based techniques 

s the K-Nearest Neighbor ( KNN ) [14] : the outlierness degree of 

n object is the distance to the Kth neighbor. Several alternative 

ersions, some of which are aimed solely at improving efficiency, 

ave been proposed [15–18] . For example, KNN-d [15] assesses the 

robability of an object x being an outlier by evaluating the ratio 

f the distance between x and its KNN to the distance of the latter

ith its KNN. If the KNN of x is much closer to its KNN than to x ,

hen there is a high probability that x is an outlier. A slight varia-

ion, called KNN-d-Av , works with the average of the first Kth dis- 

ances [19] . Next, the methods LeSiNN [18] and iNNE [17] combine 

he concept of Nearest Neighbor with ensemble theory. LeSiNN , 

hich stands for Least Similar Nearest Neighbor, is based on the 

ollowing principles: i) objects which NNs are the least similar, 

re more likely to be outliers; ii) to detect clustered outliers, the 

earch of the NNs must be performed within a subset of the orig- 

nal dataset. To have reliable estimates, the search is performed 

everal times, thus making LeSiNN an ensemble methodology. The 

nal anomaly score is the inverse of the average NN similarity. In- 

tead iNNE [17] exploits the concept of isolation [6] , i.e. outliers 

re easier to separate since they are usually far and in sparse areas 

ith respect to other objects, to detect outliers. iNNE isolates each 

bject by creating a region, centered on the object itself, which ra- 

ius is equal to the distance to its NN: if an object is described by
2 
 bigger region, i.e. it is in a sparse area, it is more likely to be

n outlier. The isolation procedure is performed several times on 

andomly drawn subsamples of the data. The anomaly score is a 

unction of the radius of the region in which the object falls into, 

nd of the radius of the neighbouring region. 

The above methodologies, aside from iNNE and LeSiNN, strug- 

le in the detection of local outliers, due to the implicit and of- 

en incorrect assumption that the density is uniformly distributed. 

his problem is overcome by the Local Outlier Factor methodol- 

gy ( LOF ) [20] , and all of its extensions. In detail, LOF estimates

he relative density of an object x by estimating the density of its 

-neighborhood. If at least one neighbor has a much denser neigh- 

orhood than x has, then there is an increased probability that x is 

n outlier. Several extensions and variations have been introduced 

iven the success of the basic methodology. A simple example is 

OF-Range [20] : for an object, different neighborhoods are eval- 

ated, i.e. K changes, and the maximum score is taken. A more 

dvanced and recent extension [21] , is the Relative Density-Based 

utlier Factor ( RDOF ), which, similarly to LOF, looks at the neigh- 

orhood of an object x but with an additional constraint. In de- 

ail, given a maximum size K of the neighborhood, it estimates the 

ensity of a relative neighborhood, i.e. a neighborhood composed 

f only the objects in the K-neighborhood that also have x in their 

wn K-neighborhood. Therefore, each object has a neighborhood 

f size k ′ ∈ [1 , K] . The relative density is defined as the ratio be-

ween the distance the object has to its k ′ NNs to the size of the

eighborhood: a smaller relative density indicates that the object 

s highly likely to be an outlier. 

In addition to the described techniques, there also exist Deep 

earning (DL) distance-based methodologies for OD [22] which use a 

eighborhood-based anomaly scoring function, e.g. the distance to 

he KNN or the LOF, to optimize a feature representation mapping 

unction. The chosen scoring function is optimised to learn a lower 

imensional feature space in which outliers are well differenti- 

ted from inliers. The output is the anomaly score computed via 

he same scoring function used within the network. Even though 

hese techniques exploit neighborhood-based concepts, they are 

ot proximity-based since they cannot work if the input is a dis- 

ance matrix, but only if it is a feature space. To our knowledge, 

he only DL technique for OD which input of the network is a 

et of pairwise distances is LUNAR [16] , a very recent Graph Neu- 

al Network (GNN)-based technique, where each object is repre- 

ented by a node and where edges represent a relationship be- 

ween the nodes. LUNAR starting assumption is that KNN distances 

an be represented via a KNN graph, where each node is an ob- 

ect, and a weighted edge e ( j, i ) exists if j is a KNN of i , and its

eight is equivalent to their distance, which is typically Euclidean. 

n other words, the input of the GNN is the KNN graph, i.e. a set

f distances. Given a target node i , a message corresponding to the 

eight of the edge e (i, j) , is sent to i from each of the j neighbor-

ng nodes. Messages are then combined using a flexible aggrega- 

ion function, which represents the anomaly score of node i . How- 

ver, even though the input of the GNN is a set of distances, the 

nput of the methodology is not. Indeed, LUNAR still requires a 

eature-based representation to perform the pre-processing step of 

egative sampling. 

Neighborhood-based techniques are non-parametric and have a 

traightforward interpretation. However, the majority of them lack 

omputational efficiency and setting the neighborhood size K, in 

ost cases, can be problematic. 

.2. Clustering-based methodologies 

The most common procedure to detect outliers using clustering 

s the following: the first step consists of building the clusters on 

he distance matrix; the second one of identifying as outliers those 
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Table 1 

Notation. 

Symbol Meaning 

F A Proximity Isolation Forest. 

T Nr. of Proximity Isolation Trees in F . 

t A Proximity Isolation Tree. 

O Training set used to build t . 

D Distance matrix containing all pairwise distances of the objects 

in O. 

d (i, j ) Pairwise distance between objects i and j. 

S Nr. of objects used to build t . 

D Maximum depth reachable in t . 

n Node in t . 

n L Left child of n . 

n R Right child of n . 

| n | Nr. of training objects that have reached n . Size of the node. 

P, P L , P R Prototype objects, chosen among the objects in n , used to 

define the test in n . 

θ Threshold on the distance value used to define the test in node 

n . 

It either corresponds to an existing distance value or it is a 

value within 

an existing range. 

p L = 

| n L | | n | Proportion of objects in n that have reached n L . 

p R = 

| n R | | n | Proportion of objects in n that have reached n R . 
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bjects that either form a very small unlikely cluster, or are rather 

istant from the representative point of the cluster they belong to. 

owever, there are also clustering algorithms, which, by setting a 

inimum size for the clusters, detect outliers in a one-step proce- 

ure by not assigning them to any cluster, e.g. DBSCAN [23] . 

Let us exemplify the two-steps procedure by describing a 

idely known partitional clustering algorithm, K-Centers : after K

bjects are randomly chosen as cluster centers, a recursive proce- 

ure, that assigns the objects to the closest cluster and then up- 

ates the centers, is repeated until no change is detected. Since 

he random initialization may lead to poor results, the whole pro- 

edure is repeated several times, and the final clustering is the 

ne minimizing the maximum distance within the clusters. The OD 

tep consists of assigning an outlier score proportional to the dis- 

ance between the object and the cluster center to which the ob- 

ect belongs [15] . An example of a more complex technique is that 

y Jiang et al. [24] : the clustering step is performed using a mod-

fied version of K-means, which, by allowing the creation of more 

han K clusters, ensures that at the end of the procedure a cluster 

ontains either inliers or outliers. The latter are then detected by a 

rocedure which uses Minimum Spanning Trees. 

Clustering techniques for OD are more efficient than neighbor- 

ood ones; however, they are highly dependent on the number of 

lusters K, which, if not adequately set, can have a negative impact 

oth on the clustering results and on the identification of the out- 

iers [13] . For example, if K is set too low with respect to how data

aturally group, outliers may result not too far away from the as- 

igned cluster, which is likely to contain multiple groups of inliers. 

.3. Hybrid methodologies 

Recently, there have been proposed techniques which com- 

ine neighborhood-based methodologies with clustering ones, to 

etter capture the nature of outliers. An example is On-the-Fly 

lustering-based OD ( OFCOD ) [25] , which partitions the objects us- 

ng the K-Medoids clustering algorithm, and it distinguishes be- 

ween normal and outlier clusters. As to the objects in the lat- 

er clusters, an outlier score based on density estimation is com- 

uted. Whenever an unknown object arrives, an online update of 

he clusters is made by exploiting the previously detected clusters 

nd outliers. Another example is E2DLOS (Efficient Density-based 

ocal OD for scattered data) [26] , which uses clustering to discard 

bjects that are likely to be inliers. Then, for the remaining ob- 

ects, it computes a Local Deviation Coefficient which exploits not 

nly the degree of deviation of an object to its neighbors, but also 

ther factors that allow to identify outliers in a scattered dataset. 

. Proximity isolation forests 

In this section, we present the proposed methodology. In 

ection 3.1 we describe the rationale behind our proposal, and 

hen we thoroughly present how to train and test a Proximity Iso- 

ation Forest, starting from the base classifier, the Proximity Isola- 

ion Tree. Section 3.2 presents more advanced training strategies to 

chieve isolation. 

.1. Standard version 

The core of the proposed methodology is that it works with 

airwise distance matrices, making Proximity Isolation Forest a pe- 

uliar extension of iForest. Indeed, both the latter and its exten- 

ions, use a feature-based representation to define the test in a 

ode. Instead, since ProxIF does not have such representation, pair- 

ise distances are used to define the test in a node and to answer

o such test, i.e. to traverse the node. Further, pairwise distances 
3 
nd related characteristics are efficiently exploited to achieve iso- 

ation. In the remainder of the section, we explain in detail the 

ethodology, starting from the base components of a ProxIF, the 

roximity Isolation Trees. Please refer to Table 1 for the notation 

sed throughout the remainder of the paper. 

.1.1. Proximity isolation trees 

A Proximity Isolation Tree t , or ProxIT , is an unsupervised top- 

own decision tree built recursively on a distance matrix D . 

To define a ProxIT we first have to define how an object x tra-

erses it. Generally, an object x traverses a decision tree starting 

rom the root and following a path determined by the answer to 

pecific questions, until a leaf is reached. Taking inspiration from 

kin methodologies for classification [9–11] , we define two traver- 

al modalities in a ProxIT: 

1. For an internal node n , we have one prototype object P and a

threshold θ . If d(x, P ) ≤ θ then x will end up in n L , otherwise in

n R , i.e. θ determines whether x should follow the left or right 

edge depending on its distance to P . 

2. For an internal node n , we have two prototype objects P L and 

P R . If d(x, P L ) ≤ d(x, P R ) , i.e. the object x is closer to P L , then it

will end up into n L , otherwise into n R . 

The traversal modality is fixed for all nodes in a ProxIT and 

or all ProxITs in a ProxIF. Having defined how objects traverse a 

roxIT, we can describe the tree building procedure –for the re- 

ated pseudocode see Algorithm 1 in the Supplementary Material. 

he building procedure of a ProxIT t is recursive: i) we define a 

est for a node n based on the training objects that have reached 

 (Lines 8–20 of Algorithm 1); ii) the test induces the splitting of 

 into two child nodes (Lines 8–20 of Algorithm 1); iii) this proce- 

ure is repeated until a stopping criterion is met. When that hap- 

ens, n becomes a leaf node. Specifically n is labelled as leaf when: 

i) | n | = 1 , i.e. there is only one training object in n , (ii) the maxi-

um depth D has been reached, (iii) all objects that have reached 

 are all at the same distance (Lines 5–7 of Algorithm 1). 

To define the test on a node n , we cannot directly apply the 

deas of proximity-based RF methods for classification to outlier 

etection. In particular, our tree structure should be unsupervised 

nd able to identify outliers. However, we can adapt the isolation 

rinciple proposed in [6] to our context, starting from the same as- 

umption that outliers should be easy to separate, due to the fact 
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hat they are few and usually distant from the rest of the data. 

n iForest, isolation is implemented by choosing completely at ran- 

om both the feature and the cut-value along which to split a node 

 . This criterion implicitly captures the fact that outliers are dis- 

ant. However, in our context, having pairwise distances, we can 

mplement isolation such that the notion that outliers are distant 

s explicitly captured. 

Inspired by iForest, we define two training criteria based on 

andom sampling: 

1. R-1P : In this training strategy, we randomly choose one proto- 

type ˆ P among the objects contained in node n . The threshold 

ˆ θ
is subsequently picked, randomly as well, in the range of dis- 

tances to ˆ P : 

[ min 

x ∈ n d (x, ˆ P ) , max 
x ∈ n d (x, ˆ P )] . 

The last step consists in creating the child nodes n L and 

n R as follows: n L = { x | x ∈ n ∧ d(x, ˆ P ) ≤ ˆ θ} and n R = { x | x ∈ n ∧
d(x, ˆ P ) > 

ˆ θ} . This criterion will likely cause an outlier distant 

from P to be isolated. In other words, it is highly likely that θ
is greater than the distance of the inlier the furthest from P but 

smaller than the distance between P and an outlier. 

2. R-2P : This criterion randomly picks two different objects among 

the ones in n as prototypes ˆ P L and 

ˆ P R . The child nodes are 

created as follows: n L = { x | x ∈ n ∧ d(x, ˆ P L ) ≤ d(x, ˆ P R ) } and n R =
{ x | x ∈ n ∧ d(x, ˆ P L ) > d(x, ˆ P R ) } . This criterion is more complex

than R-1P , but it has a similar interpretation: outliers get iso- 

lated earlier than inliers, since they are likely to share more 

similarities with those prototypes that are, on average, more 

distant from the rest of the data. 

The pseudocode of the procedure to choose ( ̂  P , ˆ θ ) and ( ̂  P L , ˆ P R )

or a node n is shown in Algorithms 2 and 3 in the Supplementary

aterial. In detail, see Lines 5–9 of Algorithms 2 for the R-1P strat- 

gy and Lines 5–9 of Algorithm 3 for the R-2P one. Please note that 

hese Algorithms are valid also for the advanced learning strategies 

resented in Section 3.2 . 

.1.2. Proximity isolation forests 

Having defined the Proximity Isolation Tree, here we present 

he Proximity Isolation Forest. A Proximity Isolation Forest F is an 

nsemble of T = |F| ProxITs t , each built by randomly subsampling 

ithout replacement the input dataset. This randomization step 

nsures diversity among the trees, which are built independently 

f one another. 

Given a built ProxIF F we retrieve the anomaly score for any 

bject x by making x traverse each ProxIT t . As anomaly score, 

e adopt the classic iForest function defined in [6] : the main idea 

s that an outlier tends to be isolated earlier in a tree, i.e. it is

ikely to end up in a leaf at a small depth. Therefore, the anomaly 

core of x in t is a function inversely proportional to the depth of 

he reached leaf, such that a higher score is assigned to outliers. 

he aggregation at forest level is performed by averaging the tree 

cores. Formally, the anomaly score s of an object x in a ProxIF F
s defined as: 

 (x ) = 2 

− E(h t (x )) 

c(S) (1) 

here h t is a function proportional to the depth of the leaf reached 

y x in t , c(S) is a normalization factor where S is the number of

bjects used to build each t in F and E() is a function that com- 

utes the average of h t across all trees. For further details see [6] .

indly note that advanced versions of the anomaly score exist [27] ; 

owever, for simplicity, in this work we adopt the original and 

impler version of [6] . 

Figure 1 shows the pipeline for building a ProxIF, and how to 

se it. As to the related pseudocodes, please refer to Algorithms 4 

nd 5 in the Supplementary Material. 
4 
.2. Advanced learning strategies 

In this section, we present seven novel training strategies, i.e. 

lternative ways in which isolation can be implemented other than 

y random sampling. 

All the proposed training criteria, including R-1P and R-2P , can 

e categorized in different ways depending on the adopted per- 

pective. Indeed, if we consider the traversal modalities defined in 

he previous section we can divide these criteria into two classes: 

• One prototype (1P) criteria : the test of a node n is defined by

one prototype object P , chosen among the objects in n , and a

threshold θ on the distance value. These criteria partition the 

objects such that the child nodes are created as follows: 

n L = { x | x ∈ n ∧ d(x, P ) ≤ θ} 
and 

n R = { x | x ∈ n ∧ d(x, P ) > θ} . 
In other words, objects are assigned to the left or right child 

depending on whether their distance to P is smaller or greater 

than θ . Each possible pair (P, θ ) splits the node n differently 

into two child nodes n L and n R . See Lines 8–9, 17–18 of Algo- 

rithm 2 in the Supplementary Material. 
• Two Prototypes (2P) criteria: a node n is characterized by two 

prototype objects P L and P R , representing respectively n L and n R . 

These training strategies partition the objects such that n L and 

n R are respectively created as follows: 

n L = { x | x ∈ n ∧ d(x, P L ) ≤ d(x, P R ) } 
and 

n R = { x | x ∈ n ∧ d(x, P L ) > d(x, P R ) } . 
Each possible pair (P L , P R ) determines a different split of node 

n , i.e. two different child nodes n L and n R . See Lines 8–9, 17–18

of Algorithm 3 in the Supplementary Material. 

We can further group the training criteria based on their 

ore principle: i) Random Criteria ; ii) Scatter-based Criteria ; iii) 

eparation-based Criteria ; and iv) Information Theoretic Criteria . 

side to the first group of training criteria, which we have de- 

cribed in Section 3.1 , all remaining strategies are based on the op- 

imization of an impurity-like function, which exploits the nature 

f our input, i.e. characteristics of pairwise distances, to capture 

utliers. Before delving into the definition of each strategy let us 

larify some concepts common to all optimized training schemes: 

• For a node n we choose to evaluate only r among all the possi- 

ble pairs (P, θ ) (or (P L , P R ) ), since it would not be feasible in

computing terms –in detail that would take O(| n | 2 ) . Empiri- 

cally, we observed that the performance tends to reach a pivot 

after a certain number of pairs is evaluated, thus supporting 

our choice. 
• If the strategy is 1 P , each of the r pairs (P, θ ) is chosen as fol-

lows: randomly pick P ∈ n and randomly pick θ ∈ { d(x, P ) | x ∈
n } , where the latter is the set of distance values of the objects

in n to P (see Lines 13–14 of Algorithm 2). Instead, if the crite- 

rion is 2 P each of the r pairs (P L , P R ) is chosen by picking ran-

domly two different objects as prototypes (see Lines 13–14 of 

Algorithm 3). 
• The optimization function returns a pair ( ̂  P , ˆ θ ) (or ( ̂  P L , ˆ P R ) )

which should maximize the isolation in node n (see Lines 15–

24 of Algorithms 2 and 3 for the optimization procedure). 

.2.1. Scatter-based criteria 

The intuition behind the following three criteria is that in a 

ata distribution composed of inliers and contaminated by outliers, 
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Fig. 1. Pipeline of the proposed methodology. 
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he variance is very different from the variance of the same distri- 

ution where outliers are absent. Therefore, when a split of a node 

n a tree isolates outliers, we expect a drastic reduction of the vari- 

nce in both children. To embed this feature in a training criterion 

e must define some fundamental concepts: 
• Breiman [28] defined the misclassification cost as a measure 

o find the test of a node n which reduces the most the misclassi-

cation rate. The misclassification cost is measured via an impurity 

unction I() which measures how impure a node is: in a classifica- 

ion task this is measured via the labels. In detail, as we go deeper

nto a tree structure, nodes should be purer, i.e. they should con- 

ain an increasing percentage of one of the classes. In particular 

e measure the decrease in impurity of the putative child nodes 

 L and n R with respect to the parent node n : 

I(n, n L , n R ) = I(n ) − p L I(n L ) − p R I(n R ) . (2)

Since our input data are pairwise distances, we cannot measure 

ata variance, for which a feature-based representation is needed. 

nstead, we compute the scatter , a measure closely related to the 

ariance, which is the sparseness of the distance values. In detail, 

e provide two different definitions of scatter, which we call Scat- 

erD and ScatterP . Consider a matrix D of size N × N containing 

airwise distances, we define ScatterD as the average dispersion 

cross all distances, formally: 

 D (D ) = 

1 

N 

2 

N ∑ 

i =1 

N ∑ 

j=1 

d(i, j) . (3) 

catterP is defined on a prototype object P and we formally define 

t as: 

 P (D , P ) = 

1 

N 

N ∑ 

i =1 

d(i, P ) (4) 

hich is the dispersion around the prototype. 

Having defined these concepts, we can employ the scatter as 

he impurity function I(n ) to compute the goodness of a split. In 

etail, we define two functions to compute the impurity decrease 

ith respect to a pair (P, θ ) (or (P L , P R ) ), which defines a specific

plit, i.e. a triplet of nodes (n, n , n ) . These functions will then be
L R 

5 
ptimized to find the best possible pair of prototype and threshold 

 ̂

 P , ˆ θ ) in case of 1P strategies, or left and right prototype ( ̂  P L , ˆ P R ) in

ase of 2P training criteria. 

The first function employs ScatterD as impurity function: 

I S D ,n (n, n L , n R ) = S D (D n ) − p L S D (D L ) − p R S D (D R ) (5)

here D n , D L and D R are the distance matrices defined over the 

bjects of nodes n, n L and n R respectively. As to the optimization 

tep, this function has to be maximized over all possible pairs, but 

ince the scatter in n is independent of how the node itself will be 

plit, we can optimize it by minimizing: 

I S D (n L , n R ) = p L S D (D L ) + p R S D (D R ) . (6)

Instead, the second function is computed using S P and it is de- 

ned as: 

I S P (n, n L , n R , P L , P R ) = 

1 
2 
(S P (D n , P L ) + S P (D n , P R )) 

−p L S P (D L , P L ) − p R S P (D R , P R ) . 
(7) 

n this case the node n is involved in the computation since the 

alue of the ScatterP in n changes, i.e. it is linked to the r different

airs (P L , P R ) . In detail, we compute the scatter in n with respect to

he left and right prototype independently, and average the results. 

By employing these functions, we can define three training cri- 

eria: 

3. O-1PS D : This criterion evaluates each pair of prototype and 

threshold using Eq. (6) and the best pair ( ̂  P , ˆ θ ) is selected by

optimizing: 

( ̂  P , ˆ θ ) = argmin 

(P,θ ) 

I S D (n L , n R ) . (8) 

In other words, O-1PS D aims at finding the pair that minimizes 

the scatter of the two distance matrices related to the child 

nodes, D L and D R . 

4. O-2PS D : The evaluation of each pair is done using Eq. (6) and 

the best pair of prototypes ( ̂  P L , ˆ P R ) is: 

( ̂  P L , ˆ P R ) = argmin 

(P L ,P R ) 

I S D (n L , n R ) . (9) 

Analogously to O-1PS D this training strategy aims at identify- 

ing the best pair ( ̂  P L , ˆ P R ) minimizing the total scatter within the 

child nodes. 
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5. O-2PS P : In this criterion the extent of change of dispersion is 

computed considering only the distances to the evaluated pro- 

totypes. The evaluation of each pair is done using Eq. (7) and 

the best pair of prototypes ( ̂  P L , ˆ P R ) is found by: 

( ̂  P L , ˆ P R ) = argmax 
(P L ,P R ) 

�I S P (n, n L , n R , P L , P R ) . (10)

We do not define the strategy O-1PS P , that is the one that em-

loys S P and is defined by only one prototype P since it is not

eaningful. 2 

.2.2. Separation-based criteria 

The core idea of the following two criteria is that a good pair 

P, θ ) (or (P L , P R ) ) generates two children which are well separated,

.e. ideally only one child contains outliers. 

To measure the separation, we use the Hausdorff distance [29] , 

 measure for sets often used in computer vision, which compu- 

ation is based on the pairwise distances between objects belong- 

ng to different sets. The Hausdorff distance does not make any 

ssumptions on the distance function, making its use feasible also 

hen dealing with non-metrics. Following [29] , we define the di- 

ected Hausdorff Distance from a set of objects A to a set of objects 

 as: 

D (A, B ) = max 
a ∈ A 

min 

b∈ B 
d(a, b) (11) 

here d(a, b) is the pairwise distance between a and b. 

In our setting, the two sets are the putative child nodes, n L and 

 R , determined by either (P, θ ) or (P L , P R ) . In detail, we would like

o measure how close are the objects of n L to those of n R and vice

ersa. The Hausdorff distance is an asymmetric measure, and we 

ake it symmetric by: 

DA (n L , n R ) = 

1 

2 

(
max 
l∈ n L 

min 

r∈ n R 
d(l, r) + max 

r∈ n R 
min 

l∈ n L 
d(r, l) 

)
. (12) 

Starting from Eq. (12) , we can define two novel training strate- 

ies: 

6. O-1PH : The evaluation of each pair is done using Eq. (12) and 

the best pair of prototype and threshold ( ̂  P , ˆ θ ) is found as: 

( ̂  P , ˆ θ ) = argmax 
(P,θ ) 

HDA (n L , n R ) . (13) 

The optimization is encoded via a maximization problem: we 

aim at finding the pair which defined split creates maximally 

separated children. 

7. O-2PH : This criterion evaluates each pair of prototypes (P L , P R ) 

using Eq. (12) and the best pair is: 

( ̂  P L , ˆ P R ) = argmax 
(P L ,P R ) 

HDA (n L , n R ) . (14) 

.2.3. Information theoretic criteria 

Random Forests often use as impurity function an information 

heoretic measure [28,30] . Inspired by the work done in [31] , we 

ecided to investigate the use of the Rényi divergence within a 

raining strategy for OD and specifically for isolation-based RF ap- 

roaches. The Rényi divergence measures how different two distri- 

utions are in terms of information, which in the context of de- 

ision trees can be seen as the information we gain by splitting n 

nto n L and n R [32] . In the context of isolation-based OD, measur- 

ng the Rényi divergence may allow finding those child nodes n L 
2 In detail, only one between n L and n R will contain P, and therefore if P ∈ n L we 

an compute the term S P (D L , P) but not the other term, i.e. S P (D R ∪ P , P) . An analo- 

ous reasoning can be made if P ∈ n R . 

6 
nd n R where one of the two isolates an outlier; indeed, in such 

ase we would expect the difference in information to be the high- 

st achievable. Based on this idea, we define two novel training 

riteria. 

Before defining the optimization function, and subsequently the 

raining criteria, we briefly recall the following concepts: 
• The Rényi’s entropy is a generalization of several entropy 

easures that have been defined in literature. Formally, we define 

he Rényi’s entropy of order α for a probability density function f

easured on a random variable z as [33] : 

 α( f ) = − 1 

1 − α
log 2 

∫ 
z 

f α(z) dz (15) 

here α = [0 , 1) ∪ (1 , ∞ ) . Please note that as α changes the mean-

ng behind H α( f ) changes as well. 
• The Rényi divergence measures how much a probability den- 

ity function g diverges in terms of different information from a 

robability density function f , both measured on a random vari- 

ble z. Formally, the Rényi divergence of order α of g from f is 

efined as: 

D α( f || g) = 

1 

α − 1 

log 2 

∫ 
g(z) 

(
f (z) 

g(z) 

)α

dz (16) 

here α = [0 , 1) ∪ (1 , ∞ ) . Note that this measure is not symmet-

ic, i.e. the divergence of f from g and that of g from f are not 

ecessarily equal. 

Since the computation of information theoretic measures is 

sually unfeasible in practice, approximations are used. In partic- 

lar, recently, a non-parametric bypass estimator of Rényi’s diver- 

ence has been designed [34] ; it is based on the KNN graph (KNN-

) and it provides reliable estimates independently of the used dis- 

ance measure. In detail, the Rényi divergence of a set of objects B 

rom another set A can be estimated by using only the information 

elated to the KNNs of b ∈ B computed in the joint set C = A ∪ B .

ormally, the estimation of the Rényi divergence of order α of B 

rom A is computed as follows: 

D (A, B ) = 

1 

α − 1 

log 

[ 

( M 

N 
) α

M 

M ∑ 

i =1 

(
N i 

M i + 1 

)α
] 

(17) 

here N = | A | , M = | B | and N i ( M i ) is the number of objects in A

 B ) that are KNNs of b i ∈ B –for further details, see [34] . 

Analogously to the separation-based criteria, we can exploit this 

oncept in our framework by considering the two sets as the two 

hild nodes, n L and n R . Since the measure is asymmetric, and we 

eed to measure the amount of different information between n L 
nd n R , we have to make it symmetric. Formally, we define as 

DA the estimation of the average Rényi’s divergence between two 

odes as: 

DA (n L , n R ) = 

1 

2 

(RD (n L , n R ) + RD (n R , n L )) . (18)

e aim at maximizing this function since the best pair (P, θ ) (or 

P L , P R ) ) is the one generating nodes which divergence is maxi- 

um, i.e. which are well separated and convey different informa- 

ion. 

From this dissertation, we can derive the last two training 

trategies: 

8. O-1PRD : The evaluation of each pair is done using Eq. (18) and 

the best pair of prototype and threshold ( ̂  P , ˆ θ ) is the one solv- 

ing the following optimization function: 

( ̂  P , ˆ θ ) = argmax 
(P,θ ) 

RDA (n L , n R ) . (19) 
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Table 2 

Characteristics of the datasets (dissim. = dissimilarity, dist. = distance). 

Dataset N % O Distance Type 

BrainMRI [37] 124 51.61% Euclidean dist. between histograms 

of normalized intensities representing 

the left amygdala of a subject. 

ChickenPieces [38] 446 13.68% Weighted edit dist. between contours 

of 2D blobs (Norm 5, Cost 45). 

CoilDelftDiff [39] 288 25% Spectral Graph dist. where 

the graphs are derived from 4 

COIL images. 

CoversSongs 205 8.29% Dynamic Programming Local Alignment 

dissim. between musical fragments. 

DelftGestures [40] 1500 5% Dynamic Time Warping dist. between 

hand gestures. 

DelftPedestrians 689 3.92% Cloud dist. between pedestrians, 

cars and other objects. 

Flowcyto 612 54.74% L1 dist. between flow cytometry 

histograms (tube 3). 

Pendigits [41] 10992 9.60% Weighted edit dist. between handwritten 

digits. 

Polydism57 4000 50% Modified Hausdorff dist. 

between polygons. 

Protein [42] 213 14.08% Evolutionary dist. between protein 

sequences. 

VolcanoD1 [35] 1065 23.57% Dynamic Time Warping dist. 

between spectrograms. 

VolcanoD2 [35] 1065 23.57% Euc. dist. betweeen averaged 

normalized spectrograms. 

VolcanoD3 [35] 1065 23.57% Euc. dist. betweeen averaged 

spectrograms. 

WoodyPlants [43] 791 7.96% Shape dissim. between plant leaves. 

Zongker [44,45] 2000 10% Dissim. between handwritten digits 

based on deformable template matching. 
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3 Package available at http://prtools.tudelft.nl/Guide/37Pages/distools.html . 
9. O-2PRD : Each pair of prototypes is evaluated using Eq. (18) and 

the best pair ( ̂  P L , ˆ P R ) is found by: 

( ̂  P L , ˆ P R ) = argmax 
(P L ,P R ) 

RDA (n L , n R ) . (20) 

This training strategy aims at finding the best pair of prototypes 

( ̂  P L , ˆ P R ) which leads to two nodes conveying very different in- 

formation. 

. Experimental evaluation 

In this section, we present the empirical evaluation of the pro- 

osed methodology. In detail, after describing the datasets and 

ome experimental details, in Section 4.2 we present two analyses 

imed at assessing the robustness and suitability of ProxIF. Then, 

n Section 4.3 we make a comparison with some alternatives from 

iterature. 

.1. Experimental details 

We performed the experiments on 15 datasets, each repre- 

ented by a distance matrix encoding distances between all pairs 

f objects. They are listed in Table 2 . 

For the three Volcano datasets we thank J.M. Londoño-Bonilla 

nd the Observatorio Vulcanológico y Sismológico de Manizales, 

olombia [35] . This real-life problem consists of recognizing dif- 

erent types of volcano-seismic events: volcano tectonic (VP), long 

eriod (LP), tremors (TR), hybrid (HB), and screw-like earthquakes 

TO). According to domain knowledge, we selected the TO class 

s the outlier one, being the most different. All three versions of 

olcano contain pairwise distances obtained from spectrograms, 

hich have been measured starting from waveforms using the Fast 

ourier Transform. For more information on this dataset, please re- 

er to [35] . 
7 
As to the other 12 datasets, they are included in the PRDis- 

ata MATLAB package. 3 As usual for OD, since it is rather difficult 

o collect outliers, these datasets are in origin classification prob- 

ems. The procedure we carried out to transform them in outlier 

etection tasks is rather straightforward and consists of selecting 

he class with the highest within-scatter –computed on the dis- 

ance matrix– as the outlier class. We assign the remainder of the 

ata to the inlier class. The applied transformation does not de- 

end on the class prior, and therefore it may happen that the cho- 

en outlier class is numerous. Even though it is an extreme case, 

t is more than acceptable for several reasons, thus justifying our 

ool of datasets. First, the putative outliers are suitable outlier can- 

idates since they belong to the class with the highest within- 

catter, i.e. they are very dissimilar from one another. Another rea- 

on is that it is not unusual to have a dataset with a high outlier

ercentage, since datasets created for the task are rare [6] . Lastly, 

s explained in [36] , the percentage of outliers only influences the 

verall performance on a dataset, but it does not have any impact 

n the comparison of several methodologies. 

Table 2 describes the main characteristics of the 15 datasets: 

or each we report the size ( N), the percentage of outliers ( O % )

nd the distance measure. The used datasets span a wide range 

f cases: they vary in size from 213 objects up to 10992; the per- 

entage of outliers ranges in [3.92%-54.74%]; and the used distance 

easure is never the same. Please note that for several datasets, 

ultiple versions are available; the used version can be inferred 

rom the details provided in the last column of Table 2 . We also

rovide the reference to the original source of the dataset if differ- 

nt than PRDisData. 

After making the datasets suitable for outlier detection, several 

nd different experiments were performed by varying the value of 

everal parameters: 

http://prtools.tudelft.nl/Guide/37Pages/distools.html
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Fig. 2. CD diagram comparing the different options for sample size S. 
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Fig. 3. CD diagram comparing the different options for forest size T . 

Table 3 

Mean ranks of the two values of the maximum depth 

D . 

D = log 2 (S) D = S − 1 p-value 

Mean Rank 1.54 1.46 0.1688 
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1. Training strategies: R-1P, R-2P, O-1PS D , O-2PS D , O-2PS P , O- 

PH, O-2PH, O-1PRD and O-2PRD . 9 options , described in detail in 

ection 3 . 

2. Size of the forest T : 50, 100, 200, 500. 4 options. 

3. Tree sampling size S: 64, 128, 256, 512. 4 options . For those

atasets for which the training set is smaller than S, we carry out 

he experiments using all available samples, i.e. no subsampling 

s performed. For example, if the training set has 100 objects, for 

 = 64 the experiments will be carried out with subsampling, for 

 = 128 the whole training set will be used, while for S = 256 we 

eport the results obtained for S = 128 . 

4. Maximum depth D : log 2 (S) , S − 1 . 2 options. 

As to r, the number of evaluated pairs (P, θ ) or (P L , P R ) in each

ode n , was set to maximum 20, following an initial evaluation not 

hown here. For the experiments carried out using the informa- 

ion theoretic criteria, i.e. O-1PRD or O-2PRD , we set K = 

√ | n | and 

= 0 . 9999 . Each combination of parameters has been iterated 10 

imes. In detail, each iteration is generated by randomly splitting 

he dataset in two halves: one for the training set and the other 

or the testing set. The training set has been constrained to contain 

 maximum of 5% of outliers. Given a dataset, the iterations, i.e. 

he training and testing objects, are the same for all parametriza- 

ions. As a performance measure, we employ the Area Under the 

OC Curve (AUC), one of the most used in the OD field [36] . For

ll statistical tests, the significance level has been set to 0.05. 

The MATLAB code of Proximity Isolation Forest is available as a 

itHub repository. 4 

.2. Experimental analyses 

In this subsection, we make two different analyses. The first is 

 statistical analysis aimed at finding the best setting of S, T and 

 independently of the adopted training criterion. The second one 

ocuses on the training schemes, trying to understand which strat- 

gy is the most suitable in a specific scenario by analyzing their 

eneral behaviour across different datasets. Further, we make a sta- 

istical analysis to assess which criteria are comparable and which 

re the most suitable for the task. 

.2.1. Analysis of sample size s, forest size T, and maximum depth D 

The first analysis aims at finding the best setting of the sam- 

le size S. To do that we select the following AUC results: given a 

alue of S, a dataset and a training strategy, we choose the values 

f T and D for which the performance, averaged across the itera- 

ions, is the best. To assess whether there is a value of S which is

ignificantly better than the rest, we perform a non-parametric sta- 

istical analysis consisting of a Friedman Test followed by a post- 

oc Nemenyi test [46] . The former is used to assess the presence 

f a global statistically significant difference among all values of S, 

hereas the post-hoc Nemenyi test assesses which pairs lead to 

uch difference. Results are depicted via a Critical Difference (CD) 

iagram in Fig. 2 : each value of S is represented via its averaged 

ank on a single line, with the best rank represented on the right. 

f two (or more) values are comparable, i.e. there is no significant 
4 https://github.com/amensi/ProximityIsolationForest 

t

a

g

8

ifference, a line connects them. From Fig. 2 we can observe that 

e reach the best performances with S = 128 , comparable to both 

 = 64 and S = 256 . Instead using big trees, e.g. S = 512 , lead to

ignificantly worse performances. This observation is crucial since 

ot only small trees are quicker to train, but they are more diverse 

rom one another, and thus more informative, than bigger ones. 

The second analysis is aimed at investigating how performances 

ehave as the number of trees T changes. The analysis is similar to 

hat of S: the input AUC values are derived in the same way, and 

e performed a Friedman test followed by a post-hoc Nemenyi 

est. Results are depicted via a CD diagram in Fig. 3 . The first-

anked choice is T = 500 , comparable only to the second-ranked, 

 = 200 . 

The last parameter we focus on, is the maximum depth D . We 

nalyze its behaviour differently than what we did for S and T . 

ndeed, since we have to compare only two values of D we cannot 

dopt the same statistical tests and visualization tools, but we have 

o use a Wilcoxon signed-rank test. As to the input AUC values, 

hey have been chosen analogously to what was done for S and T . 

n Table 3 we report the mean rank of both the values of D av-

raged across the datasets and the training strategies, highlighting 

n bold the first-ranked. In the last column we report the p-value, 

utput of the Wilcoxon signed-rank test: since p − v alue > 0 . 05 ,

sing D = S − 1 does not lead to significantly better performances 

han using D = log 2 (S) , which is less computationally expensive, 

nd thus a more suitable choice. The latter observation is indeed 

onfirmed by the small difference in the mean rank. 

Please refer to the Supplementary Material for additional 

ataset and strategy-wise analyses on S, T and D . 

.2.2. Analysis of the training criteria 

This analysis is aimed at understanding in which cases it is ben- 

ficial to train a ProxIF with one specific training strategy (or a set 

f them). In Table 4 we report for each dataset and for each train-

ng strategy the average across all experiments, and we highlight in 

old the best training strategy and add a ∗ next to it, if it is signifi-

antly better than the second best according to a Wilcoxon signed- 

ank test. From the table, it is clear that 2 P criteria work well and

ften outperform their 1 P counterpart; however also 1 P strategies 

ead to overall good performances, except for some datasets, e.g. 

ongker, CoilDelftDiff. 

Further, by observing the results in Table 4 , we can infer some 

uidelines to choose the type of training strategy to adopt, based 

n the characteristics of the dataset under analysis, i.e. the outlier 

ercentage ( O % ) and the size ( N). We report them in Table 5 . Even

hough the proposed guidelines may present some limitations, e.g. 

he last category is very large and more than one criterion needs 

o be tested, they still provide a starting point to train a ProxIF in 

n automated but optimized way. Lastly, please note that inferring 

eneral rules to follow is not a simple problem due to the great di- 

https://github.com/amensi/ProximityIsolationForest
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Table 4 

Average AUC (in %) across all experiments that use the same training strategy. 

Dataset R-1P R-2P O-1PS D O-2PS D O-2PS P O-1PH O-2PH O-1PRD O-2PRD 

BrainMRI 68.39 62.31 76.45 ∗ 60.60 64.34 68.83 61.68 74.34 57.67 

Chickenpieces 81.45 82.68 79.68 83.01 82.51 83.68 86.27 ∗ 79.19 81.26 

CoilDelftDiff 49.14 72.87 ∗ 60.62 71.25 71.97 60.03 72.14 57.88 71.89 

CoversSongs 98.98 98.93 98.67 98.97 98.95 98.74 98.96 98.71 99.01 

DelftGestures 82.61 96.20 76.13 94.23 96.25 90.82 91.71 84.96 88.38 

DelftPedestrians 72.22 74.85 72.27 77.30 72.15 75.93 78.39 76.83 78.18 

Flowcyto 56.63 73.10 ∗ 56.30 71.51 69.47 62.21 65.68 52.09 60.28 

Pendigits 66.75 69.03 65.53 74.63 72.89 74.14 77.65 59.47 78.52 ∗

Polydism57 89.80 82.03 87.53 82.27 93.70 94.18 93.04 85.06 90.92 

Protein 99.01 ∗ 98.18 98.01 97.58 97.13 98.63 98.06 98.49 97.78 

VolcanoD1 69.01 72.51 75.22 ∗ 72.71 65.91 68.97 68.16 70.63 64.90 

VolcanoD2 70.38 73.09 68.08 69.11 78.59 ∗ 72.16 73.17 62.57 68.09 

VolcanoD3 75.34 78.09 76.23 77.33 83.35 ∗ 76.53 78.53 71.01 76.31 

Woodyplants 43.92 90.62 42.81 91.35 91.43 71.61 78.43 49.86 72.21 

Zongker 54.14 73.81 54.87 77.48 73.18 71.22 84.00 ∗ 61.30 83.72 

Table 5 

Guidelines to choose the training strategy. 

Condition Training Strategy 

O % < 10 ∧ N ≤ 700 Separation-based ( O-1PH,O-2PH ). 

O % < 10 ∧ N > 700 Scatter based ( O-1PS D , O-2PS D , O-2PS P ). 

O % ≥ 10 ∧ O % < 20 Separation-based ( O-1PH,O-2PH ). 

O % ≥ 20 Scatter based ( O-1PS D , O-2PS D , O-2PS P ). 

Fig. 4. CD diagram depicting a global comparison of the training strategies. 
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5 Please note that as to NN-d, KNN-d, KNN-d-Av , the dd _ tools [19] implementa- 

tion did not manage distance matrices as input, so we implemented it ourselves. 

As to LOF and K-Centers we used the dd _ tools [19] implementation, and exploited 

the former to compute the results of LOF-Range . As to LeSiNN and RDOF there was 

no implementation available, so we implemented it ourselves. Lastly, as to iNNE and 

LUNAR , we made some slight modifications to the available code in order to use the 

distance matrix as input. As to the latter, we also removed the negative sampling 

step as mentioned in the text. 
ersity of the datasets in terms of domain, size, outlier percentage 

nd distance type. Further analyses on additional datasets should 

ead to strengthened and improved guidelines. 

To assess which strategy leads globally to the best results and 

hether there is some significant difference among the different 

riteria, we performed a Friedman test followed by a Nemenyi 

ost-hoc test on a fixed parametrization: S = 128 , T = 500 , D =
og 2 (S) . The parameters have been set following the conclusions 

f the analyses in Section 4.2.1 . The CD diagram in Fig. 4 shows

hat the best ranked strategy is comparable to almost all other cri- 

eria with two prototypes, including the random one. In addition, 

-1PH is significantly better than the other criteria with one pro- 

otype, and it is comparable to some 2 P criteria. We can conclude 

hat, even though this test does not highlight one best criterion, 

-2PH is a very suitable choice. 

In conclusion, the methodology seems robust, and we have 

roven that even though random is a good choice, specifically de- 

igned training criteria for OD are more beneficial. Given these ob- 

ervations, we can define two different parametrizations for the 

ser to adopt. The first is ProxIF-F , a fixed parametrization where 

e set S = 128 , D = log 2 (S) , T = 500 and as training strategy we

dopt O − 2 P H (the best according to Fig. 4 ). The second is ProxIF-

 , a guideline-based parametrization where S = 128 , D = log 2 (S) ,

 = 500 and where the training strategy is chosen as follows: se- 

ect the category of training strategies by following the guidelines 

n Table 5 ; then choose the best performing strategy within the 

elected category. 
9 
.3. Comparison to alternatives from literature 

In this subsection we compare the proposed technique, ProxIF, 

o several proximity-based outlier detectors that we have described 

n Section 2 : NN-d, KNN-d, KNN-d-Av, LOF, LOF-Range, K-Centers, 

DOF, iNNE, LeSiNN and LUNAR . We have selected this pool of tech- 

iques because they are either simple golden standard approaches 

r, as to RDOF, iNNE, LeSiNN and LUNAR , they are quite recent tech- 

iques which have shown promising results. Please note that, as 

o LUNAR [16] , we compare to an adaptation of the methodology, 

ince, as explained in Section 2 , LUNAR requires a feature vector 

o perform a negative sampling procedure, that we do not have. 

herefore, we have removed the latter step and kept the outliers 

n the training set. 

Concerning the parametrization settings, only NN-d has no pa- 

ameters, whereas as to RDOF , we followed the approach adopted 

y [21] , which estimates for each dataset the natural neighborhood 

ize K. Instead, for all other methodologies, if no default values 

ere given, we set each parameter by choosing the value which 

eads to the best performances averaged across the datasets. For 

NN-d, KNN-d-Av and LOF , we analyzed the size of the neighbor- 

ood K = [1 , 20] and observed that the best choice for KNN-d is

 = 15 , for KNN-d-Av K = 19 and for LOF K = 20 . Given the latter,

e set K = [1 , 20] for LOF-Range . With respect to K-Centers we set

he number of clusters to K = 8 , after analyzing the range [2,8]. As

o iNNE we set the ensemble size as default, i.e. t = 100 , and we

et the sampling size ψ = 2 after analyzing the suggested range ψ : 

2 1 , 2 2 , . . . , 2 8 ] . Analogously for LeSiNN , we set the ensemble size

o the default value t = 50 , and the sampling size to ψ = 14 , after

nalyzing the range ψ = [1 , 2 , . . . , 16] . Lastly, as to LUNAR , we set

 = 100 as default. 5 

In Table 6 we report for all methods the AUC averaged across 

he 10 iterations, highlighting in bold the best method for each 

ataset. For ProxIF, we report two variants: ProxIF-F and ProxIF-G , 

oth defined in Section 4.2.2 . In addition, for the sake of complete- 

ess, we report in the last row, in italics, ProxIF-B , which is the 

est result achievable with a ProxIF for each dataset independently 

f the parametrization. Further, we perform a Wilcoxon signed- 

ank test between both variants of ProxIF and the best competi- 
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Table 6 

Comparison with literature alternatives in terms of AUC (in %). As to ProxIF we report three results: the one obtained with the fixed 

parametrization (ProxIF-F), the one obtained following the guidelines (ProxIF-G), and in italics, in the last row, the best result for 

each dataset (ProxIF-B). LOFR = LOF-Range, KCent = K-Centers. 

BrainMRI Chickenpieces CoilDelft CoversSongs DelftGestures 

NN-d 52.95 46.18 68.56 74.55 41.92 

KNN-d 76.39 61.98 68.68 92.04 52.37 

KNN-d-Av 73.77 57.24 76.93 97.41 53.69 

LOF 67.21 67.48 77.19 98.50 50.18 

LOFR 72.13 53.82 73.20 91.12 60.00 

K-Cent. 62.30 NaN 70.18 97.11 75.02 

RDOF 68.03 77.48 74.37 95.97 82.22 

iNNE 72.38 84.71 68.84 98.62 72.96 

LeSiNN 56.23 84.58 70.81 98.52 91.45 

LUNAR 30.00 84.80 98.44 32.23 95.93 

ProxIF-F 63.44 90.48 ∗ 72.22 ∗ 99.02 ∗ 91.76 ∗

ProxIF-G 76.39 90.48 ∗ 72.09 ∗ 99.02 ∗ 95.98 

ProxIF-B 77.38 90.48 74.15 99.22 97.58 

DelftPed. Flowcyto Pendigits Polydism Protein 

NN-d 52.43 58.05 50.47 46.67 41.34 

KNN-d 73.65 71.75 48.52 86.69 96.21 

KNN-d-Av 67.56 76.91 49.49 84.38 97.26 

LOF 71.41 76.60 44.75 96.57 97.98 

LOFR 58.65 74.13 44.57 71.93 87.57 

K-Cent. 64.21 73.31 62.34 NaN 92.66 

RDOF 71.00 78.08 62.22 80.34 96.14 

iNNE 78.23 74.31 72.48 92.49 99.97 

LeSiNN 68.51 73.98 66.66 74.06 97.11 

LUNAR 34.85 76.52 73.80 96.69 99.92 

ProxIF-F 79.53 68.45 ∗ 79.22 ∗ 94.35 ∗ 98.13 ∗

ProxIF-G 79.53 71.19 ∗ 75.40 ∗ 94.56 ∗ 98.18 ∗

ProxIF-B 81.68 73.69 79.54 96.44 99.95 

VolcanoD1 VolcanoD2 VolcanoD3 Woodyplants Zongker 

NN-d 49.70 57.36 54.87 45.07 56.62 

KNN-d 68.10 55.10 59.04 63.89 58.23 

KNN-d-Av 68.21 54.40 55.76 69.59 55.02 

LOF 68.56 59.40 62.36 71.37 70.14 

LOFR 60.23 56.48 56.29 60.49 39.00 

K-Cent. 56.80 52.75 56.55 78.47 77.08 

RDOF 74.09 65.01 68.06 81.23 71.59 

iNNE 63.02 71.55 76.37 68.91 73.53 

LeSiNN 59.93 69.46 70.00 79.62 73.63 

LUNAR 60.32 64.68 73.00 92.84 81.37 

ProxIF-F 67.25 ∗ 76.04 ∗ 80.12 ∗ 79.55 ∗ 84.96 ∗

ProxIF-G 76.05 80.10 ∗ 83.93 ∗ 92.73 84.96 ∗

ProxIF-B 76.87 80.43 84.50 93.00 85.12 
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Fig. 5. CD diagram comparing literature alternatives with our proposal. 
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or: a ∗ next to a ProxIF variant indicates a statistically significant 

ifference. From Table 6 we can clearly infer that the proposed 

echnique is robust, leading to good results on all datasets. In de- 

ail, ProxIF, either ProxIF-F or ProxIF-G , is the best solution for 10 

atasets out of 15, and on 6 of them it is significantly better than

he best state-of-the-art alternative. Further, it must be highlighted 

hat tuning the training strategy, i.e. using ProxIF-G , is overall a 

iser choice than employing ProxIF-F , and that, aside some excep- 

ions, its performances are similar to those of ProxIF-B , confirming 

he suitability and robustness of our proposal. 

To further validate the results, we performed a Friedman test 

ollowed by a post-hoc Nemenyi test, comparing all the above 

ethods to the two variants of ProxIF. The CD diagram in Fig. 5 

hows that ProxIF-G is indeed the first ranked, comparable only to 

roxIF-F . The latter instead is comparable only to our adaptation of 

UNAR , which is a recent and well-performing technique. Lastly, in 

ab. 7 we report the running time averaged across the datasets of 

ach methodology. In detail the reported time is the sum of the 

raining and testing times, where the latter has been measured 

n the entire testing set. From the table we can infer that even 

hough ProxIF is not the fastest technique, it is more efficient than 

he second-best methodology LUNAR, and LOF-based methodolo- 
10 
ies, i.e. LOF, LOF-Range and RDOF –for dataset-wise results refer 

o the Supplementary Material. 

. Conclusions 

In this manuscript, we presented a novel outlier detection 

ethodology based on Random Forests, called Proximity Isolation 

orest, that can work with any type of data for which a proxim- 

ty measure can be defined. We designed several criteria to imple- 

ent the isolation principle: both random and optimized ones, the 
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Table 7 

Comparison with literature alternatives in terms of average running time (in sec- 

onds). 

NN-d KNN-d KNN-d-Av LOF LOFR K-Cent. 

0.09 0.16 1.64 327.92 7929.50 2.10 

RDOF iNNE LeSiNN LUNAR ProxIF 

846.89 0.25 0.049 1495.5 25.44 
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atter based on principles that capture the separation of outliers 

rom the rest of the data. The robustness of this novel contribution 

s tested via numerous experiments performed on fifteen datasets, 

nd except for a few cases, the methodology works well. Further, 

e identified a guideline parametrization: a ProxIF made of 500 

rees, each built on 128 samples and grown to a maximum depth 

f D = log 2 (S) , and where the training strategy is chosen accord- 

ng to the dataset characteristics. The goodness of the proposed 

pproach is further shown via a comparison to other proximity- 

ased outlier detectors. 

However, ProxIF presents some limitations that need to be stud- 

ed and faced in future research. First, 1 P training strategies do not 

erform well on some datasets, thus limiting their adoption. An- 

ther aspect that may impact on the performances is the choice 

f the training strategy: even though we provide some guidelines, 

hey need to be enriched and strengthened. Both aspects could 

enefit from further experiments on additional datasets. Addition- 

lly, as to future research, it would be interesting to design a train- 

ng strategy able to capture different aspects characterizing an out- 

ier. An example could be the combination of a separation-based 

riterion and a scatter-based one since they focus on different as- 

ects. In detail, the former evaluates the distance between objects 

elonging to different child nodes, whereas the focus of scatter- 

ased strategies is only on one of the two putative children since 

he dispersion is measured within each child independently of its 

ibling. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

ata availability 

Data will be made available on request. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at 10.1016/j.patcog.2023.109334 . 

eferences 

[1] D.M. Hawkins, Identification of Outliers, Vol. 11, Springer, 1980 . 
[2] A. Zimek, P. Filzmoser, There and back again: outlier detection between statis- 

tical reasoning and data mining algorithms, Wiley Interdiscip. Rev. Data Min. 

Knowl. Discov. 8 (6) (2018) e1280 . 
[3] A. Boukerche, L. Zheng, O. Alfandi, Outlier detection: methods, models, and 

classification, ACM Comput. Surv. (CSUR) 53 (3) (2020) 1–37 . 
[4] M. Fernández-Delgado, E. Cernadas, S. Barro, D. Amorim, Do we need hundreds 

of classifiers to solve real world classification problems? J. Mach. Lear. Res. 15 
(1) (2014) 3133–3181 . 

[5] A.F. Emmott, S. Das, T. Dietterich, A. Fern, W.-K. Wong, Systematic construc- 
tion of anomaly detection benchmarks from real data, in: Proc. ACM SIGKDD 

Workshop Outl. Detect. Desc., 2013, pp. 16–21 . 

[6] F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation-based anomaly detection, ACM Trans. 
Knowl. Discov. Data 6 (1) (2012) 3:1–3:39 . 

[7] X. Zhang, W. Dou, Q. He, R. Zhou, C. Leckie, R. Kotagiri, Z. Salcic, LSHiForest: a
generic framework for fast tree isolation based ensemble anomaly analysis, in: 

IEEE 33rd Int. Conf. Data Eng. (ICDE), IEEE, 2017, pp. 983–994 . 
11 
[8] A. Mensi, M. Bicego, D.M.J. Tax, Proximity isolation forests, in: 2020 25th Int. 
Conf. Pattern Recognit. (ICPR), IEEE, 2021, pp. 8021–8028 . 

[9] S. Haghiri, D. Garreau, U. Luxburg, Comparison-based random forests, in: Int. 
Conf. Mach. Learn., PMLR, 2018, pp. 1871–1880 . 

[10] S. Sathe, C.C. Aggarwal, Similarity forests, in: Proc. 23rd ACM SIGKDD Int. Conf. 
Knowl. Disc. Data Min., 2017, pp. 395–403 . 

[11] B. Lucas, A. Shifaz, C. Pelletier, L. O’Neill, N. Zaidi, B. Goethals, F. Petitjean,
G.I. Webb, Proximity forest: an effective and scalable distance-based classifier 

for time series, Data Min. Knowl. Disc. 33 (3) (2019) 607–635 . 

[12] I. Karlsson, P. Papapetrou, H. Boström, Generalized random shapelet forests, 
Data Min. Knowl. Disc. 30 (5) (2016) 1053–1085 . 

[13] H. Wang, M.J. Bah, M. Hammad, Progress in outlier detection techniques: a 
survey, IEEE Access 7 (2019) 107964–1080 0 0 . 

[14] E.M. Knox, R.T. Ng, Algorithms for mining distance based outliers in large 
datasets, in: Proc. Int. Conf. Very Large Data Bases (VLDB), Citeseer, 1998, 

pp. 392–403 . 

[15] D. Tax, One-class classification; concept-learning in the absence of counter-ex- 
amples, Delft University of Technology, 2001 Ph.D. thesis . 

[16] A. Goodge, B. Hooi, S.-K. Ng, W.S. Ng, Lunar: Unifying local outlier detection 
methods via graph neural networks, in: Proc. AAAI Conf. Artif. Intell., Vol. 36, 

2022, pp. 6737–6745 . 
[17] T.R. Bandaragoda, K.M. Ting, D. Albrecht, F.T. Liu, Y. Zhu, J.R. Wells, Isola- 

tion-based anomaly detection using nearest-neighbor ensembles, Comput. In- 

tell. 34 (4) (2018) 968–998 . 
[18] G. Pang, K.M. Ting, D. Albrecht, LesiNN: detecting anomalies by identifying 

least similar nearest neighbours, in: 2015 IEEE Int. Conf Data Min. Workshop 
(ICDMW), IEEE, 2015, pp. 623–630 . 

[19] D. Tax, Data description toolbox dd tools 2.0.0, Delft Univ. Technol., Delft, The 
Netherlands, 2013 . 

20] M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, LOF: identifying density-based 

local outliers, in: Proc. 20 0 0 ACM SIGMOD Int. Conf. Manag. Data, 20 0 0,
pp. 93–104 . 

[21] J. Ning, L. Chen, J. Chen, Relative density-based outlier detection algorithm, in: 
Proc. 2018 2nd Int. Conf. Comput. Sci. Artif. Intell., 2018, pp. 227–231 . 

22] G. Pang, C. Shen, L. Cao, A.V.D. Hengel, Deep learning for anomaly detection: a 
review, ACM Comput. Surv. 54 (2) (2021) 1–38 . 

23] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., A density-based algorithm for dis-

covering clusters in large spatial databases with noise, in: kdd, Vol. 96, 1996, 
pp. 226–231 . 

24] M.-F. Jiang, S.-S. Tseng, C.-M. Su, Two-phase clustering process for outliers de- 
tection, Pattern Recognit. Lett. 22 (6–7) (20 01) 691–70 0 . 

25] A. Elmogy, H. Rizk, A.M. Sarhan, OFCOD: on the fly clustering based outlier 
detection framework, Data 6 (1) (2021) . 

26] S. Su, L. Xiao, L. Ruan, F. Gu, S. Li, Z. Wang, R. Xu, An efficient densi-

ty-based local outlier detection approach for scattered data, IEEE Access 7 
(2018) 1006–1020 . 

27] A. Mensi, M. Bicego, Enhanced anomaly scores for isolation forests, Pattern 
Recognit. (2021) 108115 . 

28] L. Breiman, J. Friedman, C.J. Stone, R.A. Olshen, Classification and Regression 
Trees, The Wadsworth and Brooks-Cole statistics-probability series, Taylor & 

Francis, 1984 . 
29] D.P. Huttenlocher, G.A. Klanderman, W.J. Rucklidge, Comparing images using 

the hausdorff distance, IEEE PAMI 15 (9) (1993) 850–863 . 

30] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32 . 
[31] M. Bicego, Dissimilarity random forest clustering, in: 2020 IEEE Int. Conf. Data 

Min. (ICDM), IEEE, 2020, pp. 936–941 . 
32] F. Escolano Ruiz, P.S. Pérez, B.I. Bonev, Information Theory in Computer Vision 

and Pattern Recognition, Springer Science & Business Media, 2009 . 
33] A. Rényi, On measures of entropy and information, in: Proc. 4th Berkeley 

Symp. Math. Stat. Probab., Vol. 1: Contributions to the Theory Stat., University 

of California Press, 1961, pp. 547–561 . 
34] M. Noshad, K.R. Moon, S.Y. Sekeh, A.O. Hero, Direct estimation of information 

divergence using nearest neighbor ratios, in: 2017 IEEE Int. Symp. Inf. Theory 
(ISIT), IEEE, 2017, pp. 903–907 . 

35] M. Orozco-Alzate, P.A. Castro-Cabrera, M. Bicego, J.M. Londoño Bonilla, The 
DTW-based representation space for seismic pattern classification, Comput. 

Geosci. 85 (2015) 86–95 . 

36] G.O. Campos, A. Zimek, J. Sander, R.J. Campello, B. Micenková, E. Schubert, 
I. Assent, M.E. Houle, On the evaluation of unsupervised outlier detection: 

measures, datasets, and an empirical study, Data Min. Knowl. Disc. 30 (4) 
(2016) 891–927 . 

37] A. Ula ̧s , R.P.W. Duin, U. Castellani, M. Loog, P. Mirtuono, M. Bicego, V. Murino,
M. Bellani, S. Cerruti, M. Tansella, et al., Dissimilarity-based detection of 

schizophrenia, Int. J. Imaging Syst. Technol. 21 (2) (2011) 179–192 . 

38] H. Bunke, U. Bühler, Applications of approximate string matching to 2d shape 
recognition, Pattern Recognit. 26 (12) (1993) 1797–1812 . 

39] B. Xiao, E.R. Hancock, Geometric characterisation of graphs, in: Int. Conf. Im- 
age Analysis and Processing (ICIAP 20 05), Vol. 3617, LNCS, 20 05, pp. 471–

478 . 
40] J.F. Lichtenauer, E.A. Hendriks, M.J.T. Reinders, Sign language recognition by 

combining statistical DTW and independent classification, IEEE Trans. Pattern 

Anal. Mach. Intell. 30 (11) (2008) 2040–2046 . 
[41] D. Dua, C. Graff, UCI machine learning repository, 2017. http://archive.ics.uci. 

edu/ml . 
42] T. Graepel, R. Herbrich, P. Bollmann-Sdorra, K. Obermayer, Classification on 

pairwise proximity data, Adv. Neural Inf. Process. Sys. 11 (1998) . 

https://doi.org/10.1016/j.patcog.2023.109334
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0001
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0002
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0003
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0004
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0005
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0006
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0007
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0008
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0009
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0010
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0011
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0012
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0013
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0014
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0015
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0016
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0017
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0018
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0019
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0020
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0021
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0022
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0023
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0024
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0025
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0026
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0027
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0028
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0029
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0030
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0031
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0032
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0033
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0034
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0035
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0036
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0037
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0038
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0039
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0040
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0041


A. Mensi, D.M.J. Tax and M. Bicego Pattern Recognition 138 (2023) 109334 

[
 

[

[

[

A

s
t

r

David M.J. Tax promoted in 2001 with the thesis ’One-class classification’ under the 
supervision of R.P.W. Duin at the Delft University of Technology. Currently, he is as- 

sistant professor in the Pattern Recognition and Bioinformatics group. His main re- 
search interest is on detection algorithms and (one-class) classifiers for rare classes 

in structured data, like multivariate timeseries data. 

Manuele Bicego is an associate professor at the Univ. of Verona since 2017. His re- 

search interests are in statistical pattern recognition and bioinformatics. He has au- 

thored more than 130 papers, published in international journals, edited books and 
conferences. He is AE of Pattern Recognition, and PC member of many international 

conferences. 
43] G. Agarwal, P. Belhumeur, S. Feiner, D. Jacobs, W.J. Kress, R. Ramamoorthi, 
N.A. Bourg, N. Dixit, H. Ling, D. Mahajan, et al., First steps toward an electronic

field guide for plants, Taxon 55 (3) (2006) 597–610 . 
44] A.K. Jain, D. Zongker, Representation and recognition of handwritten digits us- 

ing deformable templates, IEEE Trans. Pattern Anal. Mach. Intell. 19 (12) (1997) 
1386–1390 . 

45] R.P.W. Duin, E. Pekalska, Dissimilarity Representation For Pattern Recognition, 
The: Foundations And Applications, Vol. 64, World scientific, 2005 . 

46] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach. 

Learn. Res. 7 (2006) 1–30 . 
ntonella Mensi received her PhD from the Univ. of Verona in 2022, with a the- 

is on Random Forests for Outlier Detection. Her research interests include statis- 
ical pattern recognition, Random Forests and bioinformatics. She is a temporary 

esearcher at the Dept. of Neurosci., Univ. of Verona. 

12 

http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0042
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0043
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0044
http://refhub.elsevier.com/S0031-3203(23)00035-3/sbref0045

	Detecting outliers from pairwise proximities: Proximity isolation forests
	1 Introduction
	2 Proximity-based outlier detection
	2.1 Neighborhood-based methodologies
	2.2 Clustering-based methodologies
	2.3 Hybrid methodologies

	3 Proximity isolation forests
	3.1 Standard version
	3.1.1 Proximity isolation trees
	3.1.2 Proximity isolation forests

	3.2 Advanced learning strategies
	3.2.1 Scatter-based criteria
	3.2.2 Separation-based criteria
	3.2.3 Information theoretic criteria


	4 Experimental evaluation
	4.1 Experimental details
	4.2 Experimental analyses
	4.2.1 Analysis of sample size s, forest size T, and maximum depth D
	4.2.2 Analysis of the training criteria

	4.3 Comparison to alternatives from literature

	5 Conclusions
	Declaration of Competing Interest
	Supplementary material
	References


