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a b s t r a c t 

In this paper we present a novel Random Forest Clustering approach, called Dissimilarity Random Forest 

Clustering (DisRFC) , which requires in input only pairwise dissimilarities. Thanks to this characteristic, the 

proposed approach is appliable to all those problems which involve non-vectorial representations, such as 

strings, sequences, graphs or 3D structures. In the proposed approach, we first train an Unsupervised Dis- 

similarity Random Forest (UD-RF), a novel variant of Random Forest which is completely unsupervised and 

based on dissimilarities. Then, we exploit the trained UD-RF to project the patterns to be clustered in a 

binary vectorial space, where the clustering is finally derived using fast and effective K-means procedures. 

In the paper we introduce different variants of DisRFC, which are thoroughly and positively evaluated on 

12 different problems, also in comparison with alternative state-of-the-art approaches. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Random Forests (RFs) [1] are ensemble classifiers, based on de- 

ision trees [2] , models which define in their basic version a hierar- 

hical splitting of the feature space – each split being defined with 

 threshold on a single feature. From a general perspective, Ran- 

om Forests were mostly studied for regression and classification, 

epresenting in these fields state-of-the-art methods, able to com- 

ete with the most effective and established techniques (like SVM 

r Neural Networks). In different scenarios, such as clustering, their 

xploitation has not been completely investigated. Actually, even if 

ome excellent methods are present (see Section 2 for a detailed 

escription), the exploitation of RFs in the clustering scenario is 

ar from being as mature as in classification/regression, and there 

s still large room for improvements. For example, one limit of cur- 

ent RF-clustering schemes is that they can be applied only if pat- 

erns to be clustered are represented with vectors of features . How- 

ver, in many contexts it can be very challenging to define a vec- 

or of relevant features, and patterns can be more naturally repre- 

ented with non-vectorial representations , such as sequences, sets, 

raphs, and so on. It seems therefore very interesting to define RF- 

lustering methods able to deal with these non-vectorial represen- 

ations, and this represents the main goal of this paper. 

Please note that, in the classification context, there has been an 

ncreasing interest in defining variants of Random Forests able to 

ork with non-vectorial patterns; among the different approaches 

see Section 2 ), the most promising and recent methods follow 

he idea of designing RFs which are completely based on dissimi- 
ttps://doi.org/10.1016/j.patcog.2022.109036 

031-3203/© 2022 Elsevier Ltd. All rights reserved. 
arities 1 computed among non-vectorial objects. Using dissimilarity 

s definitely a preferable option, because, when dealing with non- 

ectorial representations, it happens very often that it is easier to 

erive a good dissimilarity rather than a set of discriminant fea- 

ures [3] – consider for example the many powerful distances for 

trings, sequences, or graphs developed in the past. 

In this paper we introduce a novel RF-clustering scheme, called 

isRFC (Dissimilarity Random Forest Clustering) , which is completely 

ased on dissimilarities. Thanks to this characteristic, the method 

an be applied also to all those contexts for which a good set of 

eatures can not be derived but there exists a reasonable dissimi- 

arity measure which can be computed. The proposed scheme con- 

ists of two main elements. The first is a novel variant of RF, which 

e call Unsupervised Dissimilarity Random Forest (UD-RF) , in which 

perations are completely unsupervised and based on dissimilari- 

ies . To build the model we define four training strategies, based 

n different ideas: (i) random training (similar in spirit to the Ex- 

remely Randomized Trees [4] ), (ii) training by maximizing sepa- 

ation (using the Hausdorff distance [5] ), (iii) training by minimiz- 

ng the scatter and (iv) training by maximizing information diver- 

ence (using a recent dissimilarity-based estimator of the Rényi di- 

ergence measure [6] ). The second element of DisRFC exploits the 

act that each tree defines a hierarchical partition of the patterns 

f the problem, and derives the final clustering by using concepts 

nd tools which are typical of the clustering ensemble field [7] . In 

etail, we exploit and extend some recent theoretical findings in 

he field of K-means-based consensus clustering [8,9] , and define 

our different clustering schemes, all based on a K-means-type al- 
1 We use interchangeably the terms “dissimilarity” and “distance”. 

https://doi.org/10.1016/j.patcog.2022.109036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.109036&domain=pdf
https://doi.org/10.1016/j.patcog.2022.109036
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orithm operating in a binary embedding space derived from the 

artitions induced by the learned UD-RF. 

The proposed framework, in all its variants, has been thor- 

ughly evaluated on 12 different problems related to non-vectorial 

bjects. We analyzed different aspects, such as different training 

trategies, different embeddings and different ensemble schemes. 

e also performed a comparative analysis with other literature 

echniques, which confirms that DisRFC can represent a viable al- 

ernative to classic as well as to advanced dissimilarity based clus- 

ering approaches. 

. Related work 

As stated in the introduction, the exploitation of Random 

orests in the clustering scenario is not as mature as in classifi- 

ation/regression. Generally speaking, the RF-clustering approaches 

an be mainly divided into two groups: the first contains meth- 

ds which exploit RFs (or RF-like methods) to directly extract the 

lustering; the second contains techniques which use RFs to de- 

ive a measure of dissimilarity between objects; the clustering is 

hen obtained by applying to such dissimilarity a classic distance- 

ased clustering method (like hierarchical clustering or spectral 

lustering [10] ). More in detail, in the first group, Moosmann et al. 

11] proposes a clustering approach to define dictionaries for Bag 

f Words classification of images; authors employed Extremely 

andomized Trees [4] to derive clustering forests which are seen 

s partitioners of the space – each leaf representing a distinct vi- 

ual word. Shotton et al. [12] extends the approach of Moosmann 

t al. [11] along different directions, e.g., by considering each tree 

s a hierarchy of clusters (we will use this idea in our approach). 

n [13] , the authors propose a two-step clustering algorithm, in 

hich they merged the multiple partitions defined by the differ- 

nt trees using a graph-based algorithm. Bicego [14] introduced a 

-means-style clustering algorithm, in which every cluster is rep- 

esented with a particular one-class variant of RF, called Isolation 

orest [15] . Finally, Yan et al. [16] presents the “Cluster Forests” al- 

orithm, based on an RF-like scheme, which defines an ensemble 

f clusterings by finding projections on which good local cluster- 

ngs exist; the final result is then obtained by aggregation. 

The second group of Random Forest clustering methods ex- 

loits the forest to derive similarities between objects, to be sub- 

equently fed as input to a standard distance-based clustering al- 

orithm. The basic idea, which goes back to Breiman [1] , Shi and 

orvath [17] , is straightforward: given a tree, two objects can be 

onsidered similar if they end up in the same leaf, since they have 

nswered in the same way to all the tests in their path (their 

aths are equal). This idea can be naturally extended to a for- 

st level, and the most natural similarity measure is represented 

y the number of times – over the whole set of trees – two ob- 

ects end up in the same leaf. Given this measure, Shi and Horvath 

17] derives the final grouping using the PAM (Partitioning Around 

edoids) algorithm. More recently, Zhu et al. [18] extended the ap- 

roach in Breiman [1] , Shi and Horvath [17] by considering as sim- 

larity between two objects the length of the common path they 

re following in each tree. This refines the previous binary defi- 

ition (same/different leaf), considering as somehow similar also 

oints which paths separate very deep in the tree – a very recent 

pproach [19] further refined the concept. 

All these RF-clustering approaches are inherently based on vec- 

orial representations, i.e., objects to be clustered should be repre- 

ented in a feature space. However, as already said in the introduc- 

ion, there are many contexts in which it is difficult to derive a set 

f discriminative features, and objects are more naturally described 

ith complex representations such as strings, sequences, graphs 

nd so on. In the context of classification/regression, there has 

een an increased interest in devising Random Forest variants for 
2 
odeling such non-vectorial objects. A first possibility is to derive 

ummary features from them, like in Generalized Random Shapelet 

orests [20] ; an alternative and more promising trend is to develop 

F variants based on similarity/dissimilarity, which permit to lever- 

ge the huge amount of meaningful distances between complex 

epresentations defined throughout many years of research. In this 

ast research line all RF mechanisms should be defined in terms of 

imilarity/dissimilarity; for example, in the method introduced in 

ouzal-Chouakria and Amblard [21] there are two prototypes, one 

or each branch, and the object follows the branch corresponding 

o the nearest prototype. More recent approaches introduce more 

ophisticated schemes, such as the use of a threshold on projec- 

ions defined by distances between pairs of points [22] , the use 

f triplet comparisons [23] , or even the inclusion in the training 

f multiple dissimilarity measures [24] . In the clustering scenario, 

here are no RF-based methods dealing with non-vectorial objects; 

xporting to these cases the effectiveness and interpretability of 

F-clustering approaches would be very valuable, and represents 

he main goal of this paper. 

Summarizing, the main contributions of this paper are: 

• the introduction of the first RF-clustering approach that is en- 

tirely based on dissimilarities, thus being able to work with 

non-vectorial representations. This method permits to export 

the efficacy and interpretability of RF-clustering approaches to 

many scenarios dealing with complex non-vectorial objects. 
• the introduction of a novel variant of RF, the Unsupervised Dis- 

similarity Random Forest, which can be trained without labels 

and using only dissimilarities; this novel RF, equipped with 

non-conventional learning strategies based on the concepts of 

scatter, Hausdorff distance and Rényi divergence, can be ex- 

ploited also in some other non-vectorial unsupervised scenarios 

(e.g., outlier detection [15] ). 

A preliminary version of this paper appeared in the proceed- 

ngs of the Int. Conf. on Data Mining (ICDM) [25] . With respect 

o that version here we introduced novel learning schemes for the 

nsupervised Dissimilarity Random Forest, we enlarged the exper- 

mental part with novel datasets, tables and comparisons, and in 

eneral we added thorough clarifications and explanations of all 

he parts of the methodology, providing details and algorithms. 

. The proposed approach: DisRFC 

This section defines the proposed DisRFC (Dissimilarity Random 

orest Clustering). In particular, it consists of two steps: i) given a 

issimilarity function which permits to compute the dissimilarity 

etween all pairs of objects to be clustered (or given the whole 

issimilarity matrix), we train an Unsupervised Dissimilarity RF 

UD-RF); ii) given the trained UD-RF, we combine the partitions 

efined by the trees of the UD-RF to get the final clustering. In the 

ollowing, we will present the two steps into details. 

.1. Unsupervised dissimilarity random forests 

The Unsupervised Dissimilarity Random Forest (UD-RF – see 

lgorithm 1 ) is an ensemble of Unsupervised Dissimilarity Trees 

UD-T – see Algorithm 2 ). In the UD-RF, each UD-T is built using 

 subset of objects randomly sampled without replacement from 

he training set. We will start our definition by introducing the 

D-T. Given a set of objects O, the UD-T is a complete binary tree, 

hich, to be trained, requires in input only the set of dissimilarities 

etween the objects of O. Without losing generality, we assume 

hat the whole matrix of pairwise dissimilarities D = [ dis (o i , o h )]

 ∀ o i , o h ∈ O, dis (o i , o h ) is the dissimilarity between objects o i and

 h ) is available in input. One important feature of the proposed 

pproach is that we do not make any assumption on the nature of 
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Algorithm 1 UD-RF( D, T , ψ, mls, np, tr). 

Input: D : matrix of dissimilarities between objects; T : number of 

trees; ψ : subsampling size; mls : minimum leaf size; np: num- 

ber of pairs; tr: training strategy 

Output: R : an ensemble of T UD-Trees 

1: R ← ∅ 
2: O ← objects with dissimilarity matrix D 

3: for t ← 1 . . . T do 

4: S ← sample (O, ψ) // sample ψ objects from O 

5: D 

′ ← D (S, S) // distances between all objects in S 

6: R ← R 

⋃ 

UD-Tree (D 

′ , mls, np, tr) 

7: end for 

8: R .numtrees ← T 

9: return R 

Algorithm 2 UD-Tree( D, mls, np, tr). 

Input: D : matrix of dissimilarities between objects; mls : minimum 

leaf size; np: number of pairs; tr: training strategy 

Output: an UD-Tree 

1: O ← objects with dissimilarity matrix D 

2: if |O| < mls then 

3: return lea f 

4: end if 

5: V ← all (o i , o j ) ( i � = j) in ValidPairs (O) 

6: switch tr do 

7: case Rand 

8: [ ̂ o L , ̂  o R ] ← samplepair(V, 1) // sample 1 pair from V 

9: case HausD 

10: V ′ ← samplepair(V, np) // sample np pairs from V 

11: [ ̂ o L , ̂  o R ] ← arg max 
(a,b) ∈ V ′ 

SHD(Nearer( O,a,b),Nearer( O,b,a)) // 

eq.(3) 

12: case Scatter 

13: V ′ ← samplepair(V, np) // sample np pairs from V 

14: [ ̂ o L , ̂  o R ] ← arg min 

(a,b) ∈ V ′ 
Scat(Nearer( O,a,b)) + 

Scat(Nearer( O,b,a)) // eq.(5) 

15: case RenyiD 

16: V ′ ← samplepair(V, np) // sample np pairs from V 

17: [ ̂ o L , ̂  o R ] ← arg max 
(a,b) ∈ V ′ 

SRD(Nearer( O,a,b),Nearer( O,b,a)) // 

eq.(8) 

18: O l ← Nearer( O, ̂  o L , ̂  o R ) ∗, O r ← Nearer( O, ̂  o R , ̂  o L ) ( ∗) 
19: D l ← D (O l , O l ) , D r ← D (O r , O r ) 

20: node.Le f t ← UD-Tree( D l , mls, tr) 

21: node.Right ← UD-Tree( D r , mls, tr) 

22: node.Le f tP rot ← ˆ o L 

23: node.RightP rot ← ˆ o R 

24: return node 

NOTES: Nearer( O,a,b) (lines 11, 14, 17) returns all elements in O 

which are nearer to a than to b ; ValidPairs (O) (line 5) contains all 

pairs of objects in (O) which permit to split the objects in two non 

empty sets. 
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2 In some works on RF-clustering [17,18] , the problem is solved by sampling a 

negative class from the feature space, and use a classification RF. Clearly this solu- 

tion can not be adopted here, since in input we do not have a feature space. 
he dissimilarity (which can be also non-Euclidean)– this is a typ- 

cal scenario when dealing with complex objects described with 

on-vectorial representations [26] . 

To define the UD-T, we have to define the traversal scheme and 

he training strategy. For what concerns the former, we borrow 

ere the mechanism defined in Proximity Forests [24] , a recent 

ariant of RF completely based on dissimilarities defined for su- 

ervised classification. More specifically, each node n j of the UD-T 

as associated two objects o L 
j 

and o R 
j 
, called prototypes. These ob- 

ects define the traversal scheme of the node n j : if an object o is
3 
ore similar to o L 
j 

than to o R 
j 
, i.e dis (o, o L 

j 
) < dis (o, o R 

j 
) , then it will

ollow the left path, otherwise it will follow the right path. The 

raversal scheme is used during both the training and the testing 

teps. For what concerns the training strategy, the input is rep- 

esented by a set of objects, for which we have at disposal (or 

e can compute) all pairwise dissimilarities. The training proce- 

ure is a classical tree-training strategy. Starting from the root n 1 , 

hich accommodates all the training objects, we create two chil- 

ren nodes according to the distance to the two prototypes o L 
1 

and 

 

R 
1 ; in detail, objects nearest to o L 1 will follow the left branch, i.e., 

hey will be assigned to the left child, the others will follow the 

ight branch. We then continue this splitting procedure until we 

et some ending conditions (e.g., we cannot split a node anymore, 

r we have reached a predefined depth of the tree). We will denote 

s S j the set of objects of the training set of the tree which are

assing through the node n j , and as S L 
j 

( S R 
j 
) the objects choosing

he left (right) child of n j . Clearly S L 
j 
∪ S R 

j 
= S j , and S L 

j 
∩ S R 

j 
= ∅ . The

earning procedure indicates how to choose, for every node n j , the 

wo prototypes o L 
j 

and o R 
j 
. In particular, to choose the prototypes of 

he node n j we are using objects in S j , i.e., the training objects ar-

iving at that node. We propose four different approaches to select 

he prototypes, described in the following, which exploit different 

oncepts and ideas, but are all based on dissimilarities. Please note 

hat we are in an unsupervised scenario (clustering), and therefore 

o labels are available. 2 

“Rand”: this represents the simplest strategy in which, for a 

ode n j , we randomly choose o L 
j 
, o R 

j 
, o L 

j 
� = o R 

j 
, in the set S j . Ran-

om training of decision trees has been shown to be surprisingly 

ood; after the pioneering work of Geurts and colleagues [4] on 

xtremely Randomized Trees for classification, this solution was 

uccessfully adopted in many contexts (e.g., Moosmann et al. [11] , 

hotton et al. [12] , Liu et al. [15] , just to cite a few). “HausD”:

his scheme starts from the idea that a proper split in a node n j 
hould divide the objects S j in two well separated sets. To imple- 

ent this idea, we propose to measure the separation between S L 
j 

nd S R 
j 

using the Hausdorff distance [5] , a classic measure to com- 

are sets of objects, working very well in different contexts, which, 

rucially, can be computed starting only from pairwise distances. 

ormally, given a distance between objects dis (x, y ) , and given two 

ets X = { x 1 , . . . x N } and Y = { y 1 . . . y M 

} , the Hausdorff distance be-

ween X and Y is defined as: 

D (X, Y ) = max 
i ∈ [1 ... N] 

min 

j∈ [1 ... M] 
dis (x i , y j ) . (1) 

he proposed “HausD” training scheme chooses the prototypes to 

aximize the Hausdorff distance between the left child and the 

ight child sets. More formally, the pair ( ̂  o L 
j 
, ̂  o R 

j 
) for the node n j is

elected as: 

 ̂

 o L j , ̂  o R j ) = arg max 
o L 

j 
,o R 

j 
∈ S j 

SHD (S L j , S 
R 
j ) , (2) 

ith SHD (S L 
j 
, S R 

j 
) being the Symmetrized Hausdorff distance be- 

ween S L 
j 

and S R 
j 
, defined as 

HD (S L j , S 
R 
j ) = 

1 

2 

(
HD (S L j , S 

R 
j ) + HD (S R j , S 

L 
j ) 
)
. (3) 

From a computational perspective, the analysis of all possible 

airs (o L 
j 
, o R 

j 
) is clearly not efficient; we overcome this problem 

ith a classic trick employed in standard classification Random 

orests [1] , namely picking the best pair among a small number 

f random pairs (in our experiments we set this number to 20). 
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Scatter”: the intuition behind this scheme is that a proper split 

n a node n j should divide the objects S j in two highly compact 

ets. To measure the compactness of a set of objects starting from 

issimilarities, we used the classic concept of Scatter , namely the 

veraged pairwise distance between all objects in the set. More for- 

ally, given a set of objects X = { x 1 , . . . x N } , and a distance dis (x, y )

etween them, the scatter Scat(X ) is defined as: 

cat(X ) = 

1 

N 

2 

N ∑ 

i =1 

N ∑ 

j= i 
dis (x i , x j ) . (4) 

n the “Scatter” scheme, the best prototypes for a node n j are those 

or which the scatter of S L 
j 

and S R 
j 

are minimized; more formally, 

he pair ( ̂  o L 
j 
, ̂  o R 

j 
) for the node n j is selected as: 

 ̂

 o L j , ̂  o R j ) = arg min 

o L 
j 
,o R 

j 
∈ S j 

(
Scat(S L j ) + Scat(S R j ) 

)
. (5) 

imilarly to the HausD scheme, this approach chooses the best 

air among a small set of pairs randomly sampled from the ob- 

ects S j . Please note that this criterion is similar in spirit to classic 

mpurity-based criteria for classification, like the Gini one. How- 

ver, in such classic criteria, the contribution to the total impurity 

f the two parts S L 
j 

and S R 
j 

is weighted by the size of S L 
j 

and S R 
j 
.

learly also in our case we can use a weighted variant, even if we 

hink that in this clustering context the unweighted version would 

avour purer nodes, not considering their size. “RényiD”: the in- 

uition behind this last scheme is that a proper split of a node n j 
hould divide the objects S j into two sets which convey different in- 

ormation . To measure this, we can employ concepts and tools from 

nformation Theory, this being a classic solution employed in many 

andom Forests training schemes [1] . More in detail, here we de- 

ide to select the pair of objects which permits to have the high- 

st Rényi divergence [27] between S L 
j 

and S R 
j 
. We chose the Rényi 

ivergence, a generalization of the Kullback–Leibler divergence be- 

ween probability distributions, since the estimation of the classic 

ivergence based on the Shannon entropy is often more problem- 

tic (see Pál et al. [28] ). In particular, we employed here the recent

stimation procedure proposed in Noshad et al. [6] , which seems 

o be particularly suited for our scenario: i) this technique permits 

 non-parametric estimation, i.e., no assumptions on the underly- 

ng distribution should be done; this is reasonable for our case, 

ince a priori we do not know the shape of the data we are clus-

ering; ii) this technique implements a by-pass estimator [28] , i.e., 

t does not require the explicit estimation of the density (avoid- 

ng all issues related to density estimation, such as the determina- 

ion of the partition function); iii) the computation employs near- 

st neighbor ratios, thus being based only on dissimilarities; iv) 

nally, this technique is able to derive proper estimates also when 

he input dissimilarity is non-Euclidean, thus being suitable for our 

cenario. 

Formally, given two sets X = { x 1 , . . . x N } and Y = { y 1 . . . y M 

} , the

ényi divergence between X and Y can be estimated via the fol- 

owing equation: 

D (X, Y ) = 

1 

(α − 1) 
log 

[ 

ηα

M 

M ∑ 

i =1 

(
N i 

M i + 1 

)α
] 

. (6) 

n the above formula, η = M/N, N i and M i represent the number 

f K-nearest neighbors of y i in { X ∪ Y } belonging to X and Y , re-

pectively, and α defines the Rényi divergence ( α > 0 , α � = 1 )– all

he mathematical details can be found in the original paper [6] . 

n our “RényiD” learning scheme, the best prototypes for a node 

 j are those for which the Rényi divergence between S L 
j 

and S R 
j 

is 

aximized. More formally, ( ̂  o L 
j 
, ̂  o R 

j 
) are defined as: 

 ̂

 o L j , ̂  o R j ) = arg max 
o L 

j 
,o R 

j 
∈ S j 

SRD (S L j , S 
R 
j ) , (7) 
4

here SRD (S L 
j 
, S R 

j 
) represents the symmetrized Rényi divergence 

etween S L 
j 

and S R 
j 
, defined as: 

RD (S L j , S 
R 
j ) = 

1 

2 

(
RD (S L j , S 

R 
j ) + RD (S R j , S 

L 
j ) 
)
. (8) 

lso in this case the best pair is chosen among a small set of pairs

andomly sampled from the objects S j . 

Let us conclude with a final consideration. Obviously, given a 

issimilarity, it is possible to embed the problem in a vectorial 

pace (e.g., via multidimensional scaling), and use standard vector- 

ased RF-clustering schemes. However, when dealing with non eu- 

lidean (or even non-metric) dissimilarities (typical scenario with 

on-vectorial objects [26] ), the embedding in vectorial spaces may 

e rather complicated, and methods working directly with dissimi- 

arities are preferred. We will provide some evidence of this in the 

xperimental part. 

.2. Ensemble clustering with UD-RF 

The second step of the proposed framework exploits the trained 

D-RF to determine the final clustering. In particular, we rely on 

he idea, already presented in early approaches for RF-clustering 

11–13,29] , that given a tree we can aggregate the different objects 

nto groups by looking at the path they are following from the root 

o the leaves. The trained UD-RF is a set of UD-T, and therefore de- 

nes a set of different clusterings, one for each UD-T. To derive 

he final clustering, we can merge all these clusterings, exploit- 

ng concepts and tools from Consensus Clustering (also known as 

nsemble clustering) [7] . Generally speaking, this scheme can be 

een a hierarchical divisive approach (a less common strategy for 

eriving a hierarchical clustering), in which the typical computa- 

ional issues associated with divisive methods are faced by aggre- 

ating simple and somehow approximated clusterings (each one 

erived from a single tree). More in detail, the scheme we pro- 

ose has its roots in the works of Topchy et al. [8] , Mirkin [30] ,

hich showed that it is possible to transform the maximization 

f the Category Utility Function [30] –a widely known (and com- 

utationally demanding) criterion for consensus clustering–, into a 

ast K-means scheme with squared Euclidean distances in a prop- 

rly defined space derived from the input partitions. The authors 

f Wu et al. [9] extended this elegant result by showing that, un- 

er some conditions, it is possible to prove the same equivalence 

or other criteria used in consensus clustering, typically by using 

ther distances within the K-means. Interestingly, the authors of 

u et al. [9] also provided necessary and sufficient conditions for 

ransforming a consensus clustering problem into a K-means clus- 

ering problem. 

Being inspired by these findings, in our framework we exploit 

he trained UD-RF to define an embedding space for the objects 

f the problem; the final clustering is then obtained by a cluster- 

ng procedure in such space. The two steps are presented in the 

ollowing. 

Embedding with UD-RF In our approach, we present two differ- 

nt embedding schemes, the “OP” (One Partition) and the “MP”

More Partitions), both defined starting from the hierarchical clus- 

erings determined by the different trees of the UD-RF. As the 

ame suggests, the difference between the two schemes is in the 

umber of partitions of each tree used in the embedding; in partic- 

lar, “OP” exploits only one of the partitions defined by the tree, 

hereas “MP” uses more than one. Even if being more computa- 

ionally demanding, the second method may permit to better ex- 

loit the information contained in the clustering hierarchy defined 

y the tree. Before entering into the details of the two embeddings, 

et us present the general framework. Given a UD-RF with T trees, 

he embedding E(o) of an object o is obtained by concatenating 
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he T embeddings of o in the T trees: 

(o) = [ E 1 (o) E 2 (o) . . . E T (o)] , (9) 

ith E t (o) being the embedding of o obtained from a tree t . For 

implicity, let us remove the superscript t , and present OP/MP for 

 single tree. Let us denote as { n 1 , . . . , n N } the set of the nodes of

he tree, and P(o) ⊂ { n 1 , . . . , n N } the path of the object o to reach

ts leaf � (o) . 

For a pre-specified depth d ( d ≤ d max , the maximum depth of 

he tree), let us define P d (o) as the path of o in the tree until

he depth d; this can also be seen as the set of nodes of the path

hich have a depth less or equal to d: 

 d (o) = { n j ∈ P(o) | dep(n j ) ≤ d} . (10) 

n the above formula dep(n j ) represents the depth of the node n j .

learly, P 0 (o) contains only the root, whereas P d max 
(o) = P(o) . Fi-

ally, we define as c d (o) the node with maximum depth in P d (o) :

 d (o) = arg max 
n ∈P d (o) 

dep(n ) . (11) 

ow, given a depth d, we can create a partition of the objects on

he basis of their c d (o) , assigning objects with the same c d (o) to

he same cluster. In other words, a cluster at depth d contains all 

hose objects which reach at depth d the same node. It is easy 

o see that our definition generalizes the definition of Moosmann 

t al. [11] , Shotton et al. [12] , Perbet et al. [13] , which specified

hat a cluster must contain all those objects which fall in the same 

eaf. In our generalization, we permit to define the level (i.e., the 

epth) at which we should examine the hierarchical clustering de- 

ned by the tree. This can be useful if we want to set a precise

umber of clusters, or if we want clusters with a minimum size. 3 

ore formally, the objects to be clustered O can be partitioned (at 

 given depth d) into the clustering C d , defined by using the set

 d = { ̃ c 1 
d 
, . . . ̃  c 

K d 
d 

} of K d unique c d (o) for all o ∈ O: 

 d = {C 1 d , . . . C 
K d 
d 

} , (12) 

here 

 

k 
d = { o j ∈ O| c d (o j ) = 

˜ c k d } . (13) 

Given this definition, we are now ready to define the “OP” em- 

edding (One Partition) for an object o and given a depth d: 

 

OP d (o) = 

[
e 

OP d 
1 

(o) , e OP d 
2 

(o) , . . . e OP d 
K d 

]
, (14) 

here 

 

OP d 
j 

(o) = 

{
1 if c d (o) = 

˜ c j 
d 

0 otherwise. 
(15) 

 

OP d (o) represents a binary vector of K d entries, where we have 

ll zeros except in one position, namely the position of the node 

eached by the object o at depth d (i.e., c d (o) ). It is easy to show

hat, when we plug Eq. (14) into Eq. (9) , we get an embedding

hich is equivalent to the encoding defined in Topchy et al. [8] , 

u et al. [9] , Mirkin [30] if we assume that the clusterings to be

ombined are those induced by the set of the different C d (one for 

ach tree of the forest). 

For what concerns the second embedding, MP, the starting idea 

s that a tree does not define only a clustering, but a hierarchy of 

lusterings (one for each depth d), which can be exploited to better 

haracterize the objects. Actually, in MP the idea is to define the 

mbedding starting from more than one partition: in particular we 

an consider a set of H depths H = { d 1 , . . . d H } , and concatenate
3 Please note that this cannot be achieved by setting a maximum depth in the 

ree, since each tree is built on a subsample of the objects to be clustered, and thus 

e do not know a priori how many objects will fall in a given leaf. 

p  

M

a

g

5 
he OP embeddings derived from each depth in H to get a richer 

mbedding. Formally, 

 

MP (o) = 

[
E OP d 1 (o) . . . E OP d H (o) 

]
, d h ∈ H. (16) 

With this strategy, we can benefit from information at differ- 

nt levels of granularity, starting from coarser partitions (at small 

epths) up to finer ones (larger depths). In our experiments we 

mployed a few partitions at equi-spaced depths, in order to cover 

he whole scale of resolutions. Also, in this case it is easy to show 

hat when plugging Eq. (16) into Eq. (9) we can still use the per-

pective of Topchy et al. [8] , Wu et al. [9] , Mirkin [30] . Actually the

P embedding simply induces more partitions to be combined, 

ith different number of clusters; since the theory presented in 

opchy et al. [8] , Wu et al. [9] , Mirkin [30] does not assume to

ave a fixed number of clusters, we are still guaranteed to have a 

roper embedding. 

A summary of the embedding step can be found in Algorithm 3 

lgorithm 3 Embed( D, R , H). 

nput: D : matrix of dissimilarities between objects; R : the trained 

UD-RF; H: the set of depths 

utput: E: the embedding of objects 

1: O ← objects with dissimilarity matrix D 

2: for o ∈ O do 

3: E(o) ← ∅ // Initialization 

4: end for 

5: for t ← 1 . . . R .numtrees do 

6: tree ← R [ i ] // i-th tree 

7: for o ∈ O do 

8: P(o) ← getPath (o, tree ) // nodes from root to leaf 

9: end for 

0: for d ∈ H do 

11: for o ∈ O do 

2: c d (o) ← P(o)[ d] // d-th node in the path P(o) 

3: end for 

4: C d ← unique o∈O ({ c d (o) } ) // unique c d (o) 

5: for o ∈ O do 

6: i ← 0 

17: for ˜ c d ∈ C d do 

18: i ← i + 1 

9: if c d (o) = ˜ c d then 

0: E(o)[ i ] ← 1 // i-th element of array E(o) 

1: else 

2: E(o)[ i ] ← 0 

3: end if 

4: end for 

5: E(o) ← [ E(o) E(o)] // Concatenation 

6: end for 

27: end for 

8: end for 

9: return E 

please note that to have the OP embedding at depth d we just 

ave to set H = { d} . 
Clustering As stated above, the works in Topchy et al. [8] , Mirkin 

30] theoretically proved that the optimum of the Category Utility 

unction can be found by running a classic K-means with squared 

uclidean distances in a specific space which encodes the differ- 

nt input partitions. Further, the work of Wu et al. [9] theoretically 

hows that to optimize alternative consensus clustering criteria we 

an still use K-means in the same binary space, but changing dis- 

ance. Having shown that our OP and MP embeddings represent 

roper encodings in the view of Topchy et al. [8] , Wu et al. [9] ,

irkin [30] , we can leverage all the results proven there and derive 

 set of effective and fast consensus clustering methods for aggre- 

ating the information contained in all the trees. In particular, we 
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efine four different clustering schemes, based on this paradigm, 

here the first two directly derive from the framework of Topchy 

t al. [8] , Wu et al. [9] , Mirkin [30] , and the last two are general-

zations. More in detail we defined: 

• KM : a K-means clustering method in the embedding space; 

here we used squared Euclidean distances, thus corresponding 

to the approach presented in Topchy et al. [8] , Mirkin [30] ; 
• KMKL : again a K-means in the embedding space, but using the 

Kullback–Leibler divergence to measure distance between ob- 

jects. In particular, in this variant, in the assignment step of the 

K-means an object o i is assigned to the cluster ˆ c for which the 

Kullback–Leibler divergence is minimum 

ˆ c = arg min 

c=1 ... K 
d KL (E(o) , E c ) , 

where E c is the average of the embeddings of the objects as- 

signed to the cluster c at previous iteration and d KL is the 

Kullback–Leibler divergence. According to Wu et al. [9] , with 

this scheme we are optimizing a Shannon-entropy derived con- 

sensus clustering criterion; 
• Kmed, Kmod : two generalizations of KM and KMKL , in which 

we used in the embedding space two classical solutions for cat- 

egorical clustering, namely the K-medoids algorithm with the 

Hamming distance [31] and the K-modes approach [32] . Even 

if we will show in the experimental evaluation that these vari- 

ants represent fast and accurate options, we lose the theoreti- 

cal properties of KM and KMKL : actually the results of Topchy 

et al. [8] , Wu et al. [9] , Mirkin [30] only apply if the clustering

algorithm is the K-means; extending this theory to Kmed and 

Kmod will be the subject of our future research. 

As a summary, Algorithm 4 describes the whole DisRFC clus- 

lgorithm 4 DisRFC( D, T , ψ, mls, np, tr, H, K, Y init , cl). 

nput: D : matrix of dissimilarities between objects; T : number of 

trees; ψ : subsampling size; mls : minimum leaf size; np: num- 

ber of pairs; tr: training strategy; H: set of depths; K: number 

of clusters; Y init : initialization of clustering; cl: type of cluster- 

ing 

utput: Y : the clustering; e the value of the optimized function 

1: R ← UD-RF( D, T , ψ, mls, np, tr) 

2: E ← Embed( D, R , H) 

3: [ Y, e ] ← Cluster( E, K, Y init , cl) 

4: return Y, e 

ering pipeline 4 As a final note, it should be observed that in our 

ramework the number of clusters has to be fixed and known, 

hich is unrealistic in many real situations; a possible solution is 

o use in the last step of the pipeline a clustering algorithm that 

s able to automatically determine the best number of clusters –

n excellent candidate in this sense would be the x -means method 

33] . 

. Experimental evaluation 

This section presents the experimental analysis. After introduc- 

ng the experimental details, we will present the results for the dif- 

erent variants of the DisRFC approach, analyzing the impact of the 

ifferent options; finally, we present a comparative analysis with 

ome literature alternatives. 
4 We did not provide the algorithm of Cluster ( E, K, Y init , cl), since it represents one 

f the four well known clustering approaches described above applied in the em- 

edding space E . 

4

s

i

6 
.1. Experimental details 

As usually done in the clustering domain, in our empirical eval- 

ation we employed supervised datasets, in which the labels are 

emoved for computing the clustering and used to check the good- 

ess of the result; in particular we used here the adjusted Rand in- 

ex (ARI – [34] ), a classical measure which exploits a contingency 

able between the clustering and the true labeling; from this table 

he agreement between the two groupings is quantified and cor- 

ected for the chance of the formation of the clusters – the higher 

his index, the better the clustering. 

Our experiments are based on 12 problems, briefly presented in 

able 1 and described in Section 1 of the supplementary material. 

hese datasets cover different aspects, such as different represen- 

ations and dissimilarities (most of them are non-Euclidean), dif- 

erent numbers of objects and clusters, different dimensionality of 

he clusters. For each problem, we have as input a matrix directly 

ontaining all pairwise dissimilarities between the objects of the 

roblem. It is worth to observe that in all cases except FlowCyto1 

nd FlowCyto2 we are dealing with non-vectorial representations 

such as sequences, strings, 3D structures or graphs), this permit- 

ing to evaluate the proposed approach as a general RF clustering 

ethod usable to cluster non-vectorial objects. In the experiments 

e evaluate the proposed approach in all its possible variants, i.e. 

y combining all the training schemes (Rand, HausD, Scatter, and 

ényiD) with all the embeddings (OP and MP) and the clustering 

ethods (KM, KMKL, Kmed and Kmod). We employed 100 or 200 

rees to build each UD-RF; we trained each tree with 128 objects 

andomly chosen from the training set (in the CatCortex case we 

sed all the 65 objects). Training with such a few objects, on top 

f permitting a faster training and a reasonably sized embedding 

pace, permits to increase the diversity of the obtained partitions, 

hich represents a crucial aspect for any successful ensemble clus- 

ering – preliminary experiments, not shown here, confirmed that 

ncreasing this number does not lead to any substantial improve- 

ent. Training with few samples has shown to be effective also in 

ther scenarios, especially those alternative to classification or re- 

ression, such as outlier detection [15] . In all training schemes, we 

top the recursive splitting of a node when it contains fewer than 

0 objects. In the Rand strategy the two splitting prototypes inside 

 node are randomly chosen among all valid pairs of objects reach- 

ng that node (we denote as valid a pair which permits to split ob- 

ects in two non-empty sets); for the other training schemes, i.e., 

ausD, Scatter and RényiD, the two prototypes are selected among 

0 valid random pairs by optimizing the criteria in Eqs. (3) , (5) , and

8) , respectively. In the computation of the Rényi divergence, we 

sed α = 0 . 999 , and K = 

√ 

� (as recommended by Noshad et al.

6] ), where � is the number of the objects in the training set of 

he tree. For the OP embedding we select d = d max , i.e., we used

he clustering induced by the leaves; for the MP embedding we 

sed H = 3 partitions, choosing them as approximately equispaced 

n the hierarchy. After a few trials, we found the following rule 

f thumb: we divided the interval [1 : d max ] into H + 1 intervals,

eeping as d j the central level of all intervals (except the first). 

his permits to have partitions from coarse to fine granularity –

e remove the partition in the first interval, since too coarse. Fi- 

ally, in order to cope with the randomness present in the whole 

ipeline (random selection of training objects, random selection of 

andidate pairs and so on), for each variant and each dataset we 

epeated the whole procedure 30 times. 

.2. Results 

Given the large number of experiments, we present the whole 

et of results in Section 2 of the supplementary material, provid- 

ng here only a summary. In particular, we present in Tables 2 (a), 
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Table 1 

Datasets used in the experiments ( N: number of objects, K: number of clusters). 

Problem Acronym Description N K 

CatC CatC Connections between cortical areas of a cat 65 4 

Protein Prot Evol. diss. of sequences of proteins 213 4 

CoilDelft CoD Spectral dist. of 4 COIL obj. graphs 288 4 

ChickenPieces ChiP Weigh. Edit dist. of 2D shape contours 446 5 

Newsgroups News Non-metric correl. of newsgroups messages 600 4 

FlowCyto1 Fl1 L1 dist. of flow-cytometer histogr. (ch. 3) 612 3 

Flowcyto2 Fl2 L1 dist. of flow-cytometer histogr. (ch. 4) 612 3 

WoodyPlants WoP Shape distances among leaves of plants 791 14 

Delftgestures DeGe DTW diss. between gesture signs (video) 1500 20 

Zongker Zon Deform. templ. match. of handwritten dig. 2000 10 

TwoPendigits 2Pe Edit dist. between two digits contour 2287 2 

Prodom Prod Struct. alignm. between protein domains 2604 4 

Table 2 

Analysis of different aspects of the proposed approach: (a) Training, (b) 

Embedding. 

Training (Total: 480) 

Problem Rand HausD Scatter RényiD 

(a) 

CatC 0.6189 0.6362 0.3522 0.6670 ∗

Prot 0.6268 0.5595 0.5323 0.8592 ∗

CoD 0.0930 0.0865 0.0833 0.1601 ∗

ChiP 0.3114 0.2805 0.3113 0.3351 ∗

News 0.0882 0.1191 0.1203 0.2175 ∗

Fl1 0.0792 0.0634 0.0940 ∗ 0.0557 

Fl2 0.0870 0.0726 0.0979 ∗ 0.0689 

WoP 0.5363 ∗ 0.5277 0.5048 0.4514 

DeGe 0.7099 0.7120 0.6853 0.6225 

Zon 0.7312 0.7197 0.6897 0.6765 

2Pe 0.9110 0.8631 0.8349 0.9696 ∗

Prodom 0.1507 0.1064 0.0962 0.3061 ∗

Average 0.4120 0.3956 0.3668 0.4491 ∗

Embedding (Total: 960) 

Problem OP MP 

(b) 

CatC 0.5933 ∗ 0.5439 

Prot 0.5869 0.7020 ∗

CoD 0.1068 0.1046 

ChiP 0.3076 0.3115 ∗

News 0.1524 ∗ 0.1201 

Fl1 0.0684 0.0777 ∗

Fl2 0.0740 0.0892 ∗

WoP 0.5066 0.5035 

DeGe 0.6939 ∗ 0.6709 

Zon 0.7154 ∗ 0.6932 

2Pe 0.8381 0.9512 ∗

Prodom 0.1777 ∗ 0.1520 

Average 0.4018 0.4100 ∗

(

b

t

t
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i
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t

t
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3  

f

b

a

s

Table 3 

Analysis of different aspects of the proposed approach: 

clustering. 

Clustering (Total: 480) 

Problem KM KMKL Kmed Kmod 

CatC 0.6494 0.2050 0.6962 0.7237 ∗

Prot 0.7058 0.3313 0.7296 0.8111 ∗

CoD 0.1449 ∗ 0.0466 0.1063 0.1251 

ChiP 0.3220 ∗ 0.2911 0.3163 0.3090 

News 0.2217 ∗ 0.1357 0.0682 0.1194 

Fl1 0.0810 ∗ 0.0767 0.0612 0.0734 

Fl2 0.0938 ∗ 0.0798 0.0694 0.0834 

WoP 0.5400 0.3896 0.5467 0.5440 

DeGe 0.7498 0.5025 0.7516 0.7258 

Zon 0.7444 0.5539 0.7450 0.7739 ∗

2Pe 0.9771 0.9402 0.6838 0.9775 

Prodom 0.1528 0.1669 0.1523 0.1875 ∗

Average 0.4486 0.3100 0.4105 0.4545 
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b) and 3 a set of results aimed at comparing the different possi- 

le options for each of the three steps (training, embedding, clus- 

ering). More in detail, for each step, we compute and compare 

he average of the ARI values of the different options computed 

cross all the other aspects. For example, when analyzing the train- 

ng, we compute the average of all the ARI values obtained with 

and (or HausD, Scatter, RényiD) for all different forest parame- 

ers (number of trees), all embeddings and all clustering schemes, 

hus resulting, for each dataset and each option, in the average of 

80 values (2 parametrizations × 2 embeddings × 4 clusterings ×
0 repetitions). We show these averages in Tables 2 (a), (b) and 3 ,

or the training, the embedding and the clustering, respectively; a 

old value indicates the best result among the different options for 

 particular step (training, embedding, clustering). In order to as- 

ess the statistical significance, we also performed a paired t -test 
7

mong the ARI values of the best option and those of the second 

est, where the null hypothesis is that the mean of the differences 

s zero. In the tables, an asterisk indicates that the difference be- 

ween the best option and the second best is statistically signifi- 

ant according to our statistical test (with a significance level of 

.05). 

The results allow for different observations. Regarding the train- 

ng procedure, it is interesting to note that the RényiD strategy is 

n general the best version. In many problems its averaged ARI is 

arger than that of the alternative options; please note that in some 

ases (like Protein, CoilDelft, Newsgroup and Prodom) the differ- 

nce is quite high. There are some other cases, i.e. WoodyPlants, 

elftgestures and Zongker, in which the RényiD variant represents 

he worst choice; note that all these problems contain many clus- 

ers (14, 20 and 10), which probably cannot be organized in a 

ierarchy (as that returned by a UD-tree); this misalignment be- 

omes more relevant with more accurate hierarchies (as those de- 

ived by using the RényiD scheme). We can also observe that the 

and scheme represents a fast but very reasonable option, working 

ery well almost everywhere, confirming findings found in other 

ontexts [4,11,15] . For what concerns the embedding, we can ob- 

erve that the differences between OP and MP are not that large, 

he only exception being the TwoPendigits case, where MP drasti- 

ally outperforms OP. Finally, regarding the clustering, we can ob- 

erve that the best results are in general obtained with K-Means 

ith Squared Euclidean distances and K-modes; only in two cases 

-medoids returns the best accuracy, even if not significantly bet- 

er than the second one. In general, KMKL has the most unstable 

ehavior across datasets; for some datasets it is drastically worse 

han the alternatives (e.g., the CatCortex problem), for some others 

t represents the best option (WoodyPlants and Delftgestures). We 
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Table 4 

Comparison with alternatives: part 1. 

Method CatC Prot CoD ChiP News Fl1 

HC-CL 0.1038 0.1654 0.1126 0.3224 0.0041 −0.0380 

HC-AvL 0.8734 0.1430 0.0000 0.2318 0.1201 −0.0016 

K-centres 0.1021 0.0503 0.0133 0.1956 0.0000 0.0217 

K-medoids 0.3587 0.7605 0.0997 0.3086 0.2010 0.0589 

kNN-MS 0.1798 0.5061 0.0922 0.3346 0.1647 0.0840 

SpectClus 0.7313 0.5429 0.1003 0.0224 0.3602 0.0462 

AffProp 0.4247 0.7612 0.0843 0.3085 0.2081 0.0656 

DomSet 0.2610 0.5940 0.0160 0.3725 0.0021 0.0182 

CDP 0.4920 0.6891 0.0004 0.1013 0.0000 −0.0063 

SP-CDP 0.3972 0.7443 0.0004 0.1013 0.0000 −0.0063 

Ker-KM 0.5215 0.8973 0.1429 0.2928 0.3434 0.0519 

LocSMK-KM 0.7189 0.8434 0.1672 0.3607 0.0352 0.0577 

mdsGMM-D 0.6764 0.8410 0.1504 0.2783 0.3090 0.0374 

mdsGMM-F 0.5065 0.4710 0.1071 0.3228 0.2108 0.0612 

RFC-Shi 0.3230 0.1211 0.0022 0.0540 0.0082 0.0242 

RFC-Zhu2 0.7132 0.7193 0.0555 0.2663 0.3157 0.0573 

RFC-Zhu3 0.6138 0.6683 0.1286 0.2743 0.1867 0.0483 

RFC-Ayr 0.7775 0.6191 0.0597 0.2714 0.2221 0.0744 

RFC-RaRF 0.7332 0.6226 0.0648 0.2917 0.3171 0.1108 

DisRFC(G) 0.8758 0.9345 0.1678 0.3394 0.3304 0.0457 

DisRFC 0.9107 0.9781 0.1752 0.4204 0.3304 0.1318 

Table 5 

Comparison with alternatives: part 2. 

Method Fl2 WoP DeGe Zon 2Pe Prodom 

HC-CL −0.0592 0.4972 0.4233 0.4142 0.0000 0.0373 

HC-AvL −0.0598 0.2560 0.1867 0.0003 0.0000 0.0362 

K-centres 0.0000 0.3062 0.2630 0.0701 0.0864 0.0000 

K-medoids 0.0000 0.5631 0.7624 0.2009 0.9861 0.1281 

kNN-MS 0.0000 0.2707 0.5443 0.1170 0.9983 0.1295 

SpectClus 0.0400 0.5705 0.2094 0.7285 −0.0003 0.0080 

AffProp 0.0371 0.5801 0.7466 0.1993 0.9861 0.1281 

DomSet 0.0000 0.1915 0.2801 0.0423 0.0000 0.0270 

CDP −0.0062 0.0419 0.1581 0.0000 0.5556 0.0000 

SP-CDP −0.0062 0.0419 0.1593 0.0000 0.0000 0.0000 

Ker-KM 0.0515 0.5108 0.4577 0.7977 −0.0003 0.0005 

LocSMK-KM 0.0125 0.5607 0.4486 0.5380 0.0111 0.0085 

mdsGMM-D 0.0660 0.2940 0.3329 0.3301 0.9878 0.1252 

mdsGMM-F 0.0498 0.2953 0.3802 0.2276 0.9913 0.1329 

RFC-Shi 0.0275 0.0070 0.0076 0.0022 0.0006 0.0039 

RFC-Zhu2 0.0681 0.2161 0.2042 0.2055 0.0120 0.1354 

RFC-Zhu3 0.0555 0.0957 0.1959 0.1596 0.0101 0.1432 

RFC-Ayr 0.0613 0.2453 0.2289 0.2301 −0.0001 0.1243 

RFC-RaRF 0.0506 0.2201 0.2530 0.2885 0.0130 0.1987 

DisRFC(G) 0.0777 0.5912 0.8280 0.8003 0.9895 0.3688 

DisRFC 0.1521 0.5932 0.8317 0.8305 1.0000 0.4416 
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re still investigating this strange behavior, trying to link it to the 

haracteristics of the problem or to the difficulties in estimating 

he KL divergence. 

.2.1. Guidelines 

Starting from all the presented results, we derived a few guide- 

ines, which can help the user in choosing the proper variant in 

 given scenario. For large enough datasets (e.g., containing more 

han 128 objects) with a reduced number of clusters e.g., less than 

0), our suggestion is to employ the RényiD training procedure; in 

ll other cases, we suggest using the Rand one. For the remain- 

ng aspects, our suggestion is to use the OP embedding at the 

eaves level (this being less computationally demanding than the 

P) and the K-Means with Squared Euclidean distances as cluster- 

ng method (more theoretically sound than K-modes). In the next 

ection, we will show the effectiveness of these guidelines via a 

omparison with other approaches present in the literature. 

.3. Comparison with the literature 

In this section, we compare the proposed approach with some 

ther distance-based clustering approaches. We tried to include 

n our analysis different methods, ranging from classic approaches 

like Hierarchical Methods or K-medoids) up to more complex and 

ecent schemes (like kernel methods or density-based approaches). 

e also provided a comparison with standard Random Forest- 

ased clustering schemes [17–19,35] . Please note that, since these 

ethods require in input a vectorial representation, we had to de- 

ive a feature space from the dissimilarity matrix, which is ob- 

ained in this case with the classical Multidimensional Scaling. All 

hese competitors, together with the implementation details, are 

escribed in Section 3 of the supplementary material, together 

ith a summarizing critical diagram. 

For the proposed approach, we propose a rule to automatically 

elect the best result among the 30 results obtained in the 30 repe- 

itions. In particular, similarly to what is done with classic K-means 

lustering [36] , we keep the clustering which leads to the low- 

st value of the optimization function of the last step (ensemble 

lustering). Actually, even if using different distances (the squared 

uclidean distance, the KL divergence or the Hamming distance) 

nd different representatives (the mean or the mode), all the four 

lustering schemes minimize the sum of the distances of the ob- 

ects assigned to each cluster to the relative representative, and 

his value can be used, similarly to the general K-means case [36] , 

o select in a completely automatic way the best result among a 

et of repetitions. 

Tables 4 and 5 present the comparative analysis; the row “Dis- 

FC(G)” contains the results of the proposed approach, using the 

ariant obtained with the “guidelines” version presented in the 

revious section. In bold, we put the best result among all ap- 

roaches for each dataset. For completeness, in the last row (“Dis- 

FC”) we also report the result obtained by the best variant of 

he proposed approach in each dataset. Results are very promis- 

ng. In 8 cases over 12 our approach represents the best choice, 

ith some remarkable improvements. In 3 of the remaining 4 

ases (ChickenPieces, Newsgroups and TwoPendigits) it still ranks 

ery well among the 20 methods. Only in the FlowCyto1 prob- 

em it is not very adequate, being outperformed by several meth- 

ds. However, this represents a very difficult problem, with very 

ow ARIs, and we probably need a more careful tuning of the pa- 

ameters to get better results. This can be confirmed by consid- 

ring the best variant of our approach (reported in the last row 

“DisRFC”), which outperforms all the competitors in the Flow- 

yto1 dataset as well as in the ChickenPieces and TwoPendigits 

roblems. 
8 
. Conclusions 

In this paper we presented DisRFC, the first dissimilarity-based 

andom Forest clustering approach that works only with dissim- 

larities. The approach is based on the definition of an Unsuper- 

ised Dissimilarity Random Forest, a novel variant of RF intro- 

uced in this paper, used to embed the objects in a binary space 

here we obtain the clustering with a K-means style algorithm. 

e empirically evaluate the proposed scheme using 12 dissimilar- 

ties datasets, with promising results, also in comparison with al- 

ernative approaches. This approach can be further extended and 

xploited in different ways: for example, we aim at defining alter- 

ative clustering strategies in the binary space, possibly deriving 

heoretical guarantees about the ensemble learning criterion op- 

imized. Moreover, it would be interesting to study how the ap- 

roach can be extended to multiview clustering, i.e. to clustering 

ith more than one dissimilarity matrix. Finally, we aim at inves- 

igating how the proposed UD-RF can be exploited also in some 

ther non-vectorial unsupervised scenarios, like for example unsu- 

ervised outlier detection. 
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