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Abstract Acquisition, classification, and analysis of seismic data are crucial tasks
in volcano monitoring. The large number of seismic signals that are continuously
acquired during the first monitoring stage poses a huge challenge for the human
experts that must classify and analyze them. Several automatic classification systems
have been proposed in the literature to alleviate such an overwhelming workload,
each one characterized by different levels of accuracy, computational complexity, and
interpretability. Considering this last perspective, which represents one of the recent
key issues in geoscience, it is possible to find many accurate methods (in terms of
classification accuracy) which however represent black boxes, not permitting a clear
interpretation. On the other hand, there are other approaches, such as those based on
support vectormachines (SVM), random forests (RF), andK-nearest neighbor (KNN),
which permit the interpretation of results, rules, and models at different levels. Among
these last techniques, KNN approaches for volcanic signal classification typically do
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not achieve the satisfactory classification results obtained with RF and SVM. One
possible reason is that in this context, the KNN rule has usually been applied in its
basic version, not exploiting the different advanced KNN variants that have been intro-
duced in recent years. This paper takes one step along this direction, investigating the
suitability of a number of advanced versions of the KNN rule for the problem of clas-
sifying seismic-volcanic signals. The usefulness of these rules, in comparison with
the original KNN rule as well as other interpretable classifiers, is evaluated within a
real-world scenario involving a five-class dataset of seismic signals acquired at the
Nevado del Ruiz volcano, Colombia. The results show that the classification accuracy
of basic KNN is largely improved by these advanced variants, even surpassing that
obtained with other classifiers like RF and SVM.

Keywords Advanced KNN rules ·Automatic classification · Interpretability · Pattern
recognition · Seismic-volcanic signals

1 Introduction

Over the past few decades, the geosciences have experienced a remarkable transition
from a scarcity of data to a richness of data availability (Karpatne et al. 2018). Such a
change hasmainly been produced by the advances in acquisition tools—particularly in
both sensor technology and telecommunication networks—which, in turn, have either
taken advantage of or pushed forward the developments in data storage and computa-
tion. As a result, geoscientists are increasingly required to incorporate computer-based
data analysis methods into their practices, which facilitate the processing of large
amounts of data while also revealing patterns that would not likely be discovered by
other means. Among the data analysis methods, those involving pattern recognition
and machine learning (Bishop 2006) have been particularly useful for at least partially
automating demanding tasks such as the classification of geophysical events that are
typically registered as finely sampled data streams.

Volcano monitoring includes a par excellence case of the abovementioned demand-
ing tasks, namely the classification of seismic-volcanic signals into a number of
predefined categories. This task exhibits a streaming nature because data from seis-
mometers continuously arrive via telemetry to the volcano observatories. It is also
finely sampled because signals are generally acquired at a rate of hundreds of sam-
ples per second and using several strategically located triaxial sensors. The amount of
data to be processed is, therefore, huge and always growing. Moreover, distinguishing
among the different classes of seismic signals is not easy even for themost experienced
analysts.

Several classification approaches have been used for seismic-volcanic signal dis-
crimination, based on different representations and/or different classifiers—see the
reviews inOrozco-Alzate et al. (2012),Malfante et al. (2018), andCarniel andGuzmán
(2020). However, classification accuracy is not the only interesting criterion that can
be used to judge a seismic classification system: actually, according to Karpatne et al.
(2018), interpretability is a fundamental goal in geosciences. Interpretable methods
are preferable, since they increase the confidence of the experts in automatic sys-
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tems, allowing them to understand the reasons behind classifier outcomes and, in
general, provide additional knowledge which may be of crucial importance for under-
standing seismic activity (Bicego et al. 2015). In Kostorz (2021), the importance of
interpretable results in the geosciences is highlighted by saying that, when lacking
explainable results—particularly regarding the errors—the classification models are
expected to be accurate, rather than trusted. Again, Karpatne et al. 2018 suggest that
transparent methods are preferred in most geoscience applications. Further, according
to Talebi et al. (2020), interpretability belongs to the five minimum criteria which are
required for machine learning methods applied to geosciences (the others are trans-
parency, accuracy, credibility, and physical realism). All these arguments are well
aligned with a recent trend which is growing in importance inside the artificial intel-
ligence community and related fields, variously referred to as explainable artificial
intelligence, interpretable or understandable machine learning, and so on (Adadi and
Berrada 2018). Disregarding the particular adjective that is used, the common moti-
vation in this counter-trend is giving importance not just to the assigned class label
(the “what”) but also to the reason for the assignment (the “why”). The former is
sought to build accurate classifiers; the second enables an enhanced understanding of
the phenomena as well as the algorithms themselves.

From this perspective, approaches to seismic-volcanic signal classification can
be divided into two classes: approaches which do not have clear mechanisms of
interpretability, such as those based on hidden Markov models (Bicego et al. 2013;
Trujillo-Castrillón et al. 2018), Gaussian mixtures (Venegas et al. 2019), adaptive
ensembles (Castro-Cabrera et al. 2021), and in particular artificial neural networks
(Titos et al. 2018, 2019; Canário et al. 2020; Grijalva et al. 2021), and systems which
permit interpretability. This latter class contains all those approaches based on support
vector machines (SVM) (Lara-Cueva et al. 2016, 2017; Curilem et al. 2019; Peréz
et al. 2020), decision trees/random forests (RF) (Lara-Cueva et al. 2016; Peréz et al.
2020), and K-nearest neighbor (Cárdenas-Peña et al. 2013; Castro-Cabrera et al. 2014;
Orozco-Alzate et al. 2019b; Peréz et al. 2020), which permit, at different levels, the
interpretation of results, rules, and models.

This paper is focused on the last method, namely, the nearest neighbor rule (NN)
and its generalized version: K-nearest neighbor (KNN) (Cover and Hart 1967). This
method implements an easy and human-understandable rule: in the NN rule, a test
signal is assigned to the class of the signal in the training set which is most similar to
it. More generally, the KNN assigns an object to the most frequent class among the K
objects of the training set that are nearest to the test object (that is, K = 1 in the NN
rule). This classifier, applied in many contexts due to its simplicity and flexibility, has
also been widely studied from a theoretical perspective, for example, in asymptotic
behaviors (Fukanaga 1990); further, it has been extended in different ways, such as
by modifying the set of training objects (Triguero et al. 2012), dealing with high-
dimensional spaces (Pal et al. 2016), weighting the different objects of the training set
(Bicego and Loog 2016), or modifying the dissimilarities (Wang et al. 2007; Lopes
and Ribeiro 2015; Orozco-Alzate et al. 2019a; Bicego and Orozco-Alzate 2020).

It is important to observe that in the specific context of seismic-volcanic signal
classification, KNN approaches typically do not reach the satisfactory classification
results obtained with RF and SVM. One possible reason is that in this field, the KNN
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rule has usually been applied in its basic version (Castro-Cabrera et al. 2014; Peréz et al.
2020; Orozco-Alzate et al. 2019b); however, it is reasonable to expect improvements
using more advanced versions, which have never been investigated in this field. This
respresents the main goal of this manuscript. In particular, this paper addresses the
question of whether some advanced versions of the KNN rule are suitable for the
classification of seismic signals, permitting one to reach or exceed the accuracy of
other interpretable techniques such as SVM or RF.

Five variants are investigated: twowell-established rules, the adaptive nearest neigh-
bor (ANN) (Wang et al. 2007) and the hypersphere classifier (HC) (Lopes and Ribeiro
2015); their two very recent variants, the ANN-HC interpolation (Orozco-Alzate et al.
2019a) and the PowerHC rule (Bicego and Orozco-Alzate 2020); and a new variant
which is introduced here in this paper. The empirical evaluation is based on a dataset
containing more than 1,000 volcanic earthquakes, collected at Nevado del Ruiz vol-
cano in Colombia and encompassing five classes of volcanic activity: long-period (LP)
events, screw-like (TO) earthquakes, volcano tectonic (VT) events, volcanic tremors
(TR), and hybrid (HB) seismic events (Chouet and Matoza 2013). We will show that
the classification accuracies of KNN are largely improved by its advanced variants,
becoming better than those obtained with other classifiers such as RF and SVM.

The rest of the paper is organized as follows. The steps for a seismic signal classi-
fication system are explained in Sect. 2. Afterwards, the investigated variants of KNN
are presented in Sect. 3. In Sect. 4, the experiments are shown. Finally, concluding
remarks are given in Sect. 5.

2 The Basic Pipeline for Seismic Signal Classification

This section introduces the steps of the classification system used in the study, which is
based on the standard KNN approach. The advanced variants investigated to improve
the performances of the basic version are provided in the next section.

2.1 Representation and Dissimilarities

Continuous recordings acquired by the volcano observatories follow the nature of
multichannel time series. Each channel may correspond to either a recording station
or an acquisition axis from a single sensor. From the raw seismic recordings, digital
signals are extracted by detecting the beginning and end of individual seismic events—
for the precise implementation details, see the experimental section. As commonly
done in this field (Castro-Cabrera et al. 2014; Orozco-Alzate et al. 2015), signals were
represented using a windowed fast Fourier transform (FFT); that is, an FFT-based
spectrogram. From the spectrograms, two distances have been derived: (i) the first is
the Euclidean distance computed between averaged spectrograms (that is, the average
of all FFT frames along time); (ii) the second works directly on the spectrograms
and is based on the dynamic time warping (DTW) distance (Wang et al. 2013). The
DTW distance is an elastic dissimilarity measure, suitable for comparing seismic
signals since it is able to deal with different lengths; moreover, among the collection
of available elastic measures, the DTW distance is still considered the par excellence
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(a)

(b)

Fig. 1 Visual explanation of the proposed scheme for computing distances between volcanic signals: (top)
with Euclidean distance, (bottom) with DTW distance

option to compare time series (Wang et al. 2013). The following subsection briefly
summarizes this distance and its extension to spectrograms.

A visual explanation of the scheme used to compute the distance is reported in
Fig. 1 for the Euclidean (part (a)) and for the DTW (part (b)) distances. In the for-
mer case, the signal s1 is encoded with a windowed FFT (with F bands), then the t1
frames are averaged to get the averaged spectrogramm1; in the sameway the averaged
spectrogram m2 of the second signal s2 is obtained by averaging the t2 frames of the
windowed FFT of s2; finally, the distance is computed using the Euclidean formula
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between m1 andm2. In the DTW case, there is no average, and the distance is directly
computed on the spectrograms, x1 and x2. Notice that even though the signals may
have different durations, their impact on the computation of the averaged spectro-
gram reduces to the average values estimated with moderately different sample sizes;
therefore, this effect can be safely neglected if no extremely short-duration events are
included in the dataset. Similarly, even though an accurate segmentation is not always
guaranteed, the coda signals are low-energy portions that do not contribute much to
modify the average unless they are extremely long.

2.1.1 The DTW Measure

Consider two seismic signals A = {a1, . . . , an} and B = {b1, . . . , bm} to be compared.
The DTW measure computes the minimum cost to align A and B. In the first step,
a matrix D ∈ R

n×m is built, where Di, j = d(ai , b j ). Typically, d(·, ·) is chosen as
(ai − b j )

2. The matrix D is then explored from the upper-left corner to the bottom-
right one, by looking for a path that minimizes its cost: the sum of the traversed
entries. At the end, the DTW distance between A and B corresponds to the square
root of the path with minimum cost. This optimization problem is typically solved
by dynamic programming1 and only exploring a corridor around the pseudo-diagonal
of the matrix; see Algorithm 1 for further implementation details, which is based on
the DTW pseudo-code presented by Lin et al. (2012). The basic version of the DTW
distance can also be extended for the comparison of spectrograms by just computing
the entries of the matrix as the norm between spectrogram slices, that is: ||ai −b j ||. In
this case, both ai and b j have as many entries as frequency bands used for computing
the Fourier transform.

Algorithm 1 Computation by dynamic programming of the DTW distance between
two signals A = {a1, . . . , an} and B = {b1, . . . , bm}
1: Di, j ← 0, ∀i, j � Initialize D ∈ R

n×m

2: for i = 1, . . . , n do
3: for j = 1, . . . ,m do
4: Di, j ← d(ai , b j ) + min

(
Di−1, j , Di, j−1, Di−1, j−1

)

5: end for
6: end for
7: return Dn,m � Dynamic programming leaves the minimum cost of the alignment in the bottom-right

corner of D

2.2 Classification

Consider the following notation given a distance measure d(·, ·) to be used by the
KNN classifier: (i) x denotes the test object; (ii) {xi }, (with 1 ≤ i ≤ N ), is the

1 The code is available at https://www.mathworks.com/matlabcentral/fileexchange/43156-dynamic-time-
warping-dtw.
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training set which contains N labelled patterns; (iii) let yi denote the label of the i-th
object (1 ≤ i ≤ N ) such that, given a problem with C classes, yi takes values in
the set {1, . . . ,C}; and (iv) let neighK (x) = {n1, . . . ,nK } be a set that contains the
K training objects which, according to d(·, ·), are at the minimum distance from x
and whose corresponding labels are {yn1 , . . . , ynK }. According to the above-described
notation, the original KNN approach classifies x as belonging to the class ĉ which is
more frequent in the set of neighK (x); that is,

x ←− argmax
c

∣
∣{ni : yni = c}∣∣ , (1)

where | · | indicates the cardinality of a set. When K = 1, this turns out to be the NN
rule, which assigns the test object x to the class of its nearest neighbor

x ←− yn1 , (2)

where n1 is the object j , such that j = argmin1≤i≤N d(x, xi ).

3 Advanced KNN Classification

Five different variants of the classic KNN rule are investigated, all based on the
exploitation of the concept of the radius of a given training point xi , which repre-
sents the radius of the largest hypersphere having as its center xi and not containing
any training object coming from a different class. The value of ri , which measures the
dissimilarity from the nearest training object of xi coming from a different class, is
defined as

ri = min
x j∈OT (xi )

d(xi , x j ), (3)

with
OT(xi ) = {xk such that yk �= yi }. (4)

The idea of all the investigated variants is to use the radii to correct the distance
between the test point x and all training points xi , such that points with large radii
(that is, points well inside their class) become closer to the test object. Once given the
correction, the final classification is performed using the standardKNN technique. The
idea is that points well inside their class—which reasonably represent good exemplars
of that class—should be more important for the classification of x.

The correction can be implemented in different ways, as explained in the following:

1. ANN: the adaptive nearest neighbor rule (Wang et al. 2007). This was the first
introduced rule of this family of variants,which performs the correction by dividing
the distance by the radius

dANN(x, xi ) = d(x, xi )
ri

. (5)
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2. HC: the hypersphere classifier rule (Lopes and Ribeiro 2015). In this rule, the
idea is also to reduce the distance from points with large radius; however, here the
reduction is performed with a subtraction

dHC(x, xi ) = d(x, xi ) − ri . (6)

Note that Eq. (6) may return negative distances if the training object xi is nearer
to the test object x than to a training object of another class. However, this does
not represent a problem when using the KNN rule, since this technique is based
on ranking.

3. Interp: This variant starts from the observation that the behavior of the corrections
in Eqs. (5) and (6) is rather different, since the penalization of the distance is
much stronger in the first rule (ratio versus difference). Moreover, the correction
inEq. (5), in contrast to the one inEq. (6), does not generate negative values butmay
diverge if ri → 0, leading to numerical inaccuracies. To keep the best variant, very
recently a combination of the two was proposed in Orozco-Alzate et al. (2019a).
Different rules were proposed to induce a smooth transition between them; here,
the following one is used, which turned out to be the best in the above-cited paper
by Orozco-Alzate et al. (2019a)

dInt(x, xi ) = (1 − λ)d(x, xi )

(ri + √
λ)

+ λ(d(x, xi ) − ri ), (7)

where the parameter λ measures the importance of each variant (the HC rule
corresponds to λ = 1, whereas the ANN rule is obtained with λ = 0).

4. NormInterp: This represents a variant of the Interp rule introduced in this paper, in
which each component of the convex combination is normalized before combining
them.

dNInt(x, xi ) = (1 − λ)d(x, xi )
z1ri

+ λ(d(x, xi ) − ri )

z2
, (8)

where

z1 = max
i j

d(x j , xi )
ri

z2 = max
i j

(d(x j , xi ) − ri ).

The main idea of this approach is that the HC- and ANN-corrected distances
may be very different in terms of magnitude so that one of the two can dominate
the integration; performing a normalization before interpolating may reduce this
effect.

5. PowerHC:This represents a very recent variant of theHC rule introduced inBicego
and Orozco-Alzate (2020). The starting point, as shown in Orozco-Alzate et al.
(2019a), is that the ANN rule can be seen as equivalent to the application of the HC
rule to the logarithm of the original distances; that is, to the distances which are
nonlinearly scaled. Nonlinear scaling of feature spaces and distances was recently
shown to represent a powerful way to enhance discriminability (Duin et al. 2014;
Bicego andBaldo 2016;Orozco-Alzate et al. 2016). Inmore detail, in the PowerHC
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rule the distances are normalized with a power transformation before applying the
HC rule

dPow(x, xi ) = d(x, xi )ρ − rρ
i , (9)

ρ is a parameter that must be set in advance, which drives the strength of the
nonlinear correction.

3.1 Properties

All these variants are based on the idea that it may be beneficial to correct the distance
of the test object from a given training object by considering the so-called quality of
such training object. The quality is measured by its radius, that is, by its distance from
the nearest point of another class.

Even if these corrections have been shown to be beneficial inmany cases (Wang et al.
2007; Lopes and Ribeiro 2015; Orozco-Alzate et al. 2019a; Bicego andOrozco-Alzate
2020), there are still some situations in which they may not lead to an improvement
(Orozco-Alzate et al. 2019a). A possible explanation is that these approaches exploit in
a deeperway the information contained in the dissimilaritymeasure;when thismeasure
is not appropriate for the context at hand, the result can be wrong. In this sense, when
using these KNN variants, it is even more fundamental than in the basic case to choose
a reasonable distance measure: this will be evident also in the experimental session,
where the improvements obtained with the DTW distance are definitely larger than
those obtained with the Euclidean one.

Concerning the different variants, it is important to observe that for the first two
methods (ANN and HC), there are no parameters to set; this represents an important
feature of ANN and HC. The remaining ones have one tunable parameter: λ for Interp
and NormInterp, and ρ for PowerHC. In general, setting these parameters may be
critical, and may lead to different results. However, some suggestions on how to set
them can be found in Orozco-Alzate et al. (2019a) and Bicego and Orozco-Alzate
(2020); in particular, according to Orozco-Alzate et al. (2019a), good values for λ can
be found in the range of 0.1 to 0.3; concerning ρ, in Bicego and Orozco-Alzate (2020),
the authors propose to set it via cross validation, showing that the obtained value is
very close to the optimal one.

A final comment on the computational overhead introduced by the advanced vari-
ants: it is important to observe that the variants introduce a correction of the distances;
after the correction, the classifier works as the classic KNN. All the corrections are
based on fast mathematical operations, and the only overhead is the computation of
the radius of each training point, which requires the computation of the nearest point
of a different class. However, this computation can be done only once (offline) and
stored for all the objects in the training set.

4 Experiments and Discussion

In this section, the experimental evaluation is presented. First, the dataset and the details
of the experiments are introduced; subsequently, a visual intuition of the effects of the
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correction of the distance is provided, followed by results and discussion concerning
the different variants. Finally, a comparison of the proposed scheme with alternative
state-of-the-art interpretable methods is reported.

4.1 Experimental Details

The methods were tested on a set of signals collected by the Volcanological and
Seismological Observatory of Manizales (OVSM by its acronym in Spanish) from
Servicio Geológico Colombiano (SGC). In particular, the signals used in this study are
related to Nevado del Ruiz volcano, the most active volcano in the northern volcanic
segment of Colombia; in the last 30 years, this volcano has erupted several times.
The signals used in this paper were gathered during the period from January 2010
to September 2013 from the BIS station. They belong to five classes, representing
the most common seismic events related to volcanoes: volcano tectonic (VT) events,
long-period (LP) events, volcanic tremors (TR), hybrid (HB) events and screw-like
(TO) earthquakes. In particular, there are 153 VT events, 333 LP events, 224 TR
events, 251 HB events, and 104 TO events, for a total of 1,065 signals. According to
Trombley (2006), VT events have an abrupt start, exhibit a relatively high dominant
frequency (e.g., 5 Hz), and are associated with rock fracture; LP events—in contrast to
VT events—are lower in frequency (e.g., 3 Hz) and are associated with magma or gas
flow; TR events can be understood as long and sustained LP quakes, and HB events
correspond to a mixture or superposition of VT and LP quakes. The abovementioned
frequency ranges for VT and LP events are typical but may vary from volcano to
volcano, since they depend on particular properties such as the type of rock and the
length or shape of the volcanic conduits. TO events also exhibit low frequencies but
are mainly characterized by a quasi-monochromatic spectrum and low exponential
amplitude decay, resembling thereby a screw shape. Representative signals per class,
along with their corresponding spectrograms, are shown in Fig. 2.

Seismic sensors deliver three components (vertical, north-south, east-west): as com-
monly done in the seismic community, only the vertical signal is considered.2 The
signals were acquired at 100 Hz; before being segmented, they were quantized with
a 16-bit analog-to-digital converter; therefore, their amplitudes may cover the range
± 32,768. The segmentation was performed either automatically, with the so-called
STA/LTAalgorithm, ormanually, depending on the events. As done in (Castro-Cabrera
et al. 2014; Orozco-Alzate et al. 2015), signals are represented with spectrograms with
a 128-point FFT (overlap 50%), smoothing each frame with a 64-point Hamming win-
dow.

In order to also have a vectorial representation, for each signal, the averaged spectro-
gram was computed. Two different distances were considered: the Euclidean distance
between the averaged spectrograms, and the DTWdistance between the spectrograms.
The distances were normalized so that the maximum distance is 1: normalization has
no effect on the NN rule (since this rule is based on the ranking, which remains

2 However, it was very recently shown that the integration of the three components can be very useful
(Orozco-Alzate et al. 2019b).
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Fig. 2 Sample signals, one per class of seismic event, from the set of signals collected at Nevado del Ruiz
volcano, Colombia. Their associated spectrograms are shown on the right side

unaltered when scaling the distance), but can have important consequences on its
variants, as discussed in Bicego and Orozco-Alzate (2020). The normalized distances
represent the input for the KNN technique and all its variants. Concerning Interp and
NormInterp, the parameter λ was varied between 0 and 1 in steps of 0.05, choosing
the value that minimized the classification error. In the PowerHC case, as done in
Bicego and Orozco-Alzate (2020), the parameter ρ was varied between 0.2 and 10
with step 0.2, choosing again the value leading to the minimum error. Classification
errors were computed using the classic Leave-One-Out (LOO) cross-validation pro-
cedure (Bramer 2016): within this protocol, the system is trained with all the signals
except one, which is then used for testing. The procedure is iteratively repeated by
leaving out at every iteration a different object, until all signals have been tested.

4.2 A Visual Explanation of the Methods

This section provides some evidence of the mechanisms behind the NN variants. The
starting point is observing that all the considered variants are based on the concept of
correcting the distance between the test object and a given training object using the
radius: the goal is to push points that are not well inside their class (that is, those with
a low radius) far away from the test point.

To show this mechanism, a test object is selected together with another 20 points:
the first 10 are the 10 nearest neighbors according to the original distance, whereas
the second 10 are the 10 nearest neighbors according to the corrected distance (in
this example the ANN version was used with the Euclidean distance computed on the
averaged spectrograms). These 21 points (20 neighbors plus the test point) were then
projected on a two-dimensional space using multidimensional scaling (Cox and Cox
1994), visualizing them in the resulting vectorial space. The obtained plots are shown
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Fig. 3 Visual interpretation of the effect of the distance correction (ANN variant). Top plots: MDS spaces,
Bottom plots: test signal plus three neighbors

in Fig. 3 (top part), for the original distance (left) and for the corrected one (right).
The bottom part also displays the test signal together with its three nearest neighbors,
according to the original distance (left) and to the corrected one (right). The top part of
the image shows that the test object (square), which is from the LP class, is incorrectly
assigned to the HB class by the KNN rule for K = 1, 2 or 3. Actually, two of the
nearest training signals (displayed in the bottom plot) belong to the HB class (circles in
the plot). However, these signals are not well inside the HB class, thus they have a low
radius. When correcting the distance with the ANN rule, such signals are pushed away
from the test objects (together with the other points with low radius), whereas points
well inside their class (triangles in this case) are made closer. After this correction, all
the closest neighbors (displayed in the bottom-right plot) are from the LP class.
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Table 1 LOO errors for the
original and advanced NN rules,
using both the Euclidean and the
DTW distances

Method Euclidean DTW

Orig 0.2385 0.2582

ANN 0.1399 0.1484

HC 0.1408 0.1362

Interp 0.1399 0.1286

NormInterp 0.1390 0.1362

PowerHC 0.1371 0.1211

4.3 Analysis of the Different Variants

In this section, the classification accuracies obtained with the different variants are
compared to the original version of the KNN classifier. Results and comments are
reported for both the NN rule (K = 1) and the general KNN.

4.3.1 Nearest Neighbor Results

As a first analysis, Table 1 shows the LOO errors obtained using NN with both the
Euclidean and the DTW distances. For a deeper insight, the corresponding confusion
matrices are also reported in Table 2. For every confusion matrix, the true labels are
on the rows, whereas the assigned labels are on the columns. The different classes
are represented in this order: 1 HB, 2 LP, 3 TO, 4 TR, and 5 VT. NN was used with
the original distance (Orig) and with the five variants (ANN, HC, Interp, NormInterp,
PowerHC).

Different observations can be derived from Table 1. First, notice that all the variants
drastically improve the original NN, in most of the cases with an improvement which
is larger than 0.1. This confirms the intuition behind this paper: variants of NN can
drastically improve the performance of NN, driving this interpretable tool to the levels
of alternative high complex interpretable classifiers such as SVM and RF (see the next
section for a deeper analysis). It is important to note that the improvements obtained in
this scenario are drastically larger than those obtained in other classification scenarios,
such as those presented in Wang et al. (2007), Lopes and Ribeiro (2015), and Orozco-
Alzate et al. (2019a), suggesting that their exploitation can be very beneficial in the
specific field of classification of volcanic seismic events.

Second, the behaviorwith the twodistances is different:with theEuclidean distance,
the error with the original NN is lower than with the DTW distance. However, when
using the variants, the improvement is larger with DTW, reaching in the best case (the
PowerHC variant) a remarkable difference of 0.137 (from 0.2582 to 0.1211). This
confirms the intuitions provided at the end of Sect. 3: the variants exploit in a deeper
way the information contained in the distance, and more sophisticated measures (such
as the DTW) may permit one to reach better results.

Third, concerning the variants, there is not a great difference between them when
using the Euclidean distance: ANN, HC, and their combinations/improvements all
remain on the same level, with a slight decrease in the error when going to more
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Table 2 Confusion matrices of the different methods with the Nearest Neighbor rule

Method Euclidean DTW

Orig 154 91 5 8 9 142 68 15 34 13

69 220 13 3 0 102 252 9 6 3

6 7 82 0 0 2 12 78 2 0

14 15 4 212 1 0 0 0 181 0

8 0 0 1 143 5 1 2 1 137

ANN 183 46 7 7 2 164 26 9 0 2

46 276 6 0 0 59 280 2 1 0

6 2 90 1 0 6 13 90 0 1

8 8 1 216 0 12 11 3 223 0

8 1 0 0 151 10 3 0 0 150

HC 183 46 7 7 2 169 28 9 0 3

47 276 7 0 0 60 290 3 2 0

5 2 89 1 0 7 6 90 1 0

8 8 1 216 0 8 7 2 221 0

8 1 0 0 151 7 2 0 0 150

Interp 183 46 7 7 2 177 36 8 0 2

46 276 6 0 0 55 288 4 1 1

6 2 90 1 0 8 6 92 1 1

8 8 1 216 0 0 3 0 222 0

8 1 0 0 151 11 0 0 0 149

NormInterp 184 46 7 7 2 168 28 9 0 3

45 276 6 0 0 61 290 3 2 0

6 2 90 1 0 6 6 90 0 0

8 8 1 216 0 8 7 2 222 0

8 1 0 0 151 8 2 0 0 150

PowerHC 185 44 7 7 1 180 27 9 3 3

46 278 7 0 0 54 297 3 1 0

5 2 89 1 1 6 5 91 2 0

8 8 1 216 0 4 4 1 218 0

7 1 0 0 151 7 0 0 0 150

For each confusion matrix: true labels are on rows, whereas assigned labels are in the columns, for the
different classes. The classes are: 1: HB, 2: LP, 3: TO, 4: TR, 5: VT

complex variants (such as NormInterp and PowerHC). When using DTW, on the
contrary, there is a clearer trend: the decrease in the error when using complex variants
is more relevant.

A final comment can be derived from the confusion matrices reported in Table 2:
notice that most of the errors are between the classes LP (long period) and HB (hybrid
events), this being in line with findings in the literature (Trombley 2006). These errors
are less evident when using the advanced KNN variants. On the contrary, the easiest
pair of classes to be discriminated are the last two, namely, TR (volcanic tremors) and
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(a)

(b)

Fig. 4 LOO errors when varying the parameter K of the KNN for: a Euclidean distance and b DTW
distance

VT (volcano tectonic). In this case, very few wrong assignments are found even for
the basic NN rule.

4.3.2 KNN Results

To gain a deeper understanding of the analyzed methods, the previous analysis was
repeated while using KNN, varying K from 1 to 30 (step 2). LOO errors are shown in
Fig. 4a, b for the Euclidean distance and the DTW distance, respectively.

In the Euclidean case, notice that the errors of the variants drastically increase when
increasing K, becoming approximately on the same level of the error with the original
distance. The behavior with the DTW distance is more interesting; also, in this case,
there is a worsening of the performances with larger values of K, but the difference
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Table 3 Results with the KNN
rule, for a the Euclidean distance
and b the DTW distance

Method Euclidean
Average Best

(a)

Orig 0.2421 (3.60e−04) 0.2207 (3)

ANN 0.2371 (1.04e−03) 0.1399 (1)

HC 0.2302 (9.84e−04) 0.1408 (1)

Interp 0.2235 (9.11e−04) 0.1399 (1)

NormInterp 0.2279 (9.64e−04) 0.1390 (1)

PowerHC 0.2243 (9.08e−04) 0.1371 (1)

Method DTW
Average Best

(b)

Orig 0.2516 (3.95e−04) 0.2282 (4)

ANN 0.2093 (9.79e−04) 0.1484 (1)

HC 0.1671 (5.23e−04) 0.1362 (1)

Interp 0.1503 (4.86e−04) 0.1268 (3)

NormInterp 0.1658 (5.28e−04) 0.1352 (2)

PowerHC 0.1477 (5.04e−04) 0.1202 (2)

Reported results are the average
among all K (first column,
between brackets the standard
error of the mean) and with the
best K (second column, the best
K is between brackets)

with the original version remains significant. In this second case, advanced rules such
those introduced inOrozco-Alzate et al. (2019a) andBicego andOrozco-Alzate (2020)
represent the best choice, significantly outperforming the original rule as well as the
less recent variants such as ANN and HC. To confirm numerically, the best and the
average errors among the different values of K of the different techniques are reported
in Table 3. It can be seen that, on average, variants outperform the original rule, with a
remarkable improvement for the DTW distance. Note that in this case, due to a lack of
space, the confusion matrices are not reported; however, those matrices showed trends
similar to those shown in Table 2.

The best number of neighbors is a trade-off between the local and global consider-
ations for the decision. A too large number of neighbors turns KNN into the nearest
mean classifier (thereby, a global decision is made) while, in contrast, the one-nearest
neighbor rule (that is, KNN with K = 1) assigns the label by using a local criterion.
Even though the best number of neighbors is highly dependent on the nature of the
dataset, we may say that in complex real-world problems, it is generally expected that
taking decisions based on local information is preferred over doing so by taking into
account global behaviors. Moreover, the fact of confirming that the best value for K
is a small one reveals that classes in the representation space tend to be non-compact
or sparse, either due to the intrinsic complexity of the problem itself or because of a
small sample size.

To enable a deeper comparison between the standard KNN approach and the
advanced variants, a further test is performed. In particular, the test is aimed at compar-
ing the “averaged confidence” of the decisions in the different cases. The confidence
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represents how confident the classifier is in assigning a label; for example, in a binary
classification problem, with K = 10, if all the first 10 neighbors are from the same
class, then the classifier is very sure about the decision, whereas if only six of them
are from the same class and the remaining four are from the other, the classifier is
less confident in the classification. To quantify this, the “confidence” c(x) of KNN on
the decision for an object x is defined here as the number of neighbors, among the K
nearest ones, with the label equal to the assigned one

c(x) = |{ni : yni = KNN(x)}|
K

, (10)

whereKNN(x) is the label assigned byKNN to x using the rule defined inEq. (1). In the
above example, the decision on the first object has a confidence of 1 (10/10), whereas
the one on the second has a confidence of 0.6 (6/10). Given this definition, it is possible
to compute the averaged confidence c̃({xi }) of a set of objects {xi } as the average of
the confidence c(xi ) on the decision of every single object in the set {xi }. Figure 5
reports the averaged confidences obtained in the experiments, varying K , for the basic
KNN and for the variants. In particular, plot (a) reports the behavior for the Euclidean
distance, whereas part (b) is devoted to the DTW distance. The plots do not report the
value for K = 1 since, in that case, the confidence is 1 for all methods by definition.
From the plots it is evident that the advanced variants have larger confidence values
than the original KNN, this being valid for both distances. By correcting the distance,
the classifier is more sure about the classification. Further, it can be observed that all
variants perform similarly with the Euclidean distance, whereas for the DTW, Interp
and PowerHC perform better. This confirms the observations made for the accuracy
plots in Fig. 4.

4.4 Comparison with Alternative Interpretable Approaches

In this section, the proposed schemes are compared with some alternative approaches,
based on interpretable techniques appearing in the seismic literature. In particular,
following the same evaluation protocol described in Sect. 4.1, LOO errors and the
corresponding confusion matrices were computed for a set of recent classification
approaches based on KNN (Cárdenas-Peña et al. 2013; Castro-Cabrera et al. 2014;
Peréz et al. 2020; Orozco-Alzate et al. 2019b), SVM (Lara-Cueva et al. 2016, 2017;
Curilem et al. 2019; Peréz et al. 2020), and RF (Lara-Cueva et al. 2016; Peréz et al.
2020). For every approach, the setting indicated in the most recent paper which pro-
vided an empirical evaluation on it was used. All the classifiers were applied to the
averaged spectrograms; as is often done for kernel machines, a classic z-score stan-
dardization was performed before applying SVM classifiers. Specifically, for KNN,
the version introduced in the very recent study by Peréz et al. (2020) was adopted,
which uses the Euclidean distance and finds the optimal value of K in the range [1,20]
via a 10-fold cross validation on the training set. Then, three versions of SVM were
used: with linear (SVMlin), polynomial (SVMpoly), and radial basis function (SVM-
rbf) kernels. Again following the suggestions in Peréz et al. (2020), the parameter
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(a)

(b)

Fig. 5 Averaged confidence in the decision when varying the parameter K of the KNN for a Euclidean
distance and b DTW distance

C (the cost) of the SVM was chosen via a 10-fold cross validation method on the
training set, within a range from 10−4 to 104 (increasing by a factor of 10). The other
parameters of the kernels were set as the default values in WEKA software (again
following Peréz et al. 2020). Finally, the RF classifier was also employed. In this case,
again following Peréz et al. (2020), the optimal number of trees was found using a
10-fold cross validation on the training set, selecting the number in the range of 100
to 1,000 (with step 10).

The obtained LOO errors are shown in Table 4.
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Table 4 Comparison with alternative interpretable methods used in the volcano-seismic community

Method References LOO error

KNN Cárdenas-Peña et al. (2013),
Castro-Cabrera et al. (2014)
and Peréz et al. (2020)

0.2197

SVMlin Lara-Cueva et al. (2016) and
Peréz et al. (2020)

0.2573

SVMpoly Peréz et al. (2020) 0.1831

SVMrbf Lara-Cueva et al. (2016), Curilem
et al. (2019) and Peréz et al.
(2020)

0.1765

RF Lara-Cueva et al. (2016) and
Peréz et al. (2020)

0.1962

PowerHC with DTW This paper, cf. Table 3(b) 0.1202 (for K = 2)

The overall best result obtained with the advanced KNN approaches is included in the last row for the sake
of an easy comparison

To have a deeper analysis on the results, the corresponding confusion matrices are
also reported in Table 5.

Different observations can be derived from such tables. Firstly, these results provide
a further confirmation that RF and SVM (especially in the more flexible and sophisti-
cated version with rbf and polynomial kernels) are typically better than standard KNN
approaches in literature. Looking at results reported in Tables 1 and 3, it can also be
observed that changing the distance (e.g., DTW) seems to not be sufficient to reach the
accuracies of SVM and RF. However, when considering the advanced KNN versions,
a clear improvement can be observed. Actually, all the proposed variants show a LOO
error that is lower than those of SVMs or RF, with an improvement of 5% in the best
case (PowerHC with the DTW distance). Remarkably, a significant improvement over
the state-of-the-art is present even with the simple (and parameterless) advanced KNN
variant; that is, the ANN (or HC) with the NN rule.

5 Conclusion

This paper addressed the exploitation of advanced variants of the KNN rule in the
problem of seismic-volcanic signal classification. In particular, a number of state-of-
the-art KNN variants, based on correction of the distances, were investigated. The
KNN variants were evaluated in a challenging multi-class dataset of seismic signals
fromNevado del Ruiz volcano. These signals were represented with spectrograms and
compared with the DTW distance (computed on the spectrograms) and the Euclidean
distance (computed on the averaged spectrograms). The experiments revealed that the
KNN variants enable one to improve the original KNN rule, with a reasonably small
increase in the computational load. Further, classification accuracies were also better
than those obtained with alternative interpretable methods, such as RF or SVM. As
future work, an enrichment of the signal representation by using not just dissimilar-

123



78 Math Geosci (2023) 55:59–80

Table 5 Confusion matrices of
the different literature methods

Method Confusion matrix

KNN 165 79 7 13 8

62 231 10 3 0

4 4 84 1 0

11 19 3 207 1

9 0 0 0 144

SVMlin 124 50 8 18 1

90 244 12 5 3

5 16 78 3 1

17 13 5 197 0

15 10 1 1 148

SVMpoly 161 54 7 7 2

71 261 12 1 0

5 11 81 0 0

7 4 3 216 0

7 3 1 0 151

SVMrbf 161 55 7 6 2

70 266 8 4 0

4 7 87 1 0

8 2 1 213 1

8 3 1 0 150

RF 163 54 7 17 6

71 263 10 8 0

3 7 87 3 0

5 5 0 196 0

9 4 0 0 147

ities between spectrograms but also traditional signal features—for instance, event
duration—might be considered in either a stacked or combined classification pipeline.
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