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Abstract. In recent years there has been an increased interest in clus-
tering methods based on Random Forests, due to their flexibility and
their capability in describing data. One problem of current RF-clustering
approaches is that they are not able to directly deal with missing data,
a common scenario in many application fields (e.g. Bioinformatics): the
usual solution in this case is to pre-impute incomplete data before run-
ning standard clustering methods. In this paper we present the first Ran-
dom Forest clustering approach able to directly deal with missing data.
We start from the very recent RatioRF distance for clustering [3], which
has shown to outperform all other distance-based RF clustering schemes,
extending the framework in two directions, which allow the integration of
missing data mechanisms directly inside the clustering pipeline. Exper-
imental results, based on 6 standard UCI ML datasets, are promising,
also in comparison with some literature alternatives.

Keywords: Random Forest clustering · Missing data · Ratio RF
distance

1 Introduction

Random Forests (RFs) [6,8] represent a widely and successfully applied model for
Pattern Recognition and Machine Learning. RFs are ensembles of decision trees
[19], models which define, in their basic version, a hierarchical splitting of the
feature space. Generally speaking, Random Forests have been mostly studied for
regression and classification, whereas in alternative scenarios, such as clustering,
their potentialities have not been fully exploited yet. When considering cluster-
ing, methods based on Random Forest can be broadly divided into two classes:
in the first RFs (or RF-like schemes) are directly used to perform clustering
[2,16,17,23,32]; in the second class [1,3,6,22,26,33] RFs are employed to derive
a meaningful dissimilarity measure, to be used with a standard distance-based
clustering method, such as Hierarchical clustering or Spectral clustering. In this
second line, which we call distance-based RF-clustering, different measures have
been proposed, ranging from the simplest and most employed one defined by
Breiman [6,22] up to more recent and complex dissimilarities [1,3,26,33].

One problem of all these RF-clustering approaches is that they are not able
to deal with missing data [18], i.e. problems where some variables do not have
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a value. These scenarios are very common, especially in the biomedical field
[25], in which subjects involved in a clinical study may skip some exams [15],
or high-throughput sequencing technologies may return incomplete data [27]. In
general, in the clustering case, the typical solutions to this problem are [31]:
i) to ignore objects with missing values, or, better, ii) to complete the data
with imputation methods [18]. Imputation methods, to be performed before the
analysis, replace a missing value with a new one. The simplest example, called
Strawman imputation, replaces a missing value in a variable with the median
of all non missing values for the same variable. Since these approaches do not
explicitly consider the final task (clustering), they can have some limitations, as
shown in some scenarios (see e.g. [5]). Therefore a more sophisticated and recent
trend appeared, which proposes to face the missing data problem directly inside
the clustering process. In this perspective, some methods have been proposed
which extend known clustering techniques (e.g. K-means) [5,7,9,13,30]. How-
ever, to the best of our knowledge, such extensions for Random Forest clustering
are completely missing. In this paper we make one contribution to fill this gap,
proposing the first RF-clustering method able to directly deal with incomplete
data. It is important to observe that, even if RFs have been employed in the
missing data context (e.g. Missforests [24]), there are no RF-clustering meth-
ods able to directly work with incomplete data, and this represents the main
contribution of this paper.

We start from the very recent RatioRF distance for clustering [3], which has
shown to outperform all other distance-based RF clustering schemes [1,6,22,26,
33]: this measure, defined on a set-based interpretation of the Tversky definition
of similarity [28], determines the similarity between two objects by comparing
their answers to a carefully selected subset of tests of the decision trees composing
the forest. In this paper we propose two extensions of this framework to deal
with missing data, both starting from the following observation: in the RatioRF
framework a missing value represents a problem only when it is implied in a
test of a node of the decision tree; in such case it is not possible to provide an
answer to the binary test. To cope with this we can i) use a random decision
(yes or no) or ii) keep both answers (yes/no) in an agnostic way. Due to the set-
based formulation of the RatioRF distance both options can be easily integrated
in the framework, as detailed in the paper. We evaluate the proposed scheme
with some clustering experiments involving 6 UCI ML datasets, showing that: i)
performances of RF-clustering did not degrade too much with moderate levels of
missingness; ii) the two Ratio-RF modifications are equally reasonable, having
different behaviours in different datasets; iii) the proposed distances compare
very favourably with alternative classic distances for missing data.

The rest of the paper is organized as follows: in Sect. 2 we review the RatioRF
approach, fixing the notation and introducing the basic concepts. The proposed
approach is then fully presented in Sect. 3, and evaluated in Sect. 4. Finally,
Sect. 5 concludes the paper.
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2 Random Forest Clustering with RatioRF

In this section we will briefly introduce the starting point of our work, i.e. the
very recent Random Forest clustering scheme using the RatioRF dissimilarity
measure [3]. After introducing the RatioRF distance, we will briefly summarize
the complete clustering scheme.

2.1 The RatioRF Distance

Assume we have set of objects/points U and a set of binary tests A (for
attributes) defined over the whole set U, i.e., for each object x ∈ U and each
test θ ∈ T there is a unique value θ(x) ∈ {yes, no}. A decision tree on a ground
set of objects/points U and test set A is a binary tree T where: (i) each internal
node ν is associated to a binary test θν ∈ A; (ii) the two edges connecting the
node to its children are associated with the two possible results—denoted Y
for yes and N for no—of performing test θν on an object from U . Further, νY

(resp. νN ) denotes the child of ν connected to ν via the edge associated with
Y (resp. N); r(T ) denotes the root of T . Let ν be a node of T at level h + 1
and θ1, b1, θ2, b2, . . . , θh, bh be the sequence of nodes (tests) and edges (results),
encountered on the unique path from r(T ) to ν. Then, it is possible to associate
to ν the set of objects Sν = {x ∈ U | θi(x) = bi, i = 1, . . . , h}. In words, a node
ν is representative of (or it contains) all the objects that, when tested according
to the adaptive strategy represented by the decision tree T, follow the path from
the root to ν.

For each object x there is a single leaf containing it denoted as by �(x). Let
PT (x) be the set of pairs (test, result) associated to x by the strategy/tree T

PT (x) = {(θ, bθ
x) | θ is a test on the path from the root

r(T ) to the leaf �(x) and bθ
x = θ(x)}.

Let θ be a test and b ∈ {Y,N}. It is possible to say that x agrees with (θ, b) if
θ(x) = b. Similarly, objects x and y agree on test θ if θ(x) = θ(y).

A decision tree T can be used to select the set of features Φ relevant for
the assessment of similarity between pairs of objects from the universe U. In
particular, in [3] authors define Φ = {(θν , b) | ν is a node of T, b ∈ {Y,N}}, as
the set of possible outcomes of the tests used by the decision tree. For an object
x its feature set X = PT (x) is defined as a set of test results on the path from
r(T ) to the leaf �(x) associated to x by the decision tree. These are the features
from Φ that are most relevant for x, in the sense of being sufficient to identify x.

Now, assume we want to compare objects x, y represented by the set of
features X = PT (x), and Y = PT (y), respectively. In [3] authors define

X −· Y = {(θ, b) | (θ, b) ∈ X and θ(y) �= b} (1)

to be the set of features that are relevant for x and on which y disagrees. Sym-
metrically the set of features relevant for y and on which x disagrees are given
by the set
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Y −· X = {(θ, b) | (θ, b) ∈ Y and θ(x) �= b} (2)

They also define

X ∩· Y = {(θ, b) ∈ X ∪ Y | θ(x) = θ(y)} (3)

to be the set of features on which x and y agree, among the features in PT (x) ∪
PT (y), which are those relevant for describing them (i.e., for identifying one or
the other). The Ratio-DecisionTree similarity measure RatioDT(·, ·) is defined
by [3]

RatioDT(x, y) =
|X ∩· Y |

|X ∩· Y | + |X −· Y | + |Y −· X| , (4)

As observed in [3], this similarity measure is symmetric and the corresponding
dissimilarity obtained as

√
1 − RatioDT(x, y) is a metric.

Remark 1. In [3], the approach above was derived following an axiomatic defini-
tion of similarity measures given by Tversky [28]. An alternative perspective on
such similarity measure computation is the following: let Φ(XY ) = PT (x)∪PT (y)
denote the set of features restricted to those employed by the tree to describe
x and y. Then let XΦ(XY ) (resp. YΦ(XY )) be the element of Φ(XY ) on which x
(resp. y) agrees. Then, RatioDT(x, y) = |XΦ(XY ) ∩ YΦ(XY )|/|XΦ(XY ) ∪ YΦ(XY )|,
i.e., the Jaccard distance computed on the restricted set of features, that the
tree selected for x and y.

The RatioDT similarity measure is straightforwardly generalized to Random
Forests by averaging the decision tree distance in Eq. (4) over all the trees in the
forest. More precisely, given a trained RF whose trees are T1, . . . , Tm, fix a pair
of points x, y ∈ U and let RatioDTt(x, y) be the similarity computed according
to (4) from the decision tree Tt. Then, the Random Forest similarity measure
RatioRF(x, y) is defined by averaging over all decision trees, i.e.

RatioRF(x, y) =
1
m

m∑

t=1

RatioDTt(x, y). (5)

If the clustering algorithm needs in input a dissimilarity, it is possible to trans-
form the similarity into a dissimilarity using

√
1 − RatioRF(x, y), as done in

[22].

2.2 The Complete Random Forest Clustering Procedure

The clustering is obtained with the following procedure:

1. RF training. In this step a Random Forest is trained on the data to be
clustered. The main issue is that labels are not available: to face this issue
it is possible to use Extremely Randomized Trees [12], i.e. trees in which
the split feature and the threshold are chosen randomly – this representing a
common and reasonably good solution for RF-clustering [4].



RF-Clustering with Missing Data 125

2. Distance computation. In this second step the RatioRF distance is com-
puted from the trained forest, as explained in Sect. 2.1.

3. Clustering. Starting from the similarity, the final clustering is then obtained
via any distance-based clustering algorithm, such as Hierarchical Clustering
or Spectral Clustering [29].

3 Dealing with Missing Data

The RF-clustering scheme defined in the previous section requires all values for
all features of the objects involved in the clustering. The presence of missing
data impacts the first (RF training) and the second step (RatioRF distance
computation). In the following we will introduce first how to derive the RatioRF
distance with missing data, since this represents the most problematic part of
the approach.

3.1 Computing RatioRF with Missing Data

The above definition of RatioDT assumes that all tests are defined on every
objects. The presence of missing data in a data set is equivalent to the situation in
which for some object x and test θ the value θ(x) is not defined, which is typically
indicated by θ(x) = NAN. There are two issues that need to be addressed if we
want to employ the RatioDT(x, y) also in the presence of missing data. When
an object x reaches a node ν such that θν(x) = NAN :

1. should the pair (θν , NAN) be part of the set of features X describing x?
2. what is the next node/test to consider for x between νY and νN , i.e., how

should we complete the partial root-to-leaf path for x beyond ν? How should
we decide, considering that the test result θν(x) doesn’t say which of the
edges Y or N to follow?

Regarding point 1, our choice is not to consider such a node as part of the set
X, as this would imply unfounded dissimilarity of x with any other objects y for
which test θν is defined. By unfounded we mean that we do not know whether
the missing value of x on test θν agrees or not with θν(y), hence it would not be
fair to assume it is different.

Regarding point 2, we actually analyse two possibilities: (i) choosing at
random whether to continue the root-to-leaf path for x on νY or νN ; (ii)
extending the path in both directions, i.e., having PT (x) be a collection
of root-to-leaf paths parting from one another at some node associated to
a test where x is not defined. We call (i) the SinglePath approach and
(ii) the MultiPath approach. Accordingly, we denote by XSP = PSP

T (x)
(resp. XMP = PMP

T (x)) the set of features (pairs of test and results)
selected by the SinglePath (resp. MultiPath) approach. A simple pseudocode
describing a recursive construction of such sets is given in Algorithms 1 2.
Employing such procedures we assign PSP

T (x) =SinglePath(x, T, root(T )) and
PMP

T (x) =MultiPath(x, T, root(T )).
Therefore, in the presence of missing data, we can compute RatioDT(x, y)

like in (4) by substituting X,Y with XSP , Y SP (resp. XMP , Y MP ).
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Algorithm 1: SinglePath(x, T, v)
Input: A decision tree T ; an object x; and a node ν of T
Output: a set X of relevant feature (pairs (θw, θw(x)) over some path from ν to
a leaf of T.
if ν is a leaf return ∅;
if θν(x) = Y then

return SinglePath(x, T, νY ) ∪ {(θν , Y )}
if θν(x) = N then

return SinglePath(x, T, νN ) ∪ {(θν , N)}
if θν(x) = NAN then

choose νnext randomly between νY and νN ;
return SinglePath(x, T, νnext)

Algorithm 2: MultiPath(x, T, v)
Input: A decision tree T ; an object x; and a node ν of T
Output: a set X of relevant feature (pairs (θw, θw(x)) over some collection of
paths T starting at ν and reaching a leaf.
if ν is a leaf return ∅;
if θν(x) = Y then

return MultiPath(x, T, νY ) ∪ {(θν , Y )}
if θν(x) = N then

return MultiPath(x, T, νN ) ∪ {(θν , N)}
if θν(x) = NAN then

return MultiPath(x, T, νY ) ∪ MultiPath(x, T, νN )

3.2 Training Trees with Missing Data

In the training phase we also need to deal with the presence of missing data: in
particular, we need to decide how an object x used in the procedure for building
a tree is moved down (to the right or the left child?) after a split associated to a
test for which x’s value is missing/not known. Our choice is to have x continue
on both child nodes. This appears to be well in the spirit of not assigning an
arbitrarily imputed value to x for the test (since any choice would be unfounded
as observed in the description of the testing phase)1.

4 Experimental Evaluation

This section contains the empirical evaluation of the proposed approach. First we
introduce the experimental details, then we present the results and discussion.
A comparative analysis with literature alternatives concludes the section.

1 Some experiments, not reported here, showed that empirical results would not change
too much if we randomly choose one of the two paths.
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4.1 Experimental Details

In order to evaluate our methods we consider some public datasets from the UCI
ML Repository [10], whose details are reported in Table 1. As commonly done
in clustering, we use supervised problems, remove labels, compute the clustering
result and then compare it with the original labelling. In particular, we quantify
the performance results for clustering quality considering the classic adjusted
Rand index (ARI) [14].

Table 1. Details of the datasets used in the analysis.

Dataset #objects #features #of clusters

Iris 150 4 3

Btissue 106 9 6

Wine 178 13 3

Glass 214 9 4

Leaf 340 15 30

Libras 390 90 15

To simulate missingness, data were artificially removed from these datasets
using the MCAR (Missing Completely At Random) protocol [20]. This protocol
consists in removing data completely at random, without taking into account any
relationship between features. We only considered one constraint: no objects with
all missing features can be considered. We considered 4 levels of missingness, i.e.
removing 5%, 10%, 20% and 30% of the data. For every problem and each level
of missingness we generated 20 datasets.

For what concerns the proposed RF-clustering scheme, in all experiments
we trained RFs using the strategy described in Sect. 3.2: we used 100 trees in
each forest, with log(n) for the maximum depth of each tree (with n the number
of objects in the dataset). Once the RF distance is computed, the clustering
is obtained using three classic approaches: spectral clustering, using the Ng-
Jordan-Weiss normalized version [29], repeating the inner k-means 20 times,
Affinity Propagation [11] and Hierarchical clustering, in the Ward-Link version.

4.2 Results and Discussion

In this section we compare the result of the proposed approach with the com-
plete case, i.e. with the result obtained with the original RatioRF scheme on
the complete matrix. The main goal of this analysis is to measure the impact of
the missingness on the performance results for clustering quality. The results are
reported in Table 2, for the different clustering methods and missingness values.
In detail, the column “No Missing” contains the results with the original RF-
Ratio scheme (we averaged the ARI among 20 repetitions); the other columns
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contain the mean ARI of the two approaches (Single Path and Multi Path),
averaged over the 20 generated datasets with missing data. In order to have a
statistically significant comparison, for every missing level, we perform a paired
t-test (α = 0.05) with the complete case. Bold values in table represent those
cases for which there is no statistical difference between the results with and
without missing data (i.e. situations in which missing data does not impact the
clustering performances). From the table it is evident that the proposed app-
roach is robust in dealing with missing data; both versions are very robust with
moderate levels of missingness: in fact, the performance results for clustering
quality do not degrade too much with respect to the complete case, especially
for 5–10 and in some cases 20% of missing data. Please note that, when using
Affinity Propagation, we have robustness also in three datasets for a remarkable
30% of missing data.

Table 2. Results for the proposed approach, in comparison with the No Missing case.

Spectral clustering

Dataset No Missing Missing 5% Missing 10% Missing 20% Missing 30%

SP MP SP MP SP MP SP MP

Iris 0.6903 0.7002 0.6936 0.6914 0.6781 0.6791 0.6757 0.6633 0.5855

Breast 0.4169 0.4109 0.4090 0.3860 0.3893 0.3411 0.3696 0.3138 0.3566

Libras 0.2969 0.2890 0.2882 0.2907 0.2910 0.2774 0.2833 0.2527 0.2859

Wine 0.8623 0.8666 0.8689 0.8669 0.8784 0.8339 0.8365 0.7967 0.8060

Leaf 0.3891 0.3583 0.3723 0.3227 0.3607 0.2294 0.3082 0.1640 0.2396

Glass 0.1976 0.1904 0.1928 0.1782 0.1815 0.1767 0.1785 0.1683 0.1672

Affinity Propagation

Dataset No Missing Missing 5% Missing 10% Missing 20% Missing 30%

SP MP SP MP SP MP SP MP

Iris 0.7021 0.7150 0.6827 0.7216 0.6284 0.6942 0.4522 0.6698 0.3875

Breast 0.3800 0.3483 0.3625 0.3552 0.3694 0.3382 0.3281 0.3012 0.2933

Libras 0.2125 0.2151 0.2235 0.2073 0.2232 0.1876 0.2287 0.1613 0.2098

Wine 0.6882 0.6983 0.6950 0.7231 0.7207 0.6600 0.6561 0.6047 0.4972

Leaf 0.3540 0.3472 0.3612 0.3265 0.3488 0.2656 0.3291 0.2173 0.2812

Glass 0.1592 0.1553 0.1526 0.1496 0.1480 0.1460 0.1335 0.1449 0.1022

Hierarchical Clustering

Dataset No Missing Missing 5% Missing 10% Missing 20% Missing 30%

SP MP SP MP SP MP SP MP

Iris 0.7374 0.6951 0.7132 0.6808 0.6701 0.6558 0.6229 0.6147 0.5576

Breast 0.3673 0.3562 0.3562 0.3551 0.3539 0.3448 0.3624 0.3198 0.3419

Libras 0.2880 0.2849 0.2905 0.2893 0.2876 0.2846 0.2876 0.2697 0.2885

Wine 0.8868 0.8617 0.8583 0.8370 0.8567 0.8010 0.8018 0.6962 0.7610

Leaf 0.3931 0.3730 0.3888 0.3650 0.3872 0.3207 0.3731 0.2619 0.3293

Glass 0.2250 0.2447 0.2483 0.2325 0.2399 0.2128 0.1941 0.1641 0.1862
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In order to have a better comparison between the SinglePath and the Multi-
Path approach, we present in Fig. 1 the performance results for clustering quality
of the two methods for the different datasets, averaging them among the three
different clustering methodologies. In the figure, a filled mark denoted a situation
in which one of the two approaches outperforms the other with a statistically
significant difference (again according to a paired t-test with α = 0.05). From
the plots we can notice that there is not a clear best strategy, and the optimal
solution highly depends on the datasets: it seems that MultiPath is preferable
with datasets with several features (as Leaf and Libras), whereas SinglePath is
more appropriate for low dimensional problems (as Iris).

Fig. 1. SinglePath vs MultiPath

Finally, to check the overall validity of our approach, here we present a com-
parative analysis with some alternative distances used to deal with missing data,
as described in the recent [21]. In particular we employed the Heterogeneous
Euclidean-Overlap Metric (HEOM), the Heterogeneous Value Difference Met-
ric (HVDM) and two redefinitions of these two, namely HEOM-REDEF and
HVDM-REDEF. These distances can be computed with missing data (see [21]
for a comparison between them), and are used in our framework as input for the
three clustering procedures described before (Spectral clustering, Affinity Prop-
agation and Hierarchical Clustering). As a further comparison, we also compute
the results with the standard RatioRF pipeline on data pre-imputed with the
simple Strawman method. This last comparison would permit to measure the
benefits of including the management of the missing data inside the clustering
procedure with respect to the pre-imputation solution.

In Fig. 2 results for the tree clustering schemes are averaged and presented
using bar plots. From results, it is clear that our proposal largely outperforms
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Fig. 2. Comparisons with other distances.

the alternative distances in almost all the cases, with improvements which are
very relevant for large levels of missingness. Interestingly, the two proposed
approaches also improve over the standard RatioRF pipeline applied on pre-
imputed data, thus providing a further confirmation that it is more beneficial
to deal with the missing data directly inside the clustering scheme, as shown for
other clustering strategies in [5,7,9,13,30].

5 Conclusions

In this paper we presented an extension of the Random Forest clustering app-
roach able to deal with missing data, based on two extensions of the recent
RatioRF framework. An empirical evaluation confirms the robustness of the
proposed strategies, both with respect to the results obtained with the complete
data as well as in comparison with literature alternatives. In our future work
we plan to add more empirical comparisons, in particular following two different
directions: from one side we will enalrge the number of analysed datasets, in order
to determine if there exists a correlation between the accuracies and the different
aspects of a given dataset (its missingness nature, number of features/objects,
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number of clusters); on the other side we will include in the analysis more com-
parisons with classic as well advanced approaches to deal with missing data, like
imputation (using more sophisticated approaches like MICE or knn-imputation)
or marginalization.

Acknowledgements. Authors would like to thank the anonymous reviewers for pro-
viding helpful comments and suggestions.
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