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A B S T R A C T

Analysis of seismic data is the most important method for volcano monitoring. Such data typically consists in
digital signals acquired with an arrangement of triaxial seismic sensors which are strategically deployed on the
volcano and its surrounding areas. Very rich measurements of the underlying phenomena are obtained from the
arrangement because each sensor, through their corresponding three sensing axes, uninterruptedly acquires data
at a relatively high sampling rate. Such an uninterrupted acquisition, however, turns manual classification of
seismic signals into an inefficient and often error-prone task. As a solution, several systems for automated
classification of seismic-volcanic signals have been proposed. All these systems, however, are limited to the
usage of only one direction of acquisition; typically the vertical one. In this paper we make a step forward,
exploring the potential benefit of using information from the three axes of the signals gathered by a single sensor.
Integration is performed by classifier combining techniques, applied at different levels: this permits to take into
account in the classification all the three orthogonal orientations —vertical, East-West and North-South— of the
phenomenon. Preliminary experimental results on a set of volcanic signals gathered at Nevado del Ruiz volcano
in Colombia confirmed the richness of this information.

1. Introduction

One of our major concerns, nowadays, is how to both sustainably
and safely benefit from the environment such that its ecological func-
tions are preserved and human life does not get threatened by the
Earth's natural processes. Both issues are addressed by environmental
geology which, according to (Keller, 2011), includes the study of five
fundamental concepts, namely: population growth, sustainability, earth
systems, natural hazards and scientific knowledge. Even though all of
them are important for environmental managers, the two latter are
particularly relevant for the prevention of the potentially catastrophic
consequences of sudden events such as volcanic eruptions, earthquakes,
tsunamis, landslides, floods and hurricanes. Scientific knowledge of
natural hazards —typically based on the collection and analysis of
sensor data— allows environmental decision makers to better under-
stand natural processes with the aim of enhancing risk-assessment and
hopefully taking early responses such as evacuations, relocations and
other mitigation strategies.

Scientific knowledge of volcanic activity is based on the acquisition
and analysis of geophysical and geochemical measurements: the so-
called volcano monitoring. Among the first type of measurements,
seismic data is considered the main source of information because most
physical processes in a volcano may trigger ground movements and
earthquakes. In order to undertake the monitoring, volcano ob-
servatories have deployed dense and telemetered networks of digital
signal acquisition systems, which are placed in strategic locations
(called stations) and typically use triaxial seismic sensors. Triaxial
means that sensors provide measurements of the seismic phenomenon
in three orthogonal orientations: vertical axis, East-West axis and
North-South axis. Since signals are uninterruptedly acquired —in sev-
eral stations, along three spatial axes and at a relatively high sampling
rate— seismic phenomena are richly represented but the volume of
seismic data to be processed is always increasing and might overload
the observatory personnel.

The primary and very time-demanding duty in seismic-based vol-
canic risk-assessment systems is the classification of seismic signals into
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predefined categories. Several proposals —based on pattern recognition
and machine learning (Bishop, 2006) techniques— to automate this
task are found in the literature; see for instance the ones reviewed in
(Orozco-Alzate et al., 2012) and (Malfante et al., 2018) as well as other
recent studies by Bicego et al. (2013), Cárdenas-Peña et al. (2013),
Cortés et al. (2014), Orozco-Alzate et al. (2015), Bicego et al. (2015),
Curilem et al. (2016), Cortés et al. (2016), Lara-Cueva et al. (2016) and
Soto et al. (2018). Almost all of those studies consider one axis per
signal, namely the vertical one which is said to be the most dis-
criminative. Orozco-Alzate et al. (2015), for instance, say that “even
though seismic sensors deliver three components, only registers from
the vertical one are considered”. Curilem et al. (2016), similarly, re-
strict themselves to use the vertical axis claiming that “it provides a
better signal-to-noise (S/N) ratio in most events”. However, there is the
possibility that the other two directions encode interesting (and com-
plementary) information. Consequently, the main goal of this paper is
exactly to investigate this possibility, trying to understand if it is pos-
sible to improve classification accuracy by integrating the three axes of
observation.

This investigation seems reasonable also from a seismic point of
view: actually, different characteristics of the volcanic events are en-
coded along different directions. More in detail, in seismology, it is a
well-known fact that P-waves1 are observed more clearly at the vertical
axis, while S-waves at the horizontal ones. To integrate the information
contained in the three axes, we resort to the research field of ensemble
classification methods (Kuncheva, 2014), which are aimed at com-
bining different pattern recognition systems to improve the perfor-
mances of single separate ones. It has been shown in this field that the
combination is particularly suited when sources of information (also
known as modalities) are complementary – this seeming exactly the case
of the triaxial seismic records.

Please note that ensemble classification methods have been already
shown to be useful in seismic-volcanic analysis, e.g. by Duin et al.
(2010) and Curilem et al. (2016). However, previous attempts have
been limited to consider one axis per signal to combine either different
classifiers or several recording stations. In this paper we experiment
ensemble methods at all levels: feature-level (combining feature re-
presentations), score-level (combining classifier matching scores), and
decision-level (combining classifier decisions) by using a subset of
triaxial seismic signals including examples of volcano-tectonic (VT)
events and long-period (LP) events, all of them recorded at Nevado del
Ruiz volcano, Colombia and digitized with a 16-bit analog-to-digital
converter; consequently, signal amplitudes (counts) may take values in
the range [−32768, 32767]. Illustrative samples of each class are
shown in Fig. 1. Experiments were promising and reveal that exploiting
the richness of information available by resorting to the combination
—also known as fusion— at all levels is indeed advisable.

The remaining part of the paper is organized as follows. Related
studies are presented in Section 2. Representation and fusion methods
are described in Section 3. Experimental results are shown and dis-
cussed in Section 4. Finally, our concluding remarks are given in
Section 5.

2. Related work

The availability of multiple training sets, recorded for the same
seismic events but as seen at different stations, motivated the use of
ensemble fusion methods for seismic signal classification. Such methods
are expected to perform better than individual systems when either the
multiple training sets or the different classifiers are diverse; that is,
when the first ones convey non-redundant information and the second

ones exhibit different behaviors.
According to that motivation, a study on the combination of signals

—equal in length (12,032 time samples) and simultaneously recorded
at five stations, along with the combination of separate quadratic
classifiers trained per station, was carried out in (Duin et al., 2010).
Three classes of seismic signals from Nevado del Ruiz volcano were
taken into account in that study, namely volcanic earthquakes, ice-
quakes and tremors. Moreover, two different representations were
considered according to the features extracted for the original incoming
signals: i) 40-dimensional feature vectors, each one resulting from
spectra of half of the length (due to the mirror property of the Fourier
transform) of the original seismic signals, followed afterwards by a
principal component analysis to project the spectra onto the first 40
principal components; ii) spectrograms having a size of 128 frequency
bands and 93 time windows. For each one of the above-mentioned re-
presentations, the authors tried three different combination scenarios to
be compared against separate classifiers trained and tested on each
recording station; namely: i) feature-level combination, by decision
templates (Kuncheva et al., 2001; Kuncheva, 2014, p. 173) of the signal
representations from the five stations in order to test them on each
classifier (per station); ii) score-level combination of the five quadratic
classifiers, trained with data from individual stations, also combined by
the same strategy and observing data from each station; iii) score-level
combination of the five quadratic classifiers trained and testing their
corresponding signals: those ones recorded in the same station of the
classifier. Notice that the first two scenarios are cross-station in terms of
training and test while the second one is not. Their results showed that,
overall, the latter is the best combination strategy to improve classifi-
cation results.

Later on, in (Bicego et al., 2013), a system based on hidden-Markov-
model (HMM) embeddings was evaluated in terms of its generalization
capability to classify signals recorded at a station different from the one
the training signals came from. However, in this case, there was no
combination rule but just a cross-station training/test evaluation in a
transfer learning scenario (Pan and Yang, 2010). Several generative
embeddings were tested; namely Fisher score embedding, log-like-
lihood embedding, state embedding and transition embedding. Three-
class and four-class problems were considered for a set of signals re-
corded at Galeras volcano. The authors concluded that the HMM-based
embeddings outperform the usage of HMMs alone, also in some cases of
the challenging cross-station scenario. Soon after, in (Orozco-Alzate
et al., 2015), a fusion at the feature-level was explored to combine two
and three dissimilarity representations of the one-axis seismic signals
recorded at a single station from Nevado del Ruiz volcano; particularly
by simply averaging either two or three of the dissimilarity matrices
computed from pairwise comparisons of waveforms, spectra and spec-
trograms. The Euclidean and the Dynamic-Time-Warping (DTW) dis-
tances were used to built the dissimilarity matrices. The combination of
the dissimilarity matrices by averaging them, however, did not appear
to be convenient but, conversely, was worse than using DTW-based
dissimilarity matrices computed from the spectrograms alone.

The most recent study on ensemble methods applied to the classi-
fication of seismic signals is found in (Curilem et al., 2016). As in the
previous cases, only the vertical axis is considered in this study because,
as already stated above, the authors claimed that “it provides a better
signal-to-noise ratio in most events”. These authors considered three
seismic recording stations from Llaima volcano and four classes of
seismic signals —LP events, VT events, tremors and other events
(counterexamples)— represented by five features: three statistical de-
scriptors from the waveforms, the dominant frequency from the spectra
and the energy in a specific band of the wavelet transform. The base
classifiers used were support vector machines (SVMs) with radial-basis-
function kernel. They tried combination scenarios at feature-, score-
and decision-level by using the following combination rules for each
case, respectively: i) just merging the feature representations from the
three stations; ii) applying the so-called Bayes-based confidence

1 Seismic signals are composed by two body waves: i) Primary or P-waves and
ii) secondary or S-waves. The first ones are faster, longitudinal and compres-
sional; the second ones are slower, transverse and elastic.
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measure (Becerra Yoma et al., 2005) to the scores given by the separate
SVMs and iii) majority vote (Kuncheva, 2014, pp. 113) of the crisp
labels assigned by the classifiers. In contrast with the conclusion by
Duin et al. (2010), these authors observed that the best option is mer-
ging the features instead of the late fusion at either the score or the
decision levels, highlighting that the combination at the feature-level is
more affine to the way in which the experts assign the labels at the
volcano observatory; that is, by looking at the waveform recordings of
the several stations and, afterwards, deciding which class label must be
assigned.

All these works present a common characteristic: they only analyze
signals relative to the vertical direction. Even if this seems justifiable, it
is possible that the other directions convey important information or, in
a problematic but realistic scenario, that the vertical sensing axis is for
some time out of service or corrupted with noise; e.g. as observed for
the top signals in Fig. 1. Our main goal is, therefore, to explore this
direction, namely whether it is possible to successfully fuse re-
presentations and/or classifiers derived from the three recording axes of
a single sensor. For the sake of illustration, we used a set of triaxial
seismic signals recorded at Nevado del Ruiz volcano, Colombia.

3. Methods

In this section the methods used in our experimental evaluation are
presented. In particular, we start with the characterization of the
seismic signals; then we briefly present the classifier we used (the K
nearest neighbors rule) and, finally, we introduce the classifier com-
bining techniques we employed. As a reference starting point, in Fig. 2
we show the pipeline of a classical classification system for seismic
signals: a signal to be classified is first characterized with a set of fea-
tures, which are then fed into a classifier; such a classifier computes a
set of scores (matching scores), one for each class, which indicate for
every class the confidence in assigning a given signal to that class.

Finally, on the basis of these scores, a label is assigned (the decision).
Typically, the classifier has to be trained using a training set (a set of
labeled examples).

3.1. Feature extraction for seismic-volcanic signals

Many different alternatives for representing seismic-volcanic signals
have been explored during the last years, ranging from morphological
features extracted from the signal waveforms, time-frequency features
estimated from spectra, spectrograms or wavelet transforms of the
original signals, dissimilarities computed from pairwise comparisons of
either raw signals or their transforms, as well as other more sophisti-
cated representations such as time-variant features, bag-of-words, topic
models and HMM-based generative embeddings; see (Castro-Cabrera
et al., 2014) for an experimental comparison of some of the conven-
tional feature representations.

Among all the above-mentioned options, a frequently used and
often well-performing one is based on the so-called mel frequency
cepstral Coefficients (MFCC). These coefficients are imported from the
speech recognition field, where they have proved to be a robust feature
representation that mimics the human hearing sense by, in a loga-
rithmic scale, emphasizing the content in some frequency bands while
attenuating it in others. Even though seismic signals exhibit a different
behavior in the frequency domain, their nature is analog to that one of
acoustic signals, both consist in waves traveling through elastic media:
earth and air, respectively. Thereby, an MFCC-based representation of
the seismic signals allows not just to extract relevant information for
specific frequency bands but also to reduce the dimensionality of the
problem typically to 26 features including the log-energy of the signal,
the first 12 MFCCs and their corresponding first derivatives or 39 fea-
tures if the second derivatives are also included. The reader is referred
to (Álvarez et al., 2012) for a more detailed discussion on the compu-
tation of these coefficients for the case of representing seismic-volcanic
signals.

Spectrograms are another widely employed method for seismic-
signal representation. They consist in the computation of the discrete-
time Fourier transform (DFT) in small and typically overlapping time
frames, reason why spectrograms are also known as the magnitude of
the short-time Fourier transform. Spectrograms allow examining the
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Fig. 1. Sample signals of volcano-tectonic (VT) and long-period (LP) events as registered by the three axes of a seismic sensor located in Olleta station at Nevado del
Ruiz volcano, Colombia. In each subfigure, from top to bottom, the recording axes are Vertical, North-South and East-West, respectively. Signal amplitudes are given
in counts of a 16-bit analog-to-digital converter.

Fig. 2. Classical classification scheme for seismic-volcanic signals.
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“evolution” of the frequency content, which is especially useful for non-
stationary signals; that is, signals whose energy distribution —in the
frequency domain— changes across time as it is precisely the case of the
seismic waveforms. In addition to the length of the DFT and the width
of the time frames, a percentage of overlapping among the latter must
be defined as well as an envelopping window to smooth the frame
borders and avoid undesired high-frequency artifacts. Bell-shaped
windows with a 50% of overlap are customary.

3.2. Classification of seismic-volcanic signals

Many classification methods have been proposed in the past to
classify seismic signals, ranging from simple ones such as the nearest
neighbor rule and Bayesian classifiers (Orozco-Alzate et al., 2006) up to
complex methods such as Neural Networks (Curilem et al., 2009) and
SVMs (Curilem et al., 2014; Soto et al., 2018). Even though we could
choose using a state-of-the-art and complex classifier such as a SVM, we
preferred to employ the simple K Nearest Neighbors rule (Duda et al.,
2001) —Knn— in our experiments in order to fully understand the
potentialities of the integration of the three directions.

The Knn rule represents a widely applied and well-known classifier
which, when K=1, assigns a test signal to the class of the signal from
the training set whose distance to the testing one is minimum, i.e. the
nearest neighbor. Despite its simplicity, this classifier is widely applied,
since it permits to obtain highly non linear decision boundaries;
moreover, by showing the nearest neighbors, it gives to the user a direct
explanation of the class label that is assigned (Duin et al., 2014). From
our perspective, we chose it also because it does not need density es-
timation or function optimization as it entirely relies on the user-de-
fined distance measure computed on the given representation; in this
sense, therefore, it is very suitable when the goal is to compare different
feature representations.

As described above, the nearest neighbor rule requires the definition
of a distance. Even if many different distances can be used, here we
resort to the simplest choice, namely the Euclidean distance, which, for
two vectors x, y∈ ℝd, with x={x1⋯xd}, y={y1⋯yd}, is defined as:

= =d x yx y( , ) ( )E i
d

i i1
2 . Let y be a test sample and

= …x x{( , ), , ( , )}N N1 1D a labeled training set with N objects, the 1nn
rule assigns a label to y as follows:

= =
= …

n d x y, where arg min ( , ).n
i N

E i
1, , (1)

For K > 1, the rule simply extends to majority vote among the
labels of the K nearest neighbors.

3.3. Ensemble fusion methods

The conventional approach to profit from multiple recordings is to
resort to ensemble fusion methods (Re and Valentini, 2012) – also re-
ferred to as “combining classifier theory” – which, in brief, combine in
some way either multiple and different representations of the same data
or multiple scores or decisions taken by a number of classifiers. The
ultimate aim of the fusion is, of course, obtaining a more accurate
classification system. Several taxonomies to group fusion methods have
been proposed. The most frequent one is based on the level at which the
fusion is performed (Ross and Jain, 2004). Typically, three main classes
are distinguished: feature-level fusion, score-level fusion and decision-
level fusion. The fusion occurs before the classifier in the feature-level
while, in contrast, it occurs after the classifiers in both the score-level
and the decision-level. Therefore, according to some authors —e.g. by
Morvant et al. (2014)— the first fusion scheme is also called early fusion
and the other two are also known as late fusion. Block diagrams of each
scheme are shown in Figs. 3 and 4 for our particular case of fusing
information from three axes of a single seismic sensor. The three levels
of fusion are briefly presented below, particularly focusing on the

combination strategies of each level that we use in this paper.

• Feature-level fusion: in this case the combination is performed at the
representation level, i.e. by combining different representations of
the same object (e.g. by concatenation of features). Then, a single
classifier is trained on the combined representation.

In our experiments we investigated three common fusion strategies:
i) feature concatenation ii) a vectorial summation of the feature vectors
of the three axes and iii) a vectorial product of the three feature vectors.
The first approach is a classic scheme, ubiquitously used in other fields
like biometrics (Rattani et al., 2006; Ross and Govindarajan, 2005); the
second and the third represent alternative schemes inspired by the
know-how of the seismologists involved in our analysis. In all cases,
features are extracted from all the three directions: with feature con-
catenation, such features are concatenated in a single vector (which is
of dimensionality three times the dimensionality of the original fea-
tures); with the second the three feature vectors are summed (in a
vectorial sense), whereas with the last the three vectors are multiplied
(again in vectorial sense) – in these two last cases the dimensionality
remains the same.

• Score-level fusion: in this case, there is one classifier for each mod-
ality, based on the features extracted from the three directions.
Given a signal, each classifier assigns a set of scores (such as pos-
terior probabilities), which are then fused together via simple rules
like max/min/mean. In this way a fused score is obtained, which is
then used to assign the label.
• Decision-level fusion: also in this case we have one classifier per
modality, each one computing its set of scores; then, each classifier
is taking its decision based on its own set of scores. The fusion is
performed afterwards by combining the decisions, for example with
the majority voting rule.

More than these simple schemes, we also investigated a complex
classifier combining scheme, called “trained combiners” (Duin, 2002;
Kuncheva, 2014). In this scheme the scores of the different classifiers
are considered themselves as features, and are used to train another
classifier which “learns” how to combine them. In our case, we used the
basic scheme proposed by Kuncheva et al. (2001) —which uses a
nearest mean classifier over the scores— as well as other combiners that
are mentioned below; see Sec. 4. For more information on trained
combiners please refer to (Duin, 2002; Kuncheva, 2014; Kuncheva
et al., 2001).

4. Experiments and discussion

In this section, the proposed approach of applying ensemble clas-
sification methods to triaxial seismic signals is empirically investigated.
In particular, we employed a dataset containing 200 seismic events
recorded at Nevado del Ruiz volcano, including triaxial examples re-
corded in 2008 and belonging to the two main classes of volcanic
events: 100 from VT class and 100 from the LP events, all of them
having different lengths depending on the duration of the corre-
sponding seismic events; refer again to Fig. 1. These classes are typi-
cally considered the main ones because they are associated to the most
important volcanic processes: fracture of rocks due to internal pressure
and transport of fluids such as magma and gases, respectively. For the
sake of simplicity but without loss of generality, we restrict ourselves to
triaxial signals from a single sensor located at Olleta station, which is
considered the reference one by the experts and acquires the signals at a
sampling rate of 100 Hz.

As summarized in the previous section, the seismic signals have
been characterized using two methodologies: in the first (MFCC) we
used mel Frequency Cepstral Coefficients, whereas in the second (Avg.
Spect.) we used averaged spectrograms. More in detail, the former
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representation consists of a base vector of 13 coefficients (12 cepstral
coefficients and the frame log-energy) plus their first order time deri-
vatives, calculated to take into account the frame information. The
latter representation consists in computing the spectrogram for each
signal by means of the FFT, computing then the average. In particular,
we used 1-s frames, a 128-point FFT, a 64-point Hamming window and
an overlap of 50%. At the end, the feature vector generated by this
representation corresponds to the mean value of each frequency band of
the spectrogram across time. After the representation stage, only the
values of the first half of this vector, along with the value in the middle
of it, are required due to the mirror property of the FFT; thereby, the
effective length of the feature vector for the classification stage is 65. A
summary of the shortest and longest events in the dataset, along with
the resulting sizes of corresponding spectrograms, is presented in
Table 1. Remember that the sampling rate is 100 Hz; therefore, the
shortest event lasts 19.7 s and the longest one 6min.

In some cases, space standardization is fundamental to get proper
accuracies. Here we investigate its impact, by analyzing both un-
normalized spaces as well as spaces normalized with a z-score stan-
dardization (to every feature we subtract the mean, dividing then by the
standard deviation; in this way all directions of the space have zero
mean and unit variance). Summarizing, in total we have four config-
urations: MFCC scaled, MFCC not scaled, averaged spectrograms scaled
and averaged spectrograms not scaled.

On top of these four representations we tested different schemes:

• Monomodal: this represents the baseline, i.e. the system is designed
employing a signal derived from a single recording axis. In parti-
cular we analyzed the Vertical, the North-South (N-S) and the East-
West (E-W) directions.
• Feature-level fusion: here we investigated the three approaches described
in the previous section, namely Feature Concatenation (feature vectors
of Vertical, N-S and E-W are concatenated), Vectorial Summation
(feature vectors of Vertical, N-S and E-W are summed), and Vectorial
Product (feature vectors of Vertical, N-S and E-W are multiplied). In this
last case, since the vectorial product may change depending on the
order of association, we investigated two variants. In particular, given

Fig. 3. Feature-level (early) fusion scheme for
triaxial seismic-volcanic signals.

Fig. 4. Late fusion scheme: Combination at either
score- or decision-level for triaxial seismic-volcanic
signals.

Table 1
A summary of the shortest and longest events in the dataset, along with the
resulting sizes of the corresponding spectrograms.

LP events VT events

Average Seq Length 7746.07 8582.88
Min Seq Length 2581.00 1970.00
Max Seq Length 24000.00 36000.00
Average Spectrogram length 153.51 170.27
Min Spectrogram length 50.00 38.00
Max Spectrogram length 479.00 719.00

Table 2
Detailed results per method and feature representation. All the reported values
correspond to LOO classification errors. The best value of K in the range
{1,3,5, … ,25} is shown between parentheses next to the reported classification
errors.

MFCC Avg. Spect.

Method Not scaled Scaled Not scaled Scaled

Monomodal Vertical 0.325(7) 0.390(11) 0.310(17) 0.345(1)
Monomodal North-South 0.250(25) 0.300(25) 0.205(9) 0.235(3)
Monomodal East-West 0.225(23) 0.270(13) 0.185(1) 0.200(3)
Feature level: concatenation 0.200(11) 0.285(11) 0.225(1) 0.305(9)
Feature level: vect summation 0.200(13) 0.230(23) 0.205(1) 0.285(7)
Feature level: vect product 1 0.340(15) 0.425(3) 0.265(9) 0.335(13)
Feature level: vect product 2 0.315(5) 0.405(11) 0.230(5) 0.360(1)
Score level: mean 0.205(25) 0.260(25) 0.135(1) 0.225(5)
Score level: median 0.215(25) 0.255(23) 0.175(1) 0.230(3)
Score level: prod 0.205(25) 0.260(25) 0.135(1) 0.225(5)
Score level: max 0.215(17) 0.265(25) 0.135(1) 0.250(1)
Score level: min 0.215(17) 0.265(25) 0.135(1) 0.250(1)
Decision level: majority voting 0.215(25) 0.255(23) 0.175(1) 0.230(3)
Trained Combiners (nmc) 0.220(9) 0.245(9) 0.145(1) 0.225(7)
Trained Combiners (ldc) 0.205(17) 0.250(7) 0.170(1) 0.205(3)
Trained Combiners (knnc) 0.215(13) 0.265(17) 0.150(1) 0.240(1)
Trained Combiners (ologc) 0.210(17) 0.260(7) 0.170(1) 0.210(3)
Trained Combiners (rbsvc) 0.210(7) 0.255(7) 0.160(1) 0.230(5)
Trained Combiners (1nn) 0.265(17) 0.315(17) 0.235(11) 0.300(5)

Table 3
A summary of the best results per representation and mode; namely, single recording axis or monomodal and multiple recording axes
or multimodal.

Representation Best monomodal Best multimodal

MFCC (Not Scaled) 0.225 (E-W) 0.200 (Feature level: conc., vect sum)
MFCC (Scaled) 0.270 (E-W) 0.230 (Feature level: vect summation)
Avg. Spect (Not Scaled) 0.185 (E-W) 0.135 (Score level: mean, prod, max, min)
Avg. Spect (Scaled) 0.200 (E-W) 0.205 (Trained Combiners (ldc))
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three vectors A, B, C, we have that: A×(B×C)=B(A ⋅C)−C(A ⋅B)
and (A×B)×C=−C×(A×B)=−A(B ⋅C)+B(A ⋅C), where ×
denotes the vectorial product, whereas ⋅ denotes the dot product.
• Score-level fusion: here we investigated some classical approaches for
combining the posteriors of the classifiers trained on the three sig-
nals: the mean of the scores, that is, the final score is the average of
the scores given by the individual classifiers and, similarly, other
four approaches: the median, the maximum, the minimum and the
product of the scores; respectively. All these rules have a clear
theoretical interpretation, linked to aspects like complementarity,
accuracy of single classifiers and so on; for more information see
(Kittler et al., 1998).
• Decision-level fusion: here we investigated the classical majority
voting rule.
• Trained combiners: here we investigated different classifiers built in
the score spaces, such as the nmc which stands for the nearest mean
classsifier – as in the original scheme introduced by (Kuncheva
et al., 2001), the ldc (Linear Bayes classifier assuming normal den-
sities with equal covariance matrices), the Knnc (the K-nearest

neighbor scheme, where K is estimated through cross-validation in
the training set), the loglc (Linear classifier by maximizing the
likelihood criterion using the logistic function), the rbsvc (Support
vector machine with rbf kernel whose parameter has been set via
cross-validation on the training set) and 1nn (the nearest neighbor).
Regarding all these classifiers, please refer to (Duda et al., 2001) for
methodological explanations and to (Duin et al., 2007) for im-
plementation details.

Classification errors were computed using the classic Leave-One-Out
(LOO) cross-validation procedure (Bramer, 2016) which, according to
(Wong, 2015), should be adopted when the number of instances in a
dataset is small. With this procedure, the classifier is trained with all the
signals except one, which is then used for testing. Then the procedure is
repeated by leaving out the second and so on, until all signals have been
tested. In this way the test set is always separated from the training set
(this permits to measure generalization capabilities), whereas the size
of the training set is maximized (this permits to have good classifiers).
Two additional advantages of LOO cross-validation are that (i) it does

Fig. 5. Leave-one-out classification errors, for each feature representation, as varying the parameter K of the Knn classifier in the range {1,3,5, … ,25}.
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not involve a randomness mechanism and, therefore, research re-
producibility is allowed and, (ii) it is approximately unbiased for the
expected error (Hastie et al., 2009, p. 242) and, moreover, truly almost
unbiased for the nearest neighbor methods which have been proven to
be stable2 by Elisseeff and Pontil (2003).

All the results are shown in Table 2, for the different schemes, dif-
ferent feature representations and the optimal value for the parameter
K of the Knn classifier. A summary of the best results, for the different
representations, is presented in Table 3. Regarding the classifier com-
bining rules, for implementing score-level fusion we need scores (e.g.
posteriors), which in the nearest neighbor case can be computed by
exploiting the distance of the nearest neighbor of each class.

From the summarizing table we can immediately note that for all
feature representations there is always an improvement when com-
bining the three axes, which is in some cases very relevant. Please note
that for all experiments we compute the variance of the LOO error,
following the formula given in (Kohavi, 1995): for a test involving N
objects, and given the LOO error e, the variance is e e

N
(1 ) . Considering

all experiments, the largest variance was 0.0012, thus making the re-
ported differences significant. As a second comment, we can also ob-
serve that for every representation we have a different “best” fusion
method, thus confirming that finding a proper fusion scheme which
works well in all situations can not be so trivial.

Some additional observations can be derived from the full Table 2.
First, we can observe that, when considering a single direction, the
vertical axis is not the one leading to the best accuracies in contrast
with the choices made by authors in this field in the past. Nonetheless,
remember that in our dataset the vertical axis exhibits some noise. The
E-W axis is, in general, the best performing one; however, it is im-
portant to notice also that the accuracies obtained in the N-S direction
are not so far. This may suggest that the information contained in the N-
S axis is indeed useful for classification since it is possible that the
hypocenters location of some events are just to the north of the re-
cording station. This is, therefore, another reason to use three compo-
nents instead of only one, that is, the location of the earthquake with
respect to the station can influence the waveform and all its attributes.

When considering fusion strategies, we can observe that in general
late fusion methods performed better than early fusion schemes, even if
the obtained accuracies strictly depend on the adopted score-level rule
(or the adopted classifier in the score space for trained combiners). In
particular ldc in the score space seems to be the best, whereas 1nn
represents the worst choice. Concerning the feature representations, we
can observe that the best one is by far the averaged spectrogram,
especially in the not scaled version: this confirms the findings reported
in (Castro-Cabrera et al., 2014). It is also important to note that scaling
has always a bad effect on the accuracies; this suggests that absolute
differences in magnitudes are also relevant for the discrimination.

Finally, we explored the influence of the parameter K on the per-
formance of the Knn rule. The five types of methodologies (monomodal
plus four types of fusion) were tested while varying the parameter in
the range {1,3,5, … ,25}, then, LOO errors were plotted as a function of
K; see Fig. 5. In particular, for all the methodologies, we made the
average: e.g. for monomodal we averaged the results of Vert, N-S and E-
W; similarly, for Score-level, we averaged the results of mean, median,
prod, max and min; and so on. Notice that there is a general clear
improvement when using late fusion schemes, whereas for feature level
fusion there is no improvement. This was not evident from the results in
the tables where, for MFCC scaled, the best result was obtained with a
feature level method. Moreover there is a mixed behavior for what

concerns K: for MFCC the larger the better, for spectrograms the lower
the better.

5. Conclusion

The three recording axes of the seismic sensors convey discriminant
and non-redundant information of the seismic events. Such a diversity
can be effectively exploit by using ensemble classification methods that
might combine the information at different levels, namely at the re-
presentation/feature-level, the classifier score-level or the classifier
decision-level. In this paper we tried all of them for several alternatives
of both feature representations and combination rules. We observed
that, overall, the best representation corresponds to non-scaled aver-
aged spectrograms together with score-level rules to combine posteriors
of classifiers independently trained by each recording axis. By using all
these modalities, better automated classification systems can be de-
signed and, thereby, a more accurate tool to help with the complex
volcanic risk-assessment systems would be available at the volcano
observatories. Further subsequent studies on ensemble classification
methods for the classification of seismic-volcanic signals must face the
challenging task of taking into account, simultaneously, all the avail-
able information from multiple recording stations and the three or-
thogonal axes of each seismic sensor.
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