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ARTICLE INFO ABSTRACT

Keywords: The use of robotic mobile sensors for environmental monitoring applications has gained increasing attention
Informative path planning in recent years. In this context, a common application is to determine the region of space where the analyzed
Mobile sensors phenomena is above or below a given threshold level — this problem is known as level set estimation. One example

Active learning
Gaussian process
Orienteering

is the analysis of water in a lake, where the operators might want to determine where the dissolved oxygen level
is above a critical threshold value. Recent research proposes to model the spatial phenomena of interest using
Gaussian Processes, and then use an informative path planning procedure to determine where to gather data. In
this paper, in contrast to previous works, we consider the case where a mobile platform with low computational
power can continuously acquire measurements with a negligible energy cost. This scenario imposes a change in
the perspective, since now efficiency is achieved by reducing the distance traveled by the mobile platform and
the computation required by this path selection process. In this paper we propose two active learning algorithms
aimed at facing this issue: specifically, (i) SBOLSE casts informative path planning into an orienteering problem
and (ii) PULSE that exploits a less accurate but computationally faster path selection procedure. Evaluation of our
algorithms, both on a real world and a synthetic dataset show that our approaches can compute informative paths
that achieve a high quality classification, while significantly reducing the travel distance and the computation
time.

1. Introduction When deploying unmanned vehicles for environmental monitoring,
the data collection process must consider limited resources such as time,

Environmental monitoring encompasses the analysis and actions energy and computation power that constrain the operation range of
required to characterize and monitor the quality of the environment. the platforms. The goal is to use a mobile platform with low on-board
This includes the collection of information from the environment and computation power, such as the one showed in Fig. 1, to generate an
the generation of a model that represents the specific phenomena of  accurate model of the environmental phenomena of interest. In this
interest (La and Sheng, 2013; La et al., 2015; Garces and Sbarbaro, context (Hollinger and Sukhatme, 2014), it is important to select an
2011). Computational methods are often used to facilitate environmen- informative path for the mobile agents to acquire as much information

tal monitoring, for e.xample Cheng et a_l' (.2003? propose and expert as possible while reducing the total traveled distance and hence the
system for the analysis of the water quality in a city. An other example time and energy required to perform the analysis. As a further issue,
is the monitoring of a body of water (e.g., lakes, rivers, coastal areas and autonomous mobile systems are usually equipped with low computa-

so forth). In this case the analysis focuses on the generation of a model . . . . .
. . tional capacity. Therefore, if the path selection procedure is performed
that describes how crucial parameters such as the presence of harmful . L L .
on-board during the monitoring operation, it is crucial to reduce as much

algal blooms (Muttil and Chau, 2007) or the dissolved oxygen (DO) vary X K X .
. . . - as possible the computational complexity of the algorithms.
across the environment. Most environmental monitoring applications . . . . .
The literature offers different path selection strategies (Singh et al.,

require the collection of large datasets, frequently in harsh conditions. o . .
2009). Traditional nonadaptive (offline) methods generate the path be-

In recent years the use of unmanned vehicles for monitoring spatial . > .
phenomena has gained increasing attention (Cao et al., 2013). The mon- fore any observations are made. In contrast, adaptive (online) methods
plan the path based on the previously collected data (Batalin et al.,

itoring operation of a lake for example, could be performed through the

use of autonomous surface vessels (ASVs), or by a heterogeneous system .2004; Rahimi et al., 2004; Singh et al., 2006). These adaptive techniques
composed of marine, terrestrial and airborne platforms (Dunbabin and incrementally generate the model of the environmental phenomena of
Marques, 2012). interest during the data collection phase and focus the information
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Fig. 1. Mobile platform that we used: Platypus Lutra equipped with pH, Dissolved
oxygen, temperature and electrical conductivity sensors. The computation is on board
and performed by an Arduino Due and a smartphone.

collection process on specific regions of the environment where the
phenomena exhibits critical values. For example, in a lake such a region
could encompass the locations where the water’s dissolved oxygen level
is considered harmful for the environment. Another example could be
the detection of contours of biological or chemical plumes (Pang and
Farrell, 2006). From a general perspective, this can be seen as the
problem of deciding if a quantity of interest is above or below a pre-
specified threshold. This problem is typically referred to as the “level
set estimation problem” in the literature (Hitz et al., 2014).

Previous work on the level set estimation problem such as the one
proposed by Dantu and Sukhatme (2007) focused on a network com-
posed by a combination of static and mobile sensors. In the manuscript
of Gotovos et al. (2013) the proposed LSE algorithm uses Gaussian
Processes (GPs) to identify sampling points that reduce uncertainty
around a given threshold level of the modeled function. Even if the
authors obtain a high quality classification with respect to threshold
level (above or below) for the regions of the space using a low number
of sampled locations, in their contribution the main algorithm does not
explicitly take into account the path between the sampling locations.
To partially consider this aspect, the authors propose a batch variant
where a set of new sampling locations is selected in a batch such that it
is possible to compute an efficient path between these points.

Hitz et al. (2014) describe a method designed for ASVs equipped with
a probe that allows an aquatic sensor to be lowered into the water. Their
LSE-DP algorithm, built on the LSE algorithm from Gotovos et al. (2013),
uses a dynamic programming approach with a receding horizon to plan a
feasible sampling path for the probe within a predefined vertical transect
plane.

In a more recent work (Hitz et al., 2017) introduce an evolutionary
strategy to optimize a path in continuous space. Specifically, authors
parametrize a path as a cardinal B-spline with »n control points and
propose a re-planning scheme to adapt the planned paths according to
the measurements obtained from the environment.

This paper is inserted in the aforementioned scenario, and aims at
facing the problem of level set estimation by using Active Learning
(AL) techniques with sequential measurements. In a general discussion
on active learning Liu et al. (2009) present the use of active learning
techniques on spatial data where the cost is proportional to the distance
traveled, ignoring the intermediate points along the path. In contrast,
we have an additional objective, where we aim also at determining ef-
ficient paths for mobile sensors (instead of determining single sampling
locations) so to optimize the data collection process. Specifically our
techniques are motivated by the recent development of low-cost, small
mobile platforms that can perform continuous-sampling in various body
of waters (lakes, rivers and coastal areas). For example, consider the
autonomous surface vessel shown in Fig. 1. This platform is small (about
1 meter long and 50 cm wide) and it is equipped with various probes
that can measure parameters such as pH, dissolved oxygen, temperature,
and electrical conductivity with sampling rate between 1 and 10 Hz. In
this setting the cost in terms of energy to perform a single measurement
is negligible, and the most crucial issue for the data collection process
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is the energy consumed to move the vessel. In fact, to meet the payload
constraint of this platform, batteries must have a limited capacity that
results in constraints on total path length. As a further constraint, we
also want to take into account the low computational power of the
hardware of this platform (composed of an Arduino Due board and
an Android smartphone), which motivates the derivation of algorithms
with reduced computational complexity.

We introduce a novel algorithm (SBOLSE) that makes use of an
orienteering problem formulation for the level set estimation. SBOLSE
aims to obtain a high quality classification of the analyzed regions while
optimizing the total path length required by the mobile agent, rather
than the number of samples extracted during the executions (which is an
important criteria for previous works in the LSE domain). Moreover, to
match the low computation power of mobile platforms, we introduce the
use of several heuristics which significantly reduces the time required
by the algorithm for the selection of an informative path. Finally, we
also introduce a novel greedy path selection procedure (PULSE) which
represents a baseline greedy strategy for comparisons.

Specifically, the main contributions' of this paper to the state of the
art are:

We propose a novel algorithm called SBOLSE, that uses an orien-
teering formulation to solve the level set estimation problem. The
algorithm is specifically designed for continuous-sampling mobile
Sensors.

We propose four different heuristics with the aim to reduce the
computation time required to determine an efficient path with the
SBOLSE algorithm.

We propose a novel greedy algorithm called PULSE for selecting
measurement paths that exploits a less accurate but computation-
ally faster path selection procedure. PULSE only accounts for the
presence of information, not the magnitude of information gain.
It is used as a baseline strategy for comparisons in the continuous-
sampling setting.

We test our algorithms on a real world dataset of water pH level
and on synthetic datasets extracted from CO, maps. We show that
our approaches are better in terms of computation time required
and path length, while achieving a high quality classification when
compared to the state of the art techniques for level set estimation.

Notice that, the SBOLSE algorithm is based on several methodologies
derived from different areas of computer science: LSE from information
gathering, skeletonization from image processing, orienteering from
graph theory and clustering. Our work shows that a clever combination
of such methodologies results in an effective approach for addressing
level set estimation with continuous measurement sensors.

Although our techniques has been introduced for environmental
monitoring operations, they can be generalized to different applica-
tions where mobile sensors are used to model the information of the
environment. Specifically, applications where a mobile sensors has to
take measurements from the environment with a battery constraint and
hence it is required to compute an efficient path. Examples can span
across different context such as search and rescue operations (Scherer
et al., 2015), precision agriculture (Tokekar et al., 2016; Popovic et al.,
2016), sea-floor target localization (McMahon et al., 2017) and radio
signal source localization (Shahidian and Soltanizadeh, 2016).

2. Problem statement and background
2.1. Problem statement

Following Gotovos et al. (2013), Bottarelli et al. (2016) and Bottarelli
et al. (2017), we formalize the level set estimation as an active learning

1 Aspects of this work have already been presented in the conference
papers (Bottarelli et al., 2016) and (Bottarelli et al., 2017).
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problem, where we want to select a path for a mobile sensor so as to
optimize the information gathering process.

An unknown scalar field represents the environmental phenomena of
interest, and every location in space has an associated scalar value. More
formally, given a set of locations D C RY and a threshold value h, we
want to model the unknown scalar field f : R? — R in order to classify
all the locations x € D into either the superlevel set H = {x | f(x) > h}
or the sublevel set L = {x | f(x) < h}. The problem is defined
as the selection of the set of locations x; where to perform (noisy)
measurements y; = f(x;) + e;. Such locations should be selected to
maximize the classification accuracy of all points, while minimizing the
total traveled distance required for the sensor to analyze these locations.

2.2. The LSE algorithm (Gotovos et al., 2013)

In this section we summarize the method of Gotovos et al. (2013),
which represents the starting point for our techniques. Gotovos et al.
(2013) called this technique LSE. This approach is based on Gaussian
Processes (GP), a technique which offers a way to model unknown
functions without using parameters. Such tools are widely used in
machine learning (Rasmussen and Williams, 2006; Kim and Kim, 2013;
Ycel et al., 2013). In the paper proposed by Gotovos et al. (2013), the
unknown function to be modeled using a GP is the unknown scalar field
f of the environmental phenomena of interest. Briefly, a GP is defined
by a mean function p(x) (that can be assumed to be zero without loss of
generality) and by a kernel function (covariance function) k(x, x") which
represents the smoothness properties of the modeled function. A GP can
then be denoted as GP(u(x), k(x, x)).

Authors in Gotovos et al. (2013) consider a set of noisy measure-
ments Y, = {y,y,, -~,¥,} taken at locations X, = {x,x,,...,x,} and
assume that y; = f(x;) + ¢; where ¢; ~ N(0, 03) (i.e., measurement
noise with zero mean). Given the GP prior GP(0, k(x, x")), the posterior
over f is still a GP and its mean and variance can be computed as
follows (Rasmussen and Williams, 2006):

() = k() (K, + 02Dy,
02(x) = k(x,x) — k(0" (K, + 0°D 7'k, (x)

(€Y
(2)

where k,(x) = [k(x}, x), ..., k(x,,x)]T and K, = [k(x, x/)]x,x’EX,

Using these equations, the GP is built with the new measurements
acquired by the sensor. However, in practical applications, the update
of the posterior is computationally expensive as it requires inverting an
n X n matrix. n is the number of the samples acquired, which can be
thousands of elements in real-world applications. Hence, it is crucial to
reduce the frequency of this computation.

Given the region of interest, Gotovos et al. (2013) discretize it into a
grid where each element represents a small portion of the surface. These
elements compose the set of sample locations (points) D, and the goal
is to classify each location x; € D into two sets H or L with respect to
a threshold level 4. The LSE algorithm uses the inferred mean (1) and
variance (2) from the GP to construct an interval:

0,00 = [l @) £ 56,110 3)

for any x € D. The parameter f, represents a scaling factor for the
interval. The procedure for tuning this parameter can be found in
theorems 1 and 2 in Gotovos et al. (2013).

Then, in order to classify every point x into H or L, authors in
Gotovos et al. (2013) define the following confidence interval using the
intersection of all previous Q,(x) intervals for every point x:

t

G =[x

i=1

G

The classification of a point x depends on the position of its confidence
interval with respect to the threshold level A. Specifically, for each
location x € D if its confidence interval C,(x) lies entirely above A,
then f(x) > h with high probability, and we can classify x into the
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superlevel set H. Similarly, when the entire C,(x) lies below /4 then we
can classify x into the sublevel set L. These conditions are relaxed with
an accuracy parameter e (introduced in Gotovos et al. (2013)) as shown
in the following equations:

H, = {x | min(C,(x))+ € > h}
L, = {x | max(C/(x)) — e < h}

(5)
(6)

At time ¢, for every point with a confidence interval that crosses
the threshold, we have to defer the decision until more information is
available. The set of unclassified locations is then identified as:

U, =D\ (L, UH,) @)

In order to classify the points in U, according to the Egs. (5) and (6),
it is necessary to acquire more data by selecting new sampling locations
x; € U;. To this end, the algorithm at each iteration uses the confidence
interval for each unclassified point to derive the following ambiguity
value:

a,(x) = min{max(C,(x)) — h, h — min(C,(x))} (8)

The point x, with the highest ambiguity value represents the location
with the highest information content. As such, it becomes the next point
to measure.

In addition to the LSE algorithm, Gotovos et al. (2013) discuss the
batch version where multiple locations are selected by taking mutual
information into account. Although the main goal of their approach is
to select multiple locations and to compute an efficient path between
them, in both cases their assumption is that the process of acquiring a
new point of data is costly. Therefore their main goal is to minimize
the number of sampling locations. Moreover, during the movement
of the mobile agent from one location to next, the agent does not
acquire any further data. We will see in this paper how GP-based active
learning techniques can be derived to explicitly consider the scenario of
continuous data sampling.

2.3. Orienteering

The Orienteering Problem (OP) originates from the sport game of
orienteering. In the orienteering game, the start and end points are
specified along with a set of other locations (i.e., checkpoints) which
have an associated score. The players aim to visit checkpoints in order to
maximize the total score and reaching the end point within a given time
frame. This problem can model several different contexts. For example,
consider the problem in which a traveling salesperson has a set of cities
which he/she could visit. Assuming that the salesperson knows the
expected number of sales in each city, the goal is to plan a route so
as to maximize the total number of sales while keeping the total length
of such route within a given budget (i.e. the maximum distance that can
be traveled in one day).

Formally, the Orienteering Problem can be formulated in the follow-
ing way: given a set of N locations, each with a score S; > 0, a starting
location index = 1, an ending location index = N and the travel time 7;;
for all couples of locations i and j (with i # j), the goal is to plan a route,
limited by a given budget T,,,., that visits a subset of these locations in
order to maximize the total collected score.

The OP can easily be defined using a weighted undirected graph
G = (V,E)whereV = {v,,..., vy} is the set of locations (nodes) and E is
the set of edges. In this formulation the nonnegative score S; of location
i is associated with a vertex v; € V, and the travel time 1;; between
location i and j is associated with each edge ¢;; € E. The orienteering
problem consists of determining a Hamiltonian path over a subset of V,
including the start node (v,) and end node (vy), having a total length
that does not exceeds the bound 7, in order to maximize the collected
score.

Therefore, the OP is a combination of node selection and shortest
path computation between the graphs’ nodes, hence it can be cast as a



L. Bottarelli et al.

combination of the Traveling Salesman Problem (TSP) problems (Cor-
men et al., 2009) and the Knapsack Problem (KP), where the KP goal is
to maximize the total score collected while the TSP aims at minimizing
the travel distance. This formulation is also referred to as a generalized
traveling salesman problem (GTSP) (Golden et al., 1987). The OP is
known to be an NP-hard problem, as it contains the well known traveling
salesman problem as a special case.

This NP-hard problem arises in scheduling and routing applications,
and it is also known as the selective traveling salesperson problem (La-
porte and Martello, 1990; Thomadsen and Stidsen, 2003) or the max-
imum collection problem (Kataoka and Morito, 1988). A number of
practical applications have been modeled as an orienteering problem
and many heuristic approaches have been developed to combat the
inherent complexity of the problem. In most cases, the OP is defined
as a path to be found between distinct locations, rather than a circuit
where v; = vy. However, in some applications v, can coincide with vy
but the difference between both formulations is not significant. For a
general review we suggest the survey proposed by Vansteenwegen et al.
(2011).

2.4. Topological skeletonization

In shape analysis and digital image processing, skeletonization is a
process for reducing regions of an image to a thin (skeletal) represen-
tation while erasing most of the original pixels (see example in Fig. 2).
The skeletonization preserves and usually emphasizes the geometrical
properties of the shape, such as its topology, connectivity, direction and
length.

Skeletonization was first introduced by using an intuitive model of
fire propagation by Blum (1967). If one “sets fire” at all points on the
boundary of a shape, the skeleton forms at the points in the region
where two or more “fires” meet. This intuitive description has different
mathematical definitions and in the literature it is sometimes referred
to as medial axis or thinning (Gonzalez and Woods, 2006).

Skeletonization is used in several applications such as digital image
processing, computer vision or path planning for a mobile robot among
obstacles (de Leon and A., 1998). There are many techniques that are
tailored for different application contexts. Such algorithms can vary in
run time and properties of the produced skeleton, however they all
significantly compress the input. In this paper we are interested in the
skeletonization process to reduce the number of points that we must
consider when planning the path for the robotic platforms.

2.5. Exemplar based clustering with affinity propagation

Clustering aims at partitioning a set of objects into groups (or
clusters) based on the concept of similarity. Objects in the same group
should be similar, whereas objects belonging to different groups should
be dissimilar. Clustering is the subject of active research in several fields
such as statistics, pattern recognition, and machine learning (Xu and
Tian, 2015).

In this work, we are interested in clustering to reduce the computa-
tion required by our algorithm, and we make use of a powerful clustering
technique, called Affinity Propagation (Frey and Dueck, 2007). This
technique faces the problem of clustering by assuming that each cluster
is represented by one object, called an exemplar. All points of the
problem have to choose one exemplar (i.e. a representative). Points
which have chosen the same exemplar are in the same cluster. The
choice is estimated by recursively exchanging messages between points,
until a good set of exemplars emerges. The efficiency and accuracy
of this algorithm have been shown in different applications (Frey and
Dueck, 2007). Moreover, a useful property of Affinity Propagation is
that it does not need a specified number of clusters beforehand; clusters
emerges spontaneously from data.

Specifically, Affinity Propagation takes as input a set of real-valued
similarities between data points, where the similarity s(i, k) specifies
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how well the data point with index k is suited to be the exemplar for
data point i. For example, if the goal is to minimize the squared error,
each similarity can be set to a negative squared error. In our context,
the error is the Euclidean distance: for points x; and x, s(i, k) = —||x; —
x;||?. Alternatively, when appropriate for some applications, similarities
may be set by hand. As previously mentioned, the algorithm does not
require an explicit number of clusters. This number is automatically
determined and is influenced by the self similarities s(, k), referred to as
preferences, indicating how likely each point is to become an exemplar.

3. SBOLSE algorithm

Even if the LSE solutions proposed by Gotovos et al. (2013) proved
to be effective and accurate, they are not suitable for our constrained
scenario. Actually, with such methods the mobile sensor is guided
toward the most informative locations without taking into account the
path to reach such points. For example, the LSE algorithm assumes
that the mobile sensor moves from one position to the next selected
location following a straight line. Another issue is that the measure is
collected only at the final location without considering all the points
traversed by the sensor along its path. On the other hand, here we
consider applications where sensors can provide data while the robotic
platform is moving. For example, the mobile platforms we use here are
equipped with probes that measure various parameters (e.g., the DO
or the PH level) with a given frequency while the platform is moving.
In this scenario, our goal is then minimizing the total path length
while collecting as much information as possible to correctly classify
all locations x; € D.

In what follows we present our Skeleton-Based Orienteering for Level
Set Estimation (SBOLSE) algorithm. It starts from the LSE framework but
is specifically designed for continuous measuring sensors in which the
cost (in terms of energy) required to take a measurement is negligible,
but it is necessary to optimize the total path of the mobile platform to
minimize battery consumption.

The proposed algorithm is based on a Gaussian Processes modeling of
the scalar field and considers the knowledge about unclassified locations
x; € U, to build an orienteering problem instance and to select a
sequence of locations to visit. The algorithm optimizes the information
that can be acquired along the route while meeting the budget on the
travel distance. Moreover, we propose a heuristic approach based on
the topological skeletonization to combat the computational complexity
associated with the OP, along with several heuristics to reduce the num-
ber of orienteering executions required. We empirically show that with
these heuristics the classification accuracy does not suffer a significant
degradation while greatly reducing the computation time.

Algorithm 1 SBOLSE algorithm

Input: set D, threshold A, accuracy parameter e,
prior known data X C D, starting location x
Output: sets H and L

start

1: 1 <0

2 X0 < Xstart

3 Hy«< W@ Ly 0,Uy«< D

4: while H; UL, # D do

5 t«t+1

6: Compute GP posterior u(x) and o2 (x) for all x € U,

7:  Classify and update H,, L,,U, according to LSE (Gotovos et al.,
2013)

8:  x, « current position

9: G « buildGraph(x,,U,)

10:  path < orienteeringStep(G, budget)
11:  Execute path

12: end while

13: H«< H,L< L,
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Fig. 2. Example of a topological skeletonization applied to an image.

The code of Algorithm 1 describes the steps of our SBOLSE approach.
Our algorithm maintains three sets of points: the current sublevel L,
and superlevel H, sets, as well as the set of unclassified points U,.
At each iteration r we update the GP posterior by integrating the
new information gathered at the preceding iteration (line 6). Then
we compute the confidence intervals C,(x) for each point x € U,(x),
classify them into one of the three sets, and then compute the sequence
of locations to be visited. To compute such a path we consider the
ambiguity defined by Eq. (8) of the unclassified points and build an
orienteering problem instance. Specifically, in line 9 we create a graph
from the unclassified points U, (Algorithm 2) and then compute a path
(line 10) using the orienteeringStep procedure of Algorithm 3. The
algorithm terminates when H,UL, = D, i.e. when all points are classified
and thus U, = . Note that during the execution of the path (Algorithm 1,
line 11) if the sensor moves over locations not yet analyzed but already
classified according to LSE technique (Gotovos et al., 2013), these are
evaluated and possibly re-classified considering newly acquired data.

3.1. Building the graph
In the buildGraph procedure we take all the unclassified locations

U,, and we build an undirected weighted graph, where all nodes are
connected. This graph will then be used in the orienteering procedure.

Algorithm 2 buildGraph procedure

Input: current position x,, unclassified elements U,
Output: weighted graph G
Vv =x,
w(y) <0
ne<1
for all x; € U, do
n—n+1
V<Vuy, =x;
w(v,) < a(x;)
end for
E <0
: forall v, € V do
forallv; € V do
if v; # v; then
E<Eue;
w(eij) < v - Uj”
end if
end for
: end for
: G« (V,E)

© ® NI A wh

e el e el ol
NP RO

As shown in Algorithm 2, the first node of the graph represents the
current location of the mobile sensor (line 1). This location represents
the starting position for the orienteering solver. Subsequently we build
the nodes set V and the edges set E. The function w(-) denotes the weight

50

Engineering Applications of Artificial Intelligence 77 (2019) 46-58

of a node or the weight of an edge. The weight of a node w(v;) (line 7)
corresponds to the ambiguity measure (Eq. (8)) of the location that the
node represents. The weight of the first node is an exception as this
represents the current position of the mobile sensor, hence the location
has been already visited and classified. The weight of the edges w(e;;)
(line 14) denotes the travel distance between the locations represented
by the nodes v; and v;.

3.2. Orienteering step

In the orienteeringStep procedure we use the undirected weighted
graph G previously built and consider this as the input to the orien-
teering problem. In particular we have a fixed starting point (i.e. the
current location of the sensor), but we do not have an ending location
(which is required in the classical formulation of the OP). Please note
that, in principle, it would clearly make sense to design an orienteering
problem instance where the starting point is equal to the destination
point. However in the classic OP the rewards of every node are fixed:
in our case, rewards change during the execution of the algorithm since
the information value of every point decreases while the sensor acquires
new data. Hence, making a single run of OP with a budget equal to
the total battery lifetime, and with a starting point equal to the ending
point, would not take into account the dynamics of the information
inherent in such a scenario. Therefore, we iterate the process for smaller
segments, and this allows us to update the model (with a GP update)
more frequently, considering the newly acquired data. When measuring
at a point we also obtain information about nearby locations. Frequent
updates allow the algorithm to make better decisions about future path
choices. In other words, the choice of the budget (length) of these
segments allows a trade-off between adaptivity and the horizon of our
path planning procedure.

Algorithm 3 orienteeringStep procedure

Input: graph G = (V, E), budget B
Output: bestPath
: bestPath < @
: bestPathV alue < 0
: for i in range(2, |[V|) do
if ||v; — v;|| < budget then
path « orienteering H euristic(G, vy, v;, B)
if value(path) > best PathV alue then
bestPath < path
bestPathV alue < value(path)
end if
end if
: end for

© XN QD h N

—_
= O

To choose the destination we perform an orienteering procedure
multiple times (Algorithm 3, line 5), assuming as destination every
unclassified point in the graph that is reachable with the given budget.
The choice of repeating the orienteering step multiple times (one for
every possible reachable destination) represents the simplest choice for
formalizing this problem and this aspect is improved with the end-point
heuristics described in Section 3.4. Every time we solve an orienteering
instance with a different destination point we obtain a new path. The
procedure keeps track of the best discovered one and returns this as
final route to be executed from the SBOLSE algorithm. Specifically with
value(path) (line 6 and 8) we indicate the summation of the nodes’
weights in that route, that is value(path) = 3, ¢, w(v;). Since the
OP aims at maximizing the score for a given travel budget, using this
procedure we obtain a path that maximizes the information collected
about the unclassified locations for the level set estimation problem.
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Fig. 3. Example of the topological skeletonization and Exemplar Based Clustering heuristic applied to the data matrix containing the ambiguity measure for the unclassified points U,.
3a data matrix before the skeletonization, a darker color corresponds to an higher value of ambiguity. 3b matrix after the skeletonization operation. 3c Exemplars selected with the EBC

heuristic and 3d the corresponding clusters identified with different colors.
3.3. Skeletonization

In practical applications of the level set estimation problem the input
is a set of dense points that must be classified. Specifically, when the
data acquisition process starts, we must consider the entire surface
of the selected portion of the environment. These data are typically
discretized and organized in a grid where each entry represents a small
portion of the surface (i.e., a square of 50 centimeters or 1 meter in our
experiments).

Now, given the smoothness property of the environmental phe-
nomena, locations with high classification uncertainty usually cluster
into areas where the unknown scalar field has higher probability to
cross the threshold level. Considering all such points is redundant and
this motivates the use of the topological skeletonization technique to
compress the input.

Specifically, we consider the grid containing the information about
the ambiguity measure (Eq. (8)) of the unclassified points U, as a binary
image, where unclassified points are set to 1 and classified points are
0. We then apply a skeletonization technique to such image, and we
maintain as interesting points to be classified only the points of the
resulting skeleton. This greatly reduces the number of locations that
we must consider in the buildGraph procedure previously presented
in Section 3.1 (see an example in Figs. 3a and 3b). Note that in the
buildGraph procedure each point that is maintained after the skele-
tonization represents a node of a complete graph.

3.4. Orienteering with end-point heuristics

The major computation bottleneck of the naive SBOLSE algorithm
can be identified in the multiple executions of the orienteering step
(Algorithm 3, line 5), assuming as its destination every unclassified
location in the graph that is reachable with the given budget. Hence, we
aim at reducing the number of the orienteering executions by selecting
only a subset of the unclassified locations as potential end points.
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The new orienteering step procedure is described in Algorithm 4. We
can notice that the only differences with respect to Algorithm 3 are in
line 3, where we determine a new set of nodes V' using a heuristic, and
line 4 that loops on the newly created V' instead of V.

Algorithm 4 orienteeringStep procedure with heuristics

Input: graph G = (V, E), budget B
Output: bestPath

1: bestPath < @

2: bestPathV alue < 0

3: V' « heuristic(V)

4: for i in range(2,|V'|) do
5. if ||, — v;|| < budget then
6. path « orienteeringH euristic(G, vy, v;, B)
7 if value(path) > bestPathV alue then
8 bestPath < path
9: best PathV alue « value(path)
10:

end if
11: end if
12: end for

In what follows we propose the main heuristic that we implemented
and used in order to determine the new locations set V’. Three addi-
tional baseline heuristics can be found in the Appendix A.

3.4.1. EBC heuristic

The main heuristic we propose is based on the Exemplar Based Clus-
tering (EBC) performed with the Affinity Propagation technique (Frey
and Dueck, 2007) introduced in Section 2.5. The main idea behind
this technique is to exploit the Affinity Propagation algorithm on the
unclassified locations and use the selected exemplars as the set of valid
end points for the orienteering procedure. As described in Section 2.5
the Affinity Propagation procedure takes as input a set of real-value
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similarities between points and a set of real numbers which identify the
preference of a location to become an exemplar. In our application what
we want to obtain is a set of points reasonably scattered in space and
with high information content. Similarities and preferences have to be
set accordingly. Specifically, the similarity between two points is related
to their proximity, and preferences are related to the informativeness.
More details on how we set these measures in our experiments can be
found in Section 5. An example of the effects of the Exemplar Base
Clustering phase on the real dataset can be observe in Figs. 3c and 3d.

3.5. Theoretical analysis

For what concerns the theoretical analysis of our approach, notice
that (Gotovos et al., 2013) with Theorem 1 prove the convergence
of the LSE algorithm. Even though the selection procedure of our
SBOLSE algorithm differs from LSE, we used the same classification rules
(Algorithm 1, lines 6-7). As in LSE, our technique iterates with the while
loop until every point is classified. Hence we can ensure the convergence
of the SBOLSE algorithm with a high quality classification as they do.

The computational complexity of the technique can be described
as follows. Let us consider the worst case scenario; this scenario is
represented by the case where at each iteration of the algorithm we
move the sensor in a location adjacent to the current position and we are
able to classify only this new measured location. In this case the while
loop of the algorithm has to be performed |D| times. The complexity
of the body of the loop is the sum of four main components: (i) the
computation of the Gaussian Process that requires O(|D|*) due to the
need to invert a |D| X | D| matrix. (ii) The execution of the buildGraph
sub-procedure which has a complexity O(|U,|?). The cardinality of set
U, is | D| at the first iteration and decreases over time according to how
many points have been classified. (iii) The classification according to
LSE (Gotovos et al., 2013) requires O(|D|). (iv) The execution of the
orienteeringStep sub-procedure. The complexity of this step depends on
the actual heuristics used and very efficient solutions can be found,
O(log>0PT) where OPT is the number of nodes visited by an optimal
solution (Chekuri et al., 2012). As previously mentioned in Section
3.4 the major bottleneck is the multiple executions of the orienteering
step that, in the worst case scenario, are |D| — ¢. Even with a less
efficient implementation of the orienteering heuristic (e.g. a O(|D|*)
the execution of the orienteeringStep sub-procedure is on the order of
o(DI").

Hence, the combined complexity of the algorithm is on the order
of O(|D]’). Although the complexity seems very high, this is by far
the worst case scenario. Consider that, in practical applications the
algorithm does not classifies a single point at each iteration but rather
a set of new locations. Moreover, with the use of the skeletonization
and the end-point heuristics the computational effort associated to the
orienteeringStep is significantly reduced, hence, the algorithm can run
much faster. In our experiments in Section 5, we detail the actual
computation time required to perform the technique using two different
datasets.

4. PULSE algorithm

In what follows we present another algorithm, inspired by LSE,
which we call Path-Update LSE (PULSE) algorithm. As with the previous
SBOLSE algorithm, this is specifically designed for continuous sampling
sensors for which (i) the cost required to perform an individual mea-
surement is negligible, (ii) it is necessary to optimize the total path
of the agent in order to reduce the battery consumption and (iii) we
need an efficient path selection procedure. The proposed technique
determines an informative path in order to reach the most interesting
location (i.e. the point in space with the highest ambiguity about its
classification), moving from the current position through points that still
have to be classified. In contrast to SBOLSE, in which the orienteering
routine considers the amount of information in each location, this
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PULSE technique is a greedy approach that builds a path using only the
presence of the information in a location without taking into account the
amount. Moreover, in this case we do not have a budget that gives us
a tradeoff between adaptivity and path planning horizon. The purpose
of this algorithm is to develop a fast baseline technique for continuous
sampling sensors that ignores the amount of information. We use this
technique as a comparison for SBOLSE, showing that the orienteering
formulation is an important factor for informative path planning.

Algorithm 5 PULSE algorithm

Input: set D, threshold A, accuracy parameter e,
prior known data X C D, starting location x
Output: sets H and L

start

1: t <0

2 X0 < Xstart

3 Hy« W@ Ly 0,Uy«< D

4: while H, UL, # D do

5: te—t+1

6: Compute GP posterior u(x) and o2 (x) for all x € U,

7:  Classify and update H,, L,,U, according to LSE (Gotovos et al.,
2013)

8 x| <X

9:  x, «next location according to LSE (Gotovos et al., 2013)
10:  path < pathSelection(x,_;, x,,U)

11:  Execute path

12: end while

13: H«< H,,L < L,

Algorithm 6 pathSelection procedure

Input: last position x,_;, next location x,, unclassified elements U,
Output: path

1: i <0

2: xnexto < X1

3: path < x,_;

4: while x,,,, # x, do

5 i«i+1

6:  d < |lxpexs,_, — Xl

7: A0

8: forallxeU, do

9: if ||x — x;|| < d then
10: A« AUx
11: end if
12:  end for
13: Xnext; < minyeq\ |1%; — Xnext;_; ||>
14 path < path U Xy,

15: end while

The pseudo-code of Algorithm 5 describes the steps of our PULSE
approach. It is very similar to SBOLSE (differences in lines 8-9-10).
The algorithm maintains three sets of points: the current superlevel H,
and sublevel L, sets, as well as the set of unclassified points U,. At
each iteration  we update the Gaussian Process posterior by integrating
the new information gathered at the preceding iteration (line 6). Then
we compute the confidence intervals C,(x) for each point x € U,(x),
classify them in one of the three sets and then compute the next sample
to be evaluated using the ambiguity defined by Eq. (8) (line 7). We
then compute a path between the current location x,_, and the selected
point x, using the path selection procedure (Algorithm 6). The algorithm
terminates when H,U L, = D, i.e. when all points are classified and thus
U, = . Note that during the execution of the path (Algorithm 5, line 11)
if an agent moves through locations that are already classified, these are
re-evaluated and re-classified considering newly acquired data.
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4.1. Path selection

At each time step ¢ the algorithm keeps track of the starting position
x,_; of the platform (i.e. the last position) and the destination point
assigned by the sample selection criteria, i.e. the most interesting point
x,. In order to select an informative path towards the destination, the
path selection procedure analyzes each point x € U,, i.e. locations that
still have to be classified and therefore potentially carrying some useful
information, selecting a path {x,_| = X,ex;;s Xpext; s -+ > Xnext, = %} With
n > 1. Note that the number of points touched by the agent, n, is
automatically determined by the procedure. In the case of n = 1 the
path corresponds to the straight line from the current position to the
selected destination.

Each x,,,, point determined by the procedure meets the condition
to always approach the destination point, i.e.

9

where ||x’ —x"'|| is the Euclidean distance between locations x’ and x". In
more detail, given the two points x,,,, , and x,, the region of the space
which contains points meeting this condition defines a convex area (see
example in Fig. 4) and we call this area A, (Algorithm 6, lines 8-10).
The procedure analyzes all points x; € U, n A,, and selects as x,,,,,, the
closest point from the previous locatlon generatmg the path (Algorlthm
6, line 11).

Note that Algorithm 5 differs from the LSE Algorithm proposed
by Gotovos et al. (2013) only in the path selection procedure we employ.
Specifically, our path selection procedure selects only points that meet
the condition in Eq. (9) (Algorithm 6, lines 6 and 9). As we build the
path from x,_; to x, the area A, shrinks and converges towards the
destination point x,. This allows the path to include informative points
that lie inside this area (example in Fig. 4), while ensuring that the path
is going towards the most interesting point defined by the ambiguity
measure q,(x) introduced by Gotovos et al. (2013). For what concerns
the convergence analysis of this approach the same argument made in
Section 3.5 is valid.

“xnextl - xr“ < ”xrlext,-,] - X,”

4.2. Batch variant

Here we describe a variant of the PULSE algorithm which is aimed
at selecting a set of informative locations in a single iteration (i.e. after a
single Gaussian Process update). This will act as a trade-off between the
computation time required and the path’s efficiency. Following Gotovos
et al. (2013), we exploit the fact that the updated predictive variance
in Eq. (2) depends only on the location of a measurement, not on the
measurement value. Assuming we will obtain a new sample at some
location, it is possible to evaluate the updated predictive variance, and
thus the new ambiguity value, of every other point x; € U,. This process
is repeated adding the location with the new highest ambiguity to a set.

It is possible to compute an efficient path that visits all the locations
in such a set. The order in which those locations should be visited is
determined by solving a Traveling Salesman Problem (TSP) (Applegate
et al., 2007). Once we have the order of locations to be visited, the path
selection procedure (Algorithm 6) is applied to all pairs of consecutive
locations in order to obtain the final informative path. This algorithm
allows us to trade off adaptivity in favor of a reduction of the total
traveled distance required to classify all points x € D.

5. Experiments

In this section we present the empirical evaluation of our proposed
techniques, comparing them with literature alternatives on two datasets,
analyzing different aspects of the approaches. More in detail, in Section
5.1 we describe the datasets we used in our experiments; in Section
5.2 we present the comparison between all of our algorithms (as well
as state of the art competitors) on a real world dataset; and finally, in
Section 5.3, we present the results on a synthetic dataset. We employed
this second dataset to have experiments on larger instances.

The algorithms we compare are the following:
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+ PULSE: Our algorithm as explained in Section 4.

* PULSE,y x: This algorithm is the batch variant of PULSE as
described in Section 4.2.

+ CS: This is a variant of LSE as described by Gotovos et al. (2013)
for the continuous measuring setting. Locations on the straight line
between the last position and the next selected point are analyzed,
simulating a continuous sampling sensor.

* CS,x x: Similar to CS, this is a variant of LSE batch as described
by Gotovos et al. (2013) for the continuous measuring setting.

» SBOLSE: Our algorithm described in Section 3.

» SB-EBC: SBOLSE algorithm with Exemplar Based Clustering
heuristic as described in Section 3.4.1.

+ ARS-CIPP,: This is the adaptive re-planning scheme algorithm
proposed by Hitz et al. (2017). The number n represents the
number of control points of the B-spline that is optimized by the
algorithm.

In the two batch versions, X X identifies the cardinality of the batch
set, i.e. the number of locations in a TSP.

Regarding our SBOLSE algorithm and its heuristics variants, we
implemented a simple orienteering algorithm inspired by the center
of gravity technique as proposed by Golden et al. (1987). Notice that
the performance of the SBOLSE technique presented in the following
sections depends on the performance of the orienteering heuristic
implemented and this can be substantially improved (e.g., by using a
more advanced heuristic available in literature).

For the SBOLSE algorithm with the EBC heuristic we set the measures
required by the affinity propagation algorithm as follows:

+ Similarity: We want to associate the proximity of two points to
their similarity. Moreover all the similarity measures have to be
positive. To do so we compute the maximum distance possible
between any two locations (that we identify as maxDist) and
we set the similarity between point k and point i as s(k,i) =
(maxDist—||k—i||). The set of similarity thus obtained is normalized
so as to have all values between 0 and 1.

Preference: We want to associate the informativeness of a location
with the preference to become an exemplar for other neighboring
points. To do so we simply set the preference for a point k with the
ambiguity measure of that location, that is s(k, k) = g,(k). The set
of preferences is then normalized so as to have all values between
0 and 1.

We performed the skeletonization with a basic technique, based
on morphological operators, as implemented in the MATLAB function
bwmorph.

The aims of this empirical evaluation are to assess the quality of the
selected paths, showing that our techniques are competitive in terms of
total traveled distance required to obtain a high quality classification
and the gain in terms of computation time required by our techniques
with respect to the state of the art for the level set estimation problem.
As previously done by Gotovos et al. (2013), Bottarelli et al. (2016)
and Bottarelli et al. (2017), we assess the accuracy of the classification
using the F;-score. This is typically used in information retrieval to mea-
sure the accuracy of binary classification. Here we consider the locations
in the superlevel set as positives and the locations in the sublevel set
as negatives. All the described algorithms have been implemented and
tested using MATLAB R2016a on a AMD FX 6300 processor with 16GB
RAM.

5.1. Datasets

The real dataset consists of measurements of the pH level extracted
from waters of the Persian Gulf near Doha, Qatar using the boat in Fig. 1.
The data forms a 68 x 93 grid where each element represents a sampling
location x; that must be classified with respect to a given threshold. Each
point of the grid represents 0.5 square meters of the surface that has been
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Fig. 4. Example of runtime execution of the path selection procedure. The white areas represent location that are still unclassified. The circle represents the area A. On top the beginning
of the procedure and on bottom we can observe the path that has been built after some iterations.

Fig. 5. Real dataset experiments. The white areas represent location that are still unclassified and black lines display a portion of the path selected by the algorithms: (a) CS, (b) SBOLSE,

(c) PULSE and (d) ARS-CIPP.

analyzed. The value associated with that location is the average of all the
samples extracted by the sensors while moving the boat in that portion
of the surface. In our experiments we applied three different thresholds
(7.40, 7.42 and 7.44) to classify the scalar field. We then assessed the
results starting from ten random initial priors composed by 10% of the
points in the grid, for a total of 30 tests with every algorithm. These
priors were used to fit the hyper-parameters of an isometric Matérn-
3 (Rasmussen and Williams, 2006) kernel function.

The synthetic dataset consists of ten 60 x 179 grids. The motivation
for using this dataset is to test the techniques with more than 10,000
locations to classify. The dataset has been extracted from portions of
CO, maps® in order to obtain a scalar field with a topology consistent
with typical environmental phenomena. We assume that each location
represents 1 square meter of surface to analyze, and we used a threshold
value equal to 85% of the maximum value in the scalar field. We
assessed the results with five random initial priors for the Gaussian

2 http://oco.jpl.nasa.gov/galleries/gallerydataproducts/.
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Process composed of 10% of the points in the grid. The priors were used
to fit the hyperparameters of an isometric Matérn-3 (Rasmussen and
Williams, 2006) kernel function. With five priors per grid and ten grids,
we performed a total of 50 tests with each algorithm.

5.2. Real data experiments

For what concerns the real dataset, as done in previous approaches
(Gotovos et al., 2013; Bottarelli et al., 2016, 2017) we performed tests
to determine the # and e parameter values that allow a high accuracy
for all the algorithms. For the batch algorithms we performed tests with
batches of different sizes. We did not observe a significant reduction of
the total traveled distance with batches of size larger than 30. Thus, we
carried out the comparisons with batches of 30 points. For the ARS-
CIPP, we performed tests with 3-7-11-15-19 control points. In the
following tables we report the results with 7 control points since this
configuration has obtained the best results both in terms of total traveled
distance and runtime. The additional results can be found in Appendix C
Table C.5.
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Table 1

F,-score, total traveled distance (meters) and computation time (seconds) using the real
world pH dataset. X is the average of all 30 experiments and S E; is the standard error of
the mean.
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Table 2

F,-score, total traveled distance (meters) and computation time (seconds) using the
synthetic CO, dataset, X is the average of all 50 experiments and SE; is the standard
error of the mean.

F,-score Traveled dist. (m) Comp. time (s) F,-score Traveled dist. (m) Comp. time (s)

% SE; X SE; % SE; % SE; X SE; % SE;
PULSE 97.46 0.063 587.8 10.82 11.1 0.27 PULSE 98.22 0.090 1709.4 35.37 23.9 0.75
PULSE, 5, 97.43 0.060 518.7 6.68 63.5 0.89 PULSE, 5, 98.23 0.092 1356.4 23.08 163.0 4.11
(] 98.22 0.039 1560.8 18.58 38.1 0.49 CS 98.66 0.071 5588.1 136.86 99.4 291
CSy30 97.47 0.055 671.7 13.71 82.4 1.74 CSy30 98.25 0.089 1782.7 34.05 223.5 5.08
SBOLSE 97.23 0.066 473.6 6.20 1006.2 45.99 SBOLSE 97.99 0.100 1355.6 26.16 3663.8 265.22
SB-EBC 97.25 0.064 495.1 8.08 124.4 4.19 SB-EBC 98.03 0.096 1460.8 25.89 168.5 7.95
ARS-CIPP, 97.57 0.045 736.1 10.30 114.5 1.70 ARS-CIPP, 98.25 0.089 2616.0 63.44 192.9 4.75

As we can observe in Table 1 the F;-score is consistently higher than
97% for all the algorithms. Regarding the total traveled distance our
SBOLSE algorithm performs very well, with a traveled distance that is
lower than all other techniques but with the higher computation time
required. SBOLSE with our EBC heuristics represents the best trade-off
between total path and computation required, but with a time that
is one order of magnitude lower than the basic version without the
heuristic. Moreover, notice that the performance of SBOLSE depends on
the orienteering algorithm implemented. As previously stated in Section
5 these can be substantially improved.

We can observe that PULSE,;, represents a good trade-off as well,
however the average path required from the SB-EBC is lower and
statistically significant according to a t-test with « = 0.05. It is possible
to observe a graphical representation of the different paths chosen by
CS, SBOLSE, PULSE and ARS-CIPP in Fig. 5.

Notice that, results reported in Table 1 represents a full execution
of the algorithms until convergence is reached. In case of a limited
budget (i.e., a limited total travel distance that the mobile sensor can
run) such that it is not possible to classify all points, our SBOLSE and
SB-EBC obtain a clear advantage in terms of F;-score. In Fig. 6a it is
possible to observe the F;-score as a function of the traveled distance.
We can notice that the F,-scores of SBOLSE and SBOLSE with the EBC
heuristic outperform the other techniques. This translates directly in
an advantage for our techniques in case with a limited budget. If we
would have to interrupt the techniques before the convergence, due to
a limited battery capacity of the mobile sensor, our techniques would
have reached a better classification accuracy. For example, if we stop
after 300 m in the real world dataset SBOLSE would have an F,-score
of 95.29 with a gain of 1.39 with respect to the next best competitor
ARS-CIPP; that obtains an F;-score of 93.9.

5.3. Synthetic CO, dataset experiments

As previously done with the real-world dataset, we determined a
parameter setting that allowed a high accuracy with all the algorithms.
Result of experiments on the synthetic dataset are shown in Table 2.
As obtained in the real world dataset, also in the synthetic one the
SBOLSE algorithm shows the best performance in term of traveled
distance required to obtain a high quality classification. However in
this case the advantage is minimal (i.e., 1355.6 m instead of 1356.4
performed by PULSE,;,). These results lead to the conclusion that the
advantage of the SBOLSE technique is dataset dependent. Moreover,
notice that the performance of SBOLSE depends on the orienteering
algorithm implemented. As previously stated in Section 5 this can be
substantially improved.

Also in this synthetic dataset the advantage of SBOLSE comes with a
prohibitive computation time. The best trade-off is obtained using either
the exemplar based clustering heuristic with a minor increase in the path
length (+7.7%) but with a substantial reduction of the computation time
(—95.5%), or using the PULSE batch algorithm with a comparable path
length and computation time.

Similarly to what explained in Section 5.2, also by using the synthetic
dataset we can notice a clear advantage of SBOLSE and SB-EBC in terms
of F,-score in case of a limited budget. We can notice in Fig. 6b that the
F,-scores of our techniques outperform the other, that is, for a smaller
budget constraint with SBOLSE and SB-EBC it is possible to obtain a
better classification accuracy. For example, if we stop after 1000 m in
the synthetic dataset SBOLSE would have an F; -score of 98.7 with a gain
of 1.15 with respect to the next best competitor ARS-CIPP, that obtains
an F,-score of 97.55.

6. Conclusions

In this paper we proposed a novel set of algorithms for a specific en-
vironmental monitoring application called the level set estimation prob-
lem. Our algorithms are specifically designed for continuous-measuring
mobile sensors where the cost to perform a measurement is negligible.
In this context we aim at optimizing the total path length required from
the platform and reduce time required to compute an informative path.
The different variants are able to obtain a high quality classification with
a shorter path and a lower computation time compared to the current
stat of the art algorithms for the level set estimation problem. As future
work we will address the multi agent case for the level set estimation
problem. Team orienteering problem techniques should offer a viable
solution in this scenario.
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Appendix A. Orienteering end-point baseline heuristics

Here we describe three different baseline end-point heuristics for
SBOLSE that we implemented. Even if they represent common straight-
forward approaches to select elements from a set, with the reduction of
the number of orienteering executions, their impact in the reduction of
computational complexity of our algorithm is substantial. Specifically,
we tested the following methods:

» Random(p): With this simple heuristic, we randomly select a
specified percentage p of the unclassified locations, in order to
become the set of valid orienteering end points.

» Sparse(p): With this second heuristic, we select from the set of
unclassified locations the specified percentage p of point with the
higher ambiguity value (i.e. the locations with the higher amount
of information).

» Sample(p): With this last heuristic we perform a discrete random
sampling, where the probability of a point to be selected is
weighted by the ambiguity value of that location.
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Fig. 6. Evolution of the F,-score as a function of the distance traveled: (a) on a real-world instance; (b) on a synthetic instance.

Table B.3
Average time (seconds) on the real-world and synthetic datasets varying the Random, Sparse and Sample heuristics’ parameter.
90 80 70 60 50 40 30 20 10
Real data
SBOLSE 1006.2
SBOLSE-EBC 124.4
SB-Random 858.3 762.1 681.9 582.5 479.8 396.1 306.5 200.3 117.6
SB-Sparse 857.1 763.4 676.8 576.2 488.8 389.7 301.0 207.6 111.7
SB-Sample 563.7 533.6 482.8 439.2 390.8 329.2 259.2 192.7 110.4
Synthetic data
SBOLSE 3663.8
SBOLSE-EBC 168.5
SB-Random 1544.2 1378.8 1225.1 1038.2 880.2 692.7 537.8 389.5 227.7
SB-Sparse 1555.8  1411.7 12123 1047.0 868.8 693.8 537.4 381.0 222,1
SB-Sample 1004.0  924.9 850.1 768.9 663.1 593.0 472.5 349.5 212.4
Table B.4
Average traveled distance (meters) on the real-world and synthetic datasets varying the Random, Sparse and Sample heuristics’
parameter.
920 80 70 60 50 40 30 20 10
Real data
SBOLSE 473.6
SBOLSE-EBC 495.1
SB-Random 472.7 486.4 486.6 494.4 494.3 509.9 515.6 530.8 572.7
SB-Sparse 478.5 473.3 494.0 487.8 503.5 500.5 501.7 529.8 578.3
SB-Sample 498.6 498.2 501.4 490.0 503.5 513.1 521.1 530.5 569.8
Synthetic data
SBOLSE 1355.6
SBOLSE-EBC 1460.8
SB-Random 1386.1  1396.4 1407.3 1379.7 14385 1451.6 1534.8 1517.7 1645.1
SB-Sparse 1368.9 1367.6  1381.8 1367.8 1420.0 14257 1443.0 15084  1650.6
SB-Sample 1440.2  1401.0 14143 14243 1469.0 1479.5 14899 1546.1 16709

Appendix B. End-point heuristics experiments

In this section we present the empirical evaluation using the ori-
enteering end-point heuristics with respect to the standard SBOLSE
algorithm. We performed tests with the four heuristics on both the real
world dataset and the synthetic datasets described in Section 5.1. We
identify the different techniques as follows::

» SB-Random(p): SBOLSE algorithm with random sparsification
heuristic as described in Appendix A.

» SB-Sparse(p): SBOLSE algorithm with lowest data point sparsifi-
cation heuristic as described in Appendix A.

+ SB-Sample(p): SBOLSE algorithm with discrete random sampling
heuristic as described in Appendix A.
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In these heuristics, (p) identifies the heuristic parameter (percentage
of points). Specifically, we performed tests varying the percentage
parameter from 90% down to 10% of the points.

B.1. End-point heuristics results

We obtained a significant reduction in computation time on the
real world dataset. As we can observe on Table B.3, even with a
selection of 90% of the points we obtained a significant reduction on
the computation time of roughly 15% with random and sparse. We
obtained up to a reduction of roughly 88% when we select only 10% of
the points. With the sample heuristic we obtain a reduction of 44% up to
89% with the same parameters. While obtaining a significant reduction
on the computation time, we can observe in Table B.4 that we have a
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Fig. B.7. Runtime F,-score comparison on the typical example instance of the real dataset, varying the path length between SBOLSE, SB-EBC, SB-Random, SB-Sparse, and SB-Sample

algorithms.

Table C.5
F,-score, total traveled distance (meters) and computation time (seconds) using the real
world pH dataset. x is the average of all 30 experiments and SE; is the standard error of
the mean.

Table C.6

F,-score, total traveled distance (meters) and computation time (seconds) using the
synthetic CO, dataset, X is the average of all 50 experiments and SE; is the standard
error of the mean.

F,-score Traveled dist. (m) Comp. time (s) F,-score Traveled dist. (m) Comp. time (s)

% SE; % SE; * SE; * SE; * SE; % SE;
PULSE 97.46 0.063 587.8 10.82 11.1 0.27 PULSE 98.22 0.090 1709.4 35.37 23.9 .75
PULSEy 97.43  0.060  518.7 6.68 635  0.89 PULSEy; 98.23  0.092 1356.4 23.08 163.0 4.11
Cs 98.22 0.039 1560.8 18.58 38.1 0.49 Cs 98.66 0.071 5588.1 136.86 99.4 291
CSy3 97.47 0.055 671.7 13.71 82.4 1.74 CSy3 98.25 0.089 1782.7 34.05 223.5 5.08
SBOLSE 97.23  0.066  473.6  6.20 1006.2  45.99 SBOLSE 97.99  0.100 1355.6  26.16 3663.8  265.22
SB-EBC 97.25 0.064 495.1 8.08 124.4 4.19 SB-EBC 98.03 0.096  1460.8 25.89 168.5 7.95
SB-Random(10)  97.35 0.057 572.7 10.16 117.6 5.07 SB-Random(10)  98.05 0.094 1645.1 32.11 227.7 14.28
SB-Sparse(10) 97.36 0.068 578.3 11.45 111.7 4.32 SB-Sparse(10) 98.05 0.095 1650.6 34.22 222.1 14.98
SB-Sample(10) 97.32 0.066 569.8 9.57 110.4 3.95 SB-Sample(10) 98.04 0.093 1670.9 41.70 212.4 13.47
ARS-CIPP; 97.60 0.058 899.2 13.44 147.7 2.57 ARS-CIPP; 98.23 0.082  3059.0 75.11 323.7 9.96
ARS-CIPP, 97.57 0.045 736.1 10.30 114.5 1.70 ARS-CIPP, 98.25 0.089  2616.0 63.44 192.9 4.75
ARS-CIPP;; 97.64 0.054 8129 11.95 150.4  2.69 ARS-CIPP;; 98.28  0.089 2777.4 62.30 218.2 5.02
ARS-CIPP 5 97.68 0.050 895.8 15.36 187.4 4.18 ARS-CIPP 5 98.32 0.082  3052.7 61.33 265.0 5.89
ARS-CIPP 4 97.75 0.056 962.1 11.05 227.7 3.70 ARS-CIPP,q 98.39 0.075  3433.2 74.52 319.6 7.43

small increase in the total path length required. Specifically, with just References

10% of the points selected we obtained an increase in path length of
roughly 20%-22% with the three random, sparse and sample heuristics.
The trend of the F,-score as a function of the traveled distance on a real
world instance is shown in Fig. B.7. The trend of SBOLSE, SB-EBC, and
the three other heuristics is very similar, with a distance traveled that
is slightly longer for the heuristics compared to the standard SBOLSE
algorithm.

For the synthetic dataset we obtained an even greater reduction in
computation time. As we can observe on Table B.3 with a selection
of 90% of the points we obtained a reduction of roughly 58% up to
93% with a selection of 10% of the points. With the sample heuristic
we obtained a reduction of 72% up to 94% with the same parameters.
As previously discussed for the real-world dataset, the reduction in
computation time implies a small increase in the path length (see
Table B.4). Specifically, with only 10% of the points selected we
obtained an increase of roughly 21%-23% with the three heuristics.

Appendix C. Complete results

For completeness, in Tables C.5 and C.6 we report the same re-
sults of Tables 1 and 2 with the additional heuristics presented in
Appendix A. Regarding the SB-Random, SB-Sparse and SB-Sample we
report results with parameter p 10 because it represents a good
tradeoff between time and path length. Moreover, in the following tables
we also present the complete experiments performed with the technique
proposed by Hitz et al. (2017).
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