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Abstract. A challenging Pattern Recognition problem in Bioinformat-
ics concerns the detection of a functional relation between two proteins
even when they show very low sequence similarity – this is the so-called
Protein Remote Homology Detection (PRHD) problem. In this paper
we propose a novel approach to PRHD, which casts the problem into a
Multiple Instance Learning (MIL) framework, which seems very suitable
for this context. Experiments on a standard benchmark show very com-
petitive performances, also in comparison with alternative discriminative
methods.
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1 Introduction

The Protein Remote Homology Detection (PRHD) problem represents a rele-
vant bioinformatics problem, widely studied in recent years [1,12,14]. It aims
at identifying functionally or structurally-related proteins by looking at amino
acid sequence similarity – where the term remote refers to some very challeng-
ing situations where homologous proteins exhibit very low sequence similarity.
Many computational approaches have been developed to face this problem –
see for example the very recent review published in [1]. In a broad sense, such
approaches are divided in three main categories [1]: alignment-based methods,
rank-based methods, and discriminative-based methods. Here we focus on this
last category, which casts the problem in a binary classification task (homolo-
gous/not homologous), and in particular on approaches based on the Support
Vector Machines (SVM) classifier – shown to reach top performances in many
different benchmarks [6,14–18,20].

To apply the SVM, the typical choice is to derive a vectorial representation,
so that classic kernels (such as RBF - Radial Basis Function- kernels) can be
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applied. In this scenario representations based on N-grams (or K-mers1) – short
subsequences of consecutive symbols – are widely employed [15–18]. The well
known Bag of Words representation is an example of such characterization [7,
15,17,18]. Here a vectorial representation is extracted consisting of the number
of times the dictionary N-grams appear in the sequence. Although this leads
to excellent results, the main problem of this class of approaches is that N
(i.e. the length of the subsequence) is forced to remain small (such as 3). For
longer N-grams, the representation becomes too large (leading to the curse of
dimensionality) and too sparse (with too many zeros), thus creating problems
to the SVM [4]. Actually, due to the limited length, we can not fully exploit the
biological information present in longer sequences. An alternative is to devise
methods which directly compute kernels on the basis of long K-mers, avoiding
the explicit computation of the representation. One notable example is [11],
where authors propose a K-mer based string kernel approach. In their work they
showed that the best performances are obtained with K-mers of length 5.

In this paper we propose a novel approach to PRHD, which derives a novel
vectorial representation for SVM-based discriminative techniques. The approach
is based on the paradigm of Multiple Instance Learning (MIL – [5]), an exten-
sion of supervised learning where class labels are associated with sets (bags)
of feature vectors (instances) rather than with individual feature vectors. This
paradigm, which usefulness has been shown in many different contexts [2,8],
has not yet been investigated in the Protein Remote Homology Detection sce-
nario. Here we cast the PRHD problem in a MIL framework by interpreting
protein sequences as bags that contain fragments of a certain length k (the
instances). The classification problem is solved using a recent MIL approach
based on dissimilarities between instances [3]. The MIL scenario, and in partic-
ular the dissimilarity-based approach of [3], seems to be very suitable for the
PRHD problem for different reasons. First, the MIL paradigm assumes that the
label of the whole bag is determined by only a small set of relevant instances
[5]. This assumption is reasonable in PRHD, where the homology between two
proteins is linked to the presence of a small set of highly informative fragments
(such as ligand sites). Second, it does not impose any limit to the length of the
K-mers, so that also biologically meaningful longer fragments can be included
in the analysis. Third, the approach of [3] relies on the computation of distances
between instances, which in the PRHD case can be easily defined via meaningful
sequence alignment methods.

The proposed approach, presented in some different variants, has been tested
using standard benchmarks based on the SCOP 1.53 dataset [14]. The results
confirm the suitability of the proposed approach, also in comparison with alter-
native discriminative methods.

1 Along the text we will refer equivalently to K-mers or N-grams.
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2 General and Dissimilarity-Based MIL

In this section we introduce the general multiple instance learning paradigm,
together with the approach presented in [3] that we used. Multiple Instance
Learning (MIL – [5]) is concerned with problems where the objects originally
are not represented by a single feature vector, but by a so-called bag. A bag
is basically a set of feature vectors, the latter of which are also referred to as
instances in this context. As opposed to the standard classification setting, a
label is then assigned to the whole bag and not the individual feature vectors.
This can make classification quite difficult. The basic assumption behind MIL
is that a positive label of a bag indicates the presence of (at least) a positive
instance inside the bag – we will see that this assumption is very suitable for
our context.

Many different approaches have been proposed to solve MIL problems [2,8],
here we summarize the methods proposed in [3]. These methods are based on the
dissimilarity-based paradigm for classification [19], a paradigm where each object
is represented by a vector of dissimilarities with respect to a set of reference
objects (called prototypes). In the same spirit, in the approach of [3] each bag
is encoded into a vectorial representation based on the distances between the
instances of the bag and the instances of a set of prototypes.

More in detail, we are given N bags to encode and a set of L prototypes.
The choice of these prototypes is crucial, but in the basic version they can also
be the whole training set. Given prototype Pj containing m instances, Pj =
{xj1, ...xjm}, we represent a bag Bi = {xi1, ...xin} with n instances, by some
signature extracted from the pairwise distances between all the instances of Bi

and those of the prototype bag Pj . Different features can be extracted from the
resulting n×m dissimilarity matrix.

1. dbag feature. This feature is a scalar, and represents the average of the min-
imum distances between each fragment of the bag and all the fragments of
the prototype.

dbag(Bi, Pj) =
1

|Bi|

|Bi|∑

k=1

min
l

d(xik, xjl)

where d(xik, xjl) represents a distance between instances of the bag.
2. dinst feature. This is a vector of length m, where each component represents

the minimum distance between each fragment of the prototype and all frag-
ments of the bag.

dinst(Bi, Pj) =
[
min
k

d(xik, xj1), ...,min
k

d(xik, xjm)

]

In the first two MIL schemes, which are called Dbag and Dinst, each bag is rep-
resented by concatenating all the dbag and dinst features computed with respect
to all prototypes, i.e. Dbag(Bi) = [dbag(Bi, P1), dbag(Bi, P2), ...dbag(Bi, PL)] and
Dinst(Bi) = [dinst(Bi, P1), dinst(Bi, P2), ...dinst(Bi, PL)].
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These representations may have some limitations: Dbag may hide the most
informative dissimilarities, since it is an average over all distances, not consid-
ering that only few instances are relevant. The Dinst method, on the contrary,
considers all these dissimilarities, but the process of selection can be time con-
suming. Furthermore it may suffer from the curse of dimensionality. To overcome
these possible limitations, the authors in [3] proposed a variant which exploits
the combining classifier paradigm. The method, which we call the “ensemble”
approach, is based on considering each prototype as a single subspace where a
classifier is trained. Similarly to the Dinst method, each direction of the sub-
space represents the minimum distance between each instance of the prototype
and all instances of the bag. The dimensionality of this subspace is therefore the
number of instances of the prototype. Given L prototypes, we built L different
representations, training L different classifiers. The final classifier is then found
by aggregating the results of the L different classifiers via a combining function
(in this sense it is an ensemble approach) – for further details please refer to [3].

3 MIL Solution to the PRHD Problem

In our proposed approach we first cast the PRHD problem into a MIL formula-
tion, i.e. we define bags, instances and labels. This is done in a reasonable and
straightforward way: (i) each protein sequence is a bag, i.e. a collection of N-
grams (instances); (ii) the fragments (N-grams) composing the protein sequence
are considered the instances; (iii) finally, the label, which is attached to the set
of instances, is the label of the sequence. Please note that MIL represents a nat-
ural representation for the PRHD problem: proteins typically contain a small set
of meaningful fragments, which are crucial to determine the 3D structure (e.g.
binding sites) and thus the function (namely the label). Clearly, the fragments
can be extracted from the sequence in many different ways (random sampling,
exhaustive list, and so on). Here we adopt a very simple scheme: from each
sequence of length n, fragments of a fixed length k are extracted with overlap
k − 1. Each bag Bi will therefore have n − k + 1 instances. Once cast into a
MIL formulation, the PRHD problem is then input to the dissimilarity-based
approach presented in the previous section. In particular, a set of prototypes
P = {P1 · · ·PL} is chosen as a subset of the training set T . Given a prototype
Pj , for each sequence Si we compute a dissimilarity matrix between all frag-
ments of Pj and all the fragments of Si (i.e. the bag Bi). As described in the
previous section, from this matrix we then derive two different representations: a
scalar (dbag) or a set of values (dinst). In the basic formulation, the dissimilarity
matrices are extracted for all prototypes and concatenated to obtain the final
representation of our sequence. The proposed representation can now be fed to
the SVM classifier. Alternatively, the ensemble method described in the previous
section can be used: the classifier is trained on dinst of a single prototype, called
a subspace, and then the obtained scores are combined together to obtain the
final results via an ensemble classifier. Summarizing, we have three different MIL
schemes: one using (Dbag), one using (Dinst), and the last using the ensemble
approach (Dens).
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One crucial aspect of this class of approaches is the choice of the prototypes.
First, the number of prototypes has to be chosen. Next, it is crucial to define the
strategy with which they are chosen. Here we studied three different options:

(i) Random choice of sequences: the prototypes are randomly selected pro-
tein sequences of the training set.

(ii) Informed choice of sequences: the prototypes are chosen exploiting some
a priori knowledge on the training set.

(iii) Random fragments: here the prototypes are not anymore objects of the
training set (i.e. whole sequences), but they are built using random frag-
ments extracted from sequences. After deciding on the number of fragments
that should compose each prototype, we randomly select those fragments
from the whole set of bags. Note that our proposed scheme allows to exploit
long K-mers without increasing in a significant way the dimensionality. In
fact, the dissimilarity matrix between bag’s instances, which is at the basis
of our scheme, does not depend from the length of the K-mers, but only the
the number. This permits to exploit longer fragments with respect to classic
N-grams methods, which may contain more important biological informa-
tion, such as that related to folding.

4 Experiments

The proposed approach has been tested on the standard benchmark dataset2,
based on the SCOP 1.53 [14]. Even if quite old and not complete, this represents a
standard dataset for protein remote homology detection, permitting to compare
most of the methods introduced in this field [6,14–18,20]. Following the standard
protocol introduced in [14], the PRHD problem has been cast in a set of 54 binary
classification problems, each one involving a specific protein family. As done in
some recent studies [15–17], before extracting N-grams we re-wrote each protein
sequence using information extracted from the corresponding profile, determined
by following the recent [16], which employed a public implementation of the
PsiFreq program3.

Once determined, the MIL representations are then employed to train a SVM
classifier. As done in many previous works [7,15–18,20], we used the public GIST
implementation4, setting the kernel type to radial basis, and keeping the remain-
ing parameters to their default values. Detection accuracies are measured using
the ROC50 score [9]. This score, specifically designed for the PRHD context,
improves the classic Area under the ROC curve. In particular, it represents the
area under the ROC50 curve (with a value ranging from 0 to 1), which plots
true positives as a function of false positives – up to the first 50 false positives.
A score of 1 indicates perfect separation of positives from negatives, whereas a
score of 0 indicates that none of the top 50 sequences selected by the algorithm
were positives [13].
2 Available at http://noble.gs.washington.edu/proj/svm-pairwise/.
3 Available at http://bioinformatics.hitsz.edu.cn/main/∼binliu/remote.
4 Downloadable from http://www.chibi.ubc.ca/gist/ [14].

http://noble.gs.washington.edu/proj/svm-pairwise/
http://bioinformatics.hitsz.edu.cn/main/~binliu/remote
http://www.chibi.ubc.ca/gist/
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For the proposed approach, we repeated the experiment for k =
{2, 3, 4, 5, 6, 9, 12}. The distance between the K-mers was computed using the
classic Jukes-Cantor distance, based on the Hamming distance. Please note that
this is a basic distance between sequences, which does not imply any alignment. It
can be expected that performances may improve even more when more advanced
sequence comparison methods are used, for instance methods that allow for the
comparison of K-mers of different lengths. We tested different variants of the
proposed approach, trying to cover the most interesting combinations of the
basic scheme ((Dbag), (Dinst), and (Dens)) and the way prototypes are chosen.
For all variants we investigated two possible options, which derive from the fact
that the benchmark contains 54 classification problems. In particular, in the first
version (called SfA – Same for All) the prototypes were kept identical among all
54 problems. In the second version (called DfA - Different for All) a different set
of prototypes is used for each family. In particular the following variants have
been investigated:

(i) Dbag-Info. In this variant, we used the Dbag information to build the
representation, choosing the prototypes in an informed way. In the SfA
version, we used 54 prototypes, equal for all families: each prototype is the
most central sequence of the positive training set of each family, that is
the one with lowest distance to all other sequences. In the DfA version, for
each family we used as prototypes all the sequences in the positive part of
training set.

(ii) Dinst-Info. In this variant we used the Dinst information to build the
representation. Due to the high dimensionality of this representation, we
choose to employ a single prototype, chosen in an informed way. In par-
ticular, in the SfA version, the prototype was chosen as the most central
sequence among all positive training sequences of the 54 families. In the
DfA version, for each family the prototype was chosen as the most central
sequence among the positive training sequences of the considered family.

(iii) Dinst-RndFrag. In this variant we used again the Dinst information to
build the representation, employing again one prototype. However the pro-
totype was chosen using random fragments. In the SfA version, the frag-
ments are extracted from the set composed by the fragments of all the
positive training sequences of all families. The cardinality of the prototype
P is the ratio between the total number of fragments of the just mentioned
bag and the total number of positive training sequences. In the DfA version,
for each family the random fragments are chosen among the set composed
by the fragments of all the positive training sequences of the considered
family. The cardinality of each prototype P is the ratio between the total
number of fragments of the just mentioned bag and the number of positive
training sequences.

(iv) Dens-RndSeq-Mean. In this variant we used the ensemble MIL scheme
to build the representation, using random sequences as prototypes. In par-
ticular, in the SfA version, we randomly chose 10 prototypes from the set
of all positive training sequences of the 54 problems. Then we extract the
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Dinst representation for each prototype, training a different SVM for each
of them. Once computed the SVM scores, a “mean” combiner function is
used to get the final score (i.e. the mean of all scores). In the DfA version,
the 10 prototypes were different for each classification problem. In par-
ticular, for each family we selected 10 prototypes from the set of positive
training sequences of that family. A study on the performances by using a
different number of prototypes is reported later.

(v) Dens-RndSeq-Max. This is identical to the Dens-RndSeq-Mean except
that the combiner was a “max” combiner (i.e. the max among the scores).

(vi) Dens-RndFrag-Mean. This variant is similar to Dens-RndSeq-Mean,
except that the prototypes are built using Random Fragments. Prototypes,
for both SfA and DfA versions are determined as described in the Dinst-
RndFrag variant. In this version we used the “mean” combiner.

(vii) Dens-RndFrag-Max. This is identical to the Dens-RndFrag-Mean
except that we used the “Max” combiner.

For each experiment we selected the best result among the different lengths
of N-grams (which can be reasonably different depending on the specific family
addressed). A further analysis on the preferred length has been reported later in
the section. ROC50 values, averaged over the 54 families, are reported in Table 1,
for the different variants. From the table we make different observations. First,
it is interesting to note that the most basic variant of our scheme, namely the
Dbag-Info, is performing very well, at the same level of the most complicated
variants. This suggests that the extracted information, even in its basic form, is
already very informative. Second, it seems evident that choosing the same set
of prototypes for all families permits to reach better performances in almost all
cases. Actually we are convinced that the crucial point is not that the proto-
types are the same for all classification problem (each classification problem is
solved independently), but rather that this set is chosen among the whole set
of sequences rather than the single training set of a given family. This permits
to have a more variable set of prototypes which permits to get a richer repre-
sentation. Interestingly, the informed choice of the prototypes does not improve
in a substantial way the performances. As a final observation, it is important

Table 1. ROC50 accuracies of the different variants of the proposed approach.

Variant MIL scheme Prot. Sel. ROC50 (SfA) ROC50 (DfA)

Dbag-Info Dbag Informed 0.863 0.711

Dinst-Info Dinst Informed 0.820 0.781

Dinst-RndFrag Dinst Rand Frag 0.867 0.862

Dens-RndSeq-Mean Dens Rand Seq 0.878 0.792

Dens-RndSeq-Max Dens Rand Seq 0.819 0.781

Dens-RndFrag-Mean Dens Rand Frag 0.882 0.847

Dens-RndFrag-Max Dens Rand Frag 0.837 0.878
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Table 2. Results of the variant Dens-RndFrag-Mean (SfA) with varying number of
prototypes.

Nr. prototypes 1 2 3 4 5 7 10 15 20 30 40 50

ROC 50 0.867 0.872 0.886 0.892 0.880 0.882 0.882 0.874 0.879 0.868 0.870 0.880

to note that when combining the classifiers in the Dens class of approaches the
best result is obtained with the mean rule (in line with other studies in classifiers
combination [10]).

In order to see how critical the number of prototypes L is, we performed
another set of experiments using the best performing technique, i.e. the vari-
ant Dens-RndFrag-Mean (SfA). We varied the number of prototypes from
1 to 50, and the corresponding accuracies are reported in Table 2. It appears
that performances do not vary too much when more than 3 prototypes are
used. This suggests that the approach is robust against variations in L, pro-
vided that this number exceeds a minimum (3 in this case). Another interesting
aspect to be analysed concerns the length of the K-mers. As already mentioned,
in our experiments we computed results by varying the length k of the frag-
ments, selecting, for each family, the length leading to the best accuracy. It
seems interesting to observe the distribution of such best k, in order to discover
if the MIL approach prefers short or long N-grams. To do that, for each variant,
we count how many times the best result is obtained with short N-grams (N-
grams of length 2 or 3) or with long N-grams (N larger than 3). Such analysis
is reported in Fig. 1(a). In all cases except the Dbag-Info(DfA) variant, longer
fragments give better results. Furthermore, in Fig. 1(b) the accuracies obtained
by Dens-RndFrag-Mean (SfA) are shown for an increasing number of proto-
types (results of Table 2), divided in two cases: method with short N-grams and

D_ens−RndFrag−Max (DfA)
D_ens−RndFrag−Max (SfA)

D_ens−RndFrag−Mean (DfA)
D_ens−RndFrag−Mean (SfA)

D_ens−RndSeq−Max (DfA)
D_ens−RndSeq−Max (SfA)

D_ens−RndSeq−Mean (DfA)
D_ens−RndSeq−Mean (SfA)

D_inst−RndFrag (DfA)
D_inst−RndFrag (SfA)

D_inst−Info (DfA)
D_inst−Info (SfA)
D_bag−Info (DfA)
D_bag−Info (SfA)

short ngrams
long ngrams
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Fig. 1. Analysis of preferred N-gram length: (a) the distribution of the best length
over all approaches and (b) the ROC50 performance as a function of the number of
prototypes.
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method with long N-grams. The results with long N-grams are better and seem
to be more independent from the number of prototypes (whereas with short
N-grams there seems to be an increasing behaviour). All these findings confirm
our intuition that exploiting longer fragments can be beneficial for facing the
Protein Remote Homology Detection problem.

4.1 Comparison with the State of the Art

In Table 3 we compared the proposed scheme with alternative approaches present
in the literature. The SCOP 1.53 dataset, even if being old, has been widely
used as benchmark for many different approaches. We reported in the table
comparative results taken from the very recent [17], which are related to both Bag
of Words approaches as well as more complicated alternatives. We can see that
the proposed approach is very competitive, well comparing with alternatives. In
particular, the proposed approach is better than almost all methods presented in
the table, with the exception of the very complex Soft PLSA approach [17]: this
recent method, however, starts from a larger set of information – the complete
profile of each protein together with evolutionary probabilities – whereas our
approach only uses the most probable profile (for more information, interested
readers are referred to [17]).

Table 3. Comparison with state of the art. For the proposed approach we reported the
best obtained result, i.e. the result for Dens-RndFrag-Mean (SfA) with 4 prototypes
– see Table 2.

N-grams based approaches Other approaches

Method Year ROC50 Method Year ROC50

BoW-row-2gram 2017 0.772 [17] SVM-pairwise 2014 0.787 [16]

Soft BoW 2017 0.844 [17] SVM-LA 2014 0.752 [16]

Soft PLSA 2017 0.917 [17] HHSearch 2017 0.801 [17]

SVM-N-gram 2014 0.589 [16] Profile (5,7.5) 2005 0.796 [11]

SVM-N-gram-LSA 2008 0.628 [15] PSI-BLAST 2007 0.330 [6]

SVM-Top-N-gram
(n = 2)

2008 0.713 [15] SVM-Bprofile-LSA 2007 0.698 [6]

SVM-Top-N-gram-
combine

2008 0.763 [15] SVM-Pattern-LSA 2008 0.626 [15]

SVM-N-gram-p1 2014 0.726 [16] SVM-Motif-LSA 2008 0.628 [15]

SVM-N-gram-KTA 2014 0.731 [16] SVM-LA-p1 2014 0.888 [16]

ROC50 of the proposed approach: 0.892



128 A. Mensi et al.

5 Conclusions

In this paper we presented a Multiple Instance Learning approach for Protein
Remote Homology detection. The proposed scheme casts the PRHD problem
into the MIL paradigm by considering protein sequences as bags of N-grams, i.e.
short fragments of the sequence. A dissimilarity-based approach is then used to
face the MIL problem, based on the matrix of pairwise distances of fragments
of a given protein and fragments of a set of prototypes. An empirical evaluation
on standard datasets confirms the suitability of the proposed framework. Future
directions include analysis of richer dissimilaritites as well as the selection of
biologically relevant prototypes (e.g. binding sites).
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