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a b s t r a c t 

In this paper, we present a novel clustering scheme based on binary embeddings, which provides com- 

pact and informative binary representations of high-dimensional objects. The binary representations are 

obtained with a collection of one-class classifiers learned from (pseudo) randomly selected points in the 

dataset. To cluster the binary representations, we consider two approaches: a mixture of Bernoulli dis- 

tributions and a recent biclustering approach called CRAFT. The empirical evaluation in comparison with 

both classic and recent clustering methods, based on 12 different datasets, provides encouraging results. 

The main feature of the proposed method is that it is agnostic to the shape of the clusters. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Data clustering is a classical pattern recognition problem where

the goal is to organize a collection of objects into groups, or clus-

ters, so that objects in the same cluster are more similar among

themselves than to objects belonging to other clusters [1–3] . Many

different techniques have been proposed to tackle this problem,

ranging from the famous K-means , proposed more than six decades

ago [1] , to more recent and sophisticated approaches, such as spec-

tral clustering [4,5] , finite mixtures [6] , kernel-based methods [7,8] ,

and many others [9–11] . All those techniques address clustering

through different problem formulations, representations, criteria,

and algorithms; typically, they rely (explicitly or implicitly) on as-

sumptions or simplifications: for example, standard K-means has a

built-in assumption that the clusters are expected to be spherical

in the feature space [1–3] . 

In this paper, we propose a new clustering method based on a

binary embedding of the objects to be clustered, i.e., where each ob-

ject is represented by a binary string/vector. In binary embedding,

a well-studied topic in data processing, the goal is to represent ob-

jects by binary vectors : this representation/embedding should be

chosen so that, in the resulting binary space, the neighborhood

relationships among the original objects is as well preserved as

possible. Most of the times, the binary embedding is implemented

via a projection followed by a binarization operation (often a sign

function): in that case, research is mainly focused on the definition
∗ Corresponding author. 
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f the most suitable projections. Different solutions have been pro-

osed, ranging from random projections [12,13] to more complex

unctions optimizing sophisticated criteria, such as reconstruction

rror, data dissimilarity, rankings, and others [14–17] . Typically, the

oal of keeping the binary representation as compact as possible is

lso present [18,19] . 

Binary embeddings have been employed in many different sce-

arios, such as classification, retrieval, indexing, data storing, and

thers; as reported above, in most of the cases, the main goal is to

mbed high-dimensional objects in lower dimensional binary repre-

entations. In this paper, on the contrary, we devise a binary em-

edding scheme for clustering, where objects are embedded in a

typically) higher-dimensional binary space, such that data clusters

re more easily discovered. More precisely, the proposed approach

efines the embedding using a set of classifiers in the original fea-

ure space. The intuition is that points sharing the same class with

espect to a large collection of classifiers are naturally expected to

elong to the same cluster. 

Clearly, a central aspect of the proposed approach is the defini-

ion of a proper set of flexible and meaningful classifiers. Our pro-

osal is to use a collection of one-class classifiers [20–22] , a partic-

lar type of classifiers – typically used for outlier detection – that

an be trained using only examples from the positive class (for ex-

mple, a Gaussian with a threshold, a sphere, an ellipse, or a one-

lass support vector machine [21] ). In our approach, each one-class

lassifier is learned from a small subset of points from the dataset.

hese trained models, herein referred to as embedding models , are

hen used to derive the binary embedding as follows: a given point

 is represented by a binary vector where the j th entry is 1 if x is

lassified in the positive class by the j th one-class classifier, and 0

https://doi.org/10.1016/j.patcog.2018.05.011
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therwise. A set of embedding models may contain different fami-

ies of classifiers (e.g., Gaussian and one-class SVM) and define dif-

erent regions (see Fig. 3 , for an example); this aspect, together

ith the fact that the points used to define the classifiers can be

ampled with many different strategies (e.g. nearby, far away, near

he centroid, near the boundary, nearly aligned) makes the whole

cheme very flexible. 

After the embeddings of all the objects in a dataset are ob-

ained, clustering is performed on these binary signatures of the

bjects. To be as general as possible, and to reduce the number

f assumptions to a minimum, the first approach that we propose

o cluster the binary representations is by learning a mixture of

ernoulli distributions, where each component models the region

embership pattern that characterizes each cluster. 

In some cases, several components of the binary representation

ay be irrelevant for the clustering task, namely because the cor-

esponding classifiers do not contribute to distinguish the clusters.

n such cases, clustering the complete binary signatures may not

ead to good results, since clustering criteria look for a coherent

ehaviour of objects with respect to all the classifiers. In these

ases, it seems more reasonable to look for subsets (clusters) of

bjects that exhibit a coherent behaviour in a subsets of classifiers

hopefully, as large as possible). To handle this task, we propose

esorting to biclustering schemes [23] , where the aim is to discover

roups of objects that behave coherently in groups of features. In

ur context, even if we have to pay for the higher computational

omplexity, we can potentially discover groups of objects with sim-

lar memberships pattern with respect to a subset of classifiers;

his is equivalent to performing simultaneous clustering and fea-

ure selection, a long-standing problem in the clustering literature

24] . In particular, here we adopt the very recent CRAFT (ClusteR-

pecific Assorted Feature selecTion) algorithm [25] . 1 

The proposed approach has been evaluated on a collection

f classical benchmark datasets, analyzing the effect of several

hoices, namely the number of embedding models, the sampling

trategy, and the final clustering technique. The obtained results

uggest that the proposed scheme represents a viable alternative

o classical as well to advanced clustering algorithms. 

. Related work 

Although some of the ideas and tools used in the proposed ap-

roach can be found in other techniques, here they are combined

n a novel way to obtain a new general-purpose and highly flexible

lustering framework. In this section, we summarize some of this

elated work. 

In the so-called generalized dissimilarity-based representation 

26–28] , each object is represented by a vector of dissimilari-

ies/similarities with respect to a set of models (e.g., lines [28] ,

idden Markov models [27] , one-class SVM [26] ). This class of ap-

roaches generalizes the dissimilarity-based representation paradigm 

29] , which claims that an effective representation of a given ob-

ect can be obtained by looking at its dissimilarities with respect to

ther objects (prototypes); the effectiveness of this approach (and

everal variants thereof) has been shown in several contexts [29] .

ur approach is related with this line of reasoning, in that it rep-

esents each object by a binary vector produced by a set of trained

odels. However, we simultaneously employ many different types

f models (rather than a single type). Moreover, and somewhat

urprisingly, dissimilarity-based representations have been hardly 

xploited for clustering. 
1 The method has been presented as a clustering approach which makes cluster 

pecific feature selection; however it can easily be seen as an approach to deter- 

ine exclusive-rows biclusters (following the notation in Fig. 4 of [23] , and assum- 

ng that every row represents the embedding of a single object). 

{  

f  

e  

e  

r  
Within the same line of reasoning, the so-called preference anal-

sis (PA) framework [30–32] consists of a class of methods specif-

cally designed to face the multiple structure recovery (MSR) prob-

em in computer vision. MSR aims at identifying multiple models

such as lines) from noisy data, which may also contain outliers;

he kind of model (line, plane, circle, etc...) has to be pre-specified.

ypically, MSR is addressed by extracting some tentative structures

obtained by random sampling), and estimating how they fit the

iven points; the result is a (binary) matrix where an entry ( i, j )

ndicates if the j th model (structure) “explains” the i th point. In-

tead of the classical consensus analysis , which looks for the models

hat explain most of the points (i.e., methods based on the Hough

ransform or RANSAC [33,34] ), PA reverses that viewpoint, by ana-

yzing how the points are explained by the different models [30–

2] . In particular, similarly to our approach, each point is repre-

ented by a signature which indicates its fit to the pool of tenta-

ive structures; the MSR problem is then solved by clustering these

ignatures. Even if sharing a similar pipeline, there are some essen-

ial differences. Whereas PA crucially exploits the basic assumption

hat each cluster has the same form as the model used for the em-

edding, in our approach the clusters do not have a pre-specified

orm. Moreover, our scheme is more general, relying on a library of

odels and dealing with general input data. Finally, to obtain the

inary signatures, PA requires a threshold, which is used to define

f a point is “well explained”, or not, by a given model. In our pro-

osal, in contrast, this is automatically determined by the learned

lassifiers. 

Our method is also related with approaches that use projections

o perform an embedding of objects in a feature space, where clus-

ering is then carried out. Some methods, close in spirit to the

inary embedding for supervised solutions, employ random pro-

ections to define the embedding space [35–40] . All those works,

owever, employ only projections, and are specifically designed to

educe the high dimensionality of the problem. 

Finally, some weaker links can be also established with clus-

ering ensembles [41] , since we are in some sense combining dif-

erent models which can potentially characterize clusters, or even

ith discriminative clustering [42] , since we propose to obtain the

inary signature by separating group of points. 

Summarizing, the proposed approach exploits and merges in a

nique fashion tools and ideas present in different related areas

binary compression, dissimilarity-based representation, preference 

nalysis); the proposed framework thus represents a new general-

urpose and flexible clustering approach, which is agnostic to the

hape of the clusters. 

. The proposed approach 

This section begins by defining the form of our binary embed-

ings, which uses a collection of one-class classifiers trained on

mall random subsets of the dataset to be clustered. Then, we dis-

uss different strategies to obtain these random subsets and their

otivations. Finally, we present the proposed binary clustering al-

orithms. The whole scheme is then summarized in Fig. 1 . This

ection also contains some observations on the dimensionality is-

ue and a toy example used to highlight and illustrate the different

omponents of the proposed method. 

.1. Binary embeddings 

The set of N objects to be clustered is denoted as X =
 x 1 , . . . , x N } , where each x i ∈ X . We consider some dissimilarity

unction d : X × X → R , and in general do not assume anything

lse about this function (e.g., that it is a metric), unless otherwise

xplicitly indicated. If each object is characterized by a vector of p

eal-valued features, we overload the notation to let x ∈ R 

p denote
i 
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Fig. 1. Summarizing scheme of the proposed approach. 
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the vector representing the i th object; in this case, d will denote

the Euclidean distance in R 

p , that is, d(x i , x j ) = ‖ x i − x j ‖ . 
A binary embedding of the dataset X is a mapping E : X → {0,

1} M , in which each element of X is mapped into a binary M−vector.

This mapping does not have to be injective, thus it may not be

invertible. The binary embedding can be written as 

E(x i ) = 

(
e 1 (x i ) , . . . , e M 

(x i ) 
)
, (1)

where each e j : X → { 0 , 1 } is a binary function. In this paper, each

of these binary functions e j is a one-class classifier [21] , learned

from a small random subset of X , denoted as P j ⊂ X (below we will

discuss different strategies for obtaining these random subsets). 

3.2. Sampling subsets of points 

As mentioned above, each of the M one-class classifiers e j is

learned from a set P j containing N P points sampled from the

dataset X without replacement. Typically, N P is a small number,

but it should be no less than the minimum number of points

needed to learn the adopted type of one-class classifier. The ran-

dom sampling can be driven by different strategies, such as giving

high probability to points that are distant from previously sampled

points (as is done in the K-means ++ initialization method for K-

means [43] ) or the opposite, to favor compact subsets. In our ap-

proach, we consider the following two sampling strategies. 

• Compact sampling : in this scheme (similar to that used in [31] ),

the points are preferably sampled in a neighborhood of the

feature space. To this end, the first point is randomly cho-

sen, whereas the remaining N P − 1 points are chosen so that

nearby points have higher probabilities. In practice, given the

first point x 1 (randomly picked), the set P i of points is incre-

mentally obtained by sampling points from the following dis-
tribution 

P (x n ) = 

1 

Z 

{ 

exp 

(
−d(x n , x 1 ) /σ

)
if x n / ∈ P j 

0 otherwise, 

(2)

where Z is a normalization constant and σ controls the tight-

ness of the distribution, thus the size of effective neighborhood

(see Fig. 3 (a) and (b)). Notice that for this sampling scheme,

nothing needs to be assumed about the dissimilarity measure

d . 
• Elongated sampling: this scheme aims at extracting points form-

ing an elongated set (see Fig. 3 (c), (d) and (e)); here, we are as-

suming that each x i ∈ R 

p and that d is the Euclidean distance. In

this case, we first randomly sample the first two points x 1 and

x 2 , with the remaining points being sampled by giving higher

probability to points that are near the line connecting x 1 and

x 2 . This is done by using again Eq. (2) , with the distance d ( x j ,

x 1 ) replaced with d l ( x j , line( x 1 , x 2 )), which denotes the distance

of point x j to the line connecting the two points x 1 , x 2 . In fact,

this distance can be efficiently computed by using only dis-

tances between points, which allows relaxing the assumption

that d is the Euclidean distance and requiring only that it is a

metric [28] . 

At the end of the complete sampling procedure, we obtain a

ollection of M subsets of X , that is, { P 1 ⊂ X, . . . , P M 

⊂ X} . Notice

hat these subsets do not have to form a partition of X (in general,

hey do not), since they are not necessarily disjoint and their union

ay not be equal to X . 

.3. Obtaining the binary embedding 

Each component e j : X → { 0 , 1 } of the binary embedding func-

ion is a one-class classifier learned from the corresponding sub-

et P j . Recall that one-class classifiers are a particular type of clas-

ifier that can be trained using only positive examples [20,21] .
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any one-class classifiers have been proposed, ranging from sim-

le Gaussian models, up to support vector domain descriptors, also

nown as one-class support vector machines (OC-SVM) [44,45] . Typ-

cally, to define the decision boundary, a fraction is provided, indi-

ating the percentage of training points that should belong to the

egion defining the positive class. This can be directly used in the

ethod (like the parameter ν in the OC-SVM), or can be used to

stimate a threshold. In our approach, we avoid having to set this

arameter by enforcing the model to be the smallest one that clas-

ifies all the points in P j as positive; for example, in the case of a

phere, the positive region is the minimum sphere containing all

oints in P j . 

In our method, we are given M subsets of points, P 1 , . . . , P M 

, to

rain M one-class models. Even if each model is trained on a dif-

erent set of points randomly sampled from the dataset, some cor-

elation between the models can be present, since it is possible

hat the sets of random points overlap. A possible alternative, not

nvestigated here, would be to sample “non-overlapping” sets, to

orce the subsets P 1 , . . . , P M 

to be disjoint. This could reduce the

orrelation between models, but it would may limit the number of

ossible models, thus reducing the final possible dimension of the

inary embedding space. 

Given the M classifiers, each object x i is represented by an M -

imensional binary vector E(x i ) = 

(
e 1 (x i ) , . . . , e M 

(x i ) 
)
. By stacking

he binary embeddings of all points, we obtain an N × M binary

atrix, which represents the embedding of the whole dataset. 

.4. Clustering the binary embeddings 

Given the binary matrix that results from the embedding, we

erform clustering using two schemes: (a) we investigate a sim-

le strategy, which makes very few assumptions, modelling the

olumns of the matrix as being generated by a Bernoulli mixture;

b) we also consider a more sophisticated scheme, the CRAFT al-

orithm [25] , which takes into account the fact that a cluster rep-

esents a group of objects which behave coherently with respect

o a subset of features (classifiers, in this case). Next, we review

n detail the Bernoulli mixture model, whereas for CRAFT we pro-

ide only a brief summary, redirecting the interest readers to the

riginal publication [25] . 

.4.1. The Bernoulli mixture 

In this section we introduce the Bernoulli Mixture model, 2 a

imple probabilistic model usable to cluster binary data [46] , re-

ently extended also to the biclustering case [47,48] . 

The goal of this model is to cluster the N rows of the N × M ma-

rix B , where B i, j = e j (x i ) is the j th bit of the binary embedding of

 i . We denote the i th row of B as b i = E(x i ) = 

(
e 1 (x i ) , . . . , e M 

(x i ) 
)
. 

Recall that a Bernoulli mixture with K components is expressed

y the following probability mass function (for b ∈ {0, 1}) 

 (b) = 

K ∑ 

k =1 

αk θ
b 
k (1 − θk ) 

(1 −b) , (3)

here αk is the probability of the k th component and θ k is the

ernoulli parameter of the k th mixture component. 

Our generative model for the elements of matrix B is as fol-

ows: each row, say i , chooses one of K components with probabil-

ties α1 , ... , αK (naturally, αk ≥ 0 and 

∑ 

k αk = 1 ); given the chosen

omponent, say k , the j th element of the i th row is sampled from a

ernoulli distribution with parameter θ jk , and all the elements in a

ow are mutually independent, conditioned on the chosen mixture

omponent. Finally, the rows are mutually independent. Formally,
2 A similar model was introduced in [6] , with the name latent class model . 
his corresponds to the following joint probability function: 

 (B ) = 

N ∏ 

i =1 

K ∑ 

k =1 

αk 

M ∏ 

j=1 

θ
b i j 

jk 
(1 − θ jk ) 

(1 −b i j ) . (4)

Using this model to cluster the rows of B corresponds to ob-

aining estimates of its parameters, ˆ θ jk and ˆ αk , for j = 1 , . . . , M and

 = 1 , . . . , K, and then assigning each row to the component with

he highest posterior probability; that is, letting z i ∈ { 1 , . . . , K} be

he cluster label of the i th row, 

ˆ 
 i = arg max 

k ∈{ 1 , ... ,K} 
ˆ αk 

M ∏ 

j=1 

ˆ θ
b i j 

jk 
(1 − ˆ θ jk ) 

(1 −b i j ) . (5) 

To estimate the model parameters, we use an expectation-

aximization (EM) algorithm [49,50] , where the missing variables

re obviously the cluster labels z i , which we represent (as is stan-

ard when deriving EM algorithms for mixture models) using bi-

ary indicators: y ik ∈ {0, 1}, with y ik = 1 if and only if z i = k . We

enote the collection of all these indicator variables as Y . Using

 to denote the complete set of parameters, ϒ = { αk , θ jk , for k =
 , . . . , K, j = 1 , . . . , M} , the complete log-likelihood log P (B , Y | ϒ) is

iven by 

og P (B , Y | ϒ) = log P (B | Y , ϒ) + log P (Y | ϒ) (6)

here 

og P (Y | ϒ) = 

N ∑ 

i =1 

K ∑ 

k =1 

y ik log αk (7)

nd 

og P (B | Y , ϒ) = 

N ∑ 

i =1 

K ∑ 

k =1 

y ik log 

( M ∏ 

j=1 

θ
b i j 

jk 
(1 − θ jk ) 

1 −b i j 

)
(8) 

= 

N ∑ 

i =1 

K ∑ 

k =1 

y ik 

M ∑ 

j=1 

(
b i j log θ jk + (1 − b i j ) log (1 − θ jk ) 

)
. (9) 

The linearity of the complete log-likelihood with respect to the

idden variables y ik implies that the E-step of the EM algorithm

orresponds to computing the conditional expectation of these hid-

en variables, which are then plugged back into complete log-

ikelihood, yielding its conditional expectation. With 

ˆ ϒ denoting

he current parameter estimates, the EM algorithm iterates be-

ween two steps: 

• E-step: the conditional expectation of the hidden variables Y is

computed, given the observed ones B , and the current estimate

of the parameters ˆ ϒ . For our model, this corresponds to 

w ik = P (y ik = 1 | B , ˆ ϒ) = 

ˆ αk 

∏ M 

j=1 
ˆ θ

b i j 

jk 
(1 − ˆ θ jk ) 

1 −b i j ∑ K 
l=1 ˆ αl 

∏ M 

j=1 
ˆ θ

b i j 

jl 
(1 − ˆ θ jl ) 

1 −b i j 

. (10)

Let W be the collection of all the w ik variables, such that W =
E [ Y | B , ˆ ϒ] . 

• M-step: the parameter estimates are updated by maximizing

conditional expectation of the complete log likelihood defined

in Eq. (6) , that is, 

ˆ ϒ ← arg max 
ϒ

(
log P (B | W , ϒ) + log P (W | ϒ) 

)
(11)

After some simple manipulations, we obtain the following sim-

ple update expressions: 

ˆ αk ← 

1 

N 

N ∑ 

i =1 

w ik (12) 

ˆ θ jk ← 

∑ N 
i =1 w ik b i j ∑ N 

(13) 

i =1 w ik 
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Fig. 2. Toy example. 
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The EM algorithm starts from an initial estimate ˆ ϒ = ϒ0 and

iterates between the two steps until some convergence criterion is

met; typically, the relative change in log-likelihood being less than

some threshold. As in many clustering algorithms [51] , a good ini-

tialization is crucial to get a good model estimate: the experimen-

tal section contains the details on how we faced this problem in

our experiments. 

3.4.2. The CRAFT approach 

The CRAFT algorithm (ClusteR-specific Assorted Feature selec-

Tion [25] ) is a very recent probabilistic approach for clustering

both numerical and categorical data, which aims at selecting, for

each cluster, the best set of features. The main intuition behind

CRAFT is that objects belonging to a cluster should agree on

the features selected for that cluster, this being similar in spirit

to biclustering [23] . In the binary case we are considering, this

method corresponds to the maximization of the cluster entropies

over subsets of features; by deriving an asymptotic approximation

[52,53] for the joint log likelihood of observed data, cluster indi-

cators, cluster means, and feature means, the authors derive an

elegant K-means style algorithm. In particular, the approach iter-

ates between three steps: (i) computing the distances from cluster

centers, using the features selected for each cluster, (ii) assigning

points to clusters, (iii) recomputing cluster centers and estimating

the appropriate features for each cluster. For further details please

refer to [25] . 

3.5. The dimensionality of the binary embedding 

As described above, the proposed approach builds the embed-

ding space by exploiting a set of one-class classifiers, determined

on the basis of randomly selected subsets of points. Naturally, the

obtained clusters may depend on the randomly chosen points: one

way to reduce the influence of this random fluctuation is to simply

increase the number of random subsets (i.e., the dimensionality of

the embedding). This, however, can be beneficial only up to a cer-

tain point, since too many features may cause difficulties to the bi-

nary clustering algorithms and imply an increasing computational

cost. In fact, the increased computational cost and the increased

number of possible irrelevant features may lead to poor results in

the final clustering. 

In order to address this problem, we propose a strategy with

two steps: (i) obtain several different clustering solutions, each one

starting from a “not too high” number of classifiers; (ii) select the

clustering from the pool of solutions (either by choosing the best

one or by fusing them via an ensemble clustering method [41] ).

With this strategy, we can maintain the embedding space with a

reasonable dimension, while being robust to the possible random

fluctuations due to the sampling process. We implemented two

variants of this idea, which we call Sel (Selection) and Ens (Ensem-

ble), respectively: 

1. Sel (Selection): given L clusterings, we select the best one, ac-

cording to the entropy criterion proposed in [54] , which is

specifically designed for binary data. In particular, for the l th

clustering C � = { C � 
1 
, . . . , C � 

K 
} , we evaluate the following criterion:

O ( C � ) = 

1 

M 

( 

H (B ) − 1 

N 

K ∑ 

k =1 

n k H (C � k ) 

) 

, (14)

where n k = | C � 
k 
| is the number of points in cluster C � 

k 
, H ( B ) is

the entropy of the input binary data, and 

1 
N 

∑ K 
k =1 n k H(C � 

k 
) is the

entropy of the partition, i.e. the weighted sum of each cluster’s

entropy (for more details, see [54] ). The chosen clustering ˆ C is

the one maximizing (14) . 
2. Ens (Ensemble): here, instead of selecting the best clustering,

we aggregate the L clusterings by using an ensemble clustering

approach. There exist different approaches for ensemble cluster-

ing [55] (and also for biclustering [56] ); in particular, we adopt

the evidence accumulation clustering (EAC) scheme [41] . In that

scheme, the idea is to assess the similarity between two objects

via the number of times they are placed in the same cluster, in

a collection of different clusterings. The rationale is that objects

which belong to a “real” cluster are very likely to be assigned to

the same cluster in different partitions. Following [41] , we de-

rive the final clustering using a single-linkage hierarchical clus-

tering approach. 

.6. Computational complexity 

The proposed approach represents a general-purpose approach

omposed by different blocks: their implementation strongly in-

uences the complexity of the whole scheme, which is therefore

ifficult to quantify. In general, we observe that the heaviest step

s building the one-class classifiers underlying the embedding: we

ave to train M different one-class classifiers, which may be costly

f we have large M or if we choose complex models (such as OC-

VM). In our experiments, we used a moderately small number of

odels (100) and the 1-nearest-neighbor (1-NN) one-class model,

hich is very fast (it only computes distances from the training

oints) yet very accurate. The one-class classifiers are trained on

he sampled points, which can be really few (we used 10 or 15

oints in our experiments). Once the models are trained, the em-

edding is typically very fast (e.g., comparison with a threshold).

he number of models also influences the complexity of the binary

epresentations: large M results in high dimensional embeddings,

nd this can have an influence on the computational complexity of

he binary clustering algorithm; in our case. the Bernoulli Mixture

s definitely faster than the more complicated CRAFT. 

.7. Toy illustrative example 

This section uses a synthetic toy example to visually highlight

ome of the different com ponents of the proposed approach. The

ata, shown in Fig. 2 , is bidimensional and has three clusters with

ifferent shapes: two are elongated and one is compact. We expect

lassical techniques to have difficulties in clustering this dataset,

ue to the specific underlying assumptions on which they rely.

ig. 3 shows the results of the different steps of the proposed

ethod when applied to this dataset: the sampling of the points

first column), the determination of the one-class classifiers, and
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Fig. 3. (Best viewed in color) Toy example: some possible choices for binary embedding. First column: the sampled points (blue squares); Second Column: the boundary of 

the region; Third column: filled black points are those with binary preference equal to 1. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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3 The first 10 are from the UCI ML Repository – http://archive.ics.uci.edu/ml/ . We 

thank Pablo Mesejo for providing us the last two datasets (Gastro1 and Gastro2). 

These datasets have been used in [58] : the suffix refers to type of light used (1: 
he final binary embedding (last column). The different rows pro-

ide an idea on the impact of the different possible choices (the

ype of sampling, parameter σ in Eq. (2) , type of classifier). The

btained classifiers can be very different, thus able to characterize

lusters with different shapes or structures. This is evident when

ooking at the clustering results, which are reported in Fig. 4 (bot-

om right plot); in that figure, we also reported the results ob-

ained by other classical clustering methods, namely the classical

ierarchical clustering and K-means, as well as more recent and

dvanced approaches, namely affinity propagation [57] and spec-

ral clustering (in the version with the unnormalized graph Lapla-

ian [4] ). Those techniques may have difficulties in clustering this

ataset, since they assume a particular type of shape/structure for

he clusters. On the contrary, our approach, which can exploit a

ibrary of models to characterize the different structures present,

s able to recover the structure of the clusters. For the proposed

pproach, in this experiment, we used two categories of one-class
 W
lassifiers (Gaussian model and linear classifier), training 400 mod-

ls of each type, starting from 5 points sampled using the compact

ampling scheme (with σ = 0 . 05 ). 

. Experimental evaluation 

In this section, the proposed technique is evaluated on 12 real

atasets. 3 the main characteristics of these datasets are shown in

able 1 . 

To have a large scope analysis, we have selected a collection

f datasets covering different numbers of objects (the smallest

ataset contains 32 objects, the largest one 768), different num-
hite Light or 2: Narrow Band Imaging). 

http://archive.ics.uci.edu/ml/
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Fig. 4. (Best viewed in color) Toy example: results. 

Table 1 

Details of the datasets employed for testing. 

Name #objects #features #cluster #obj per cluster 

Iris 150 4 3 50,50,50 

Ecoli 336 7 8 143,2,77,2,35,20,5,52 

Pima 768 8 2 268,500 

Glass 214 9 4 70,76,17,51 

WBC 683 9 2 4 4 4,239 

BTissue 106 9 6 21,15,18,16,14,22 

Wine 178 13 3 59,71,48 

Heart 297 13 2 160,137 

Lung 32 54 3 9,13,10 

Nose 358 128 5 92,83,32,76,75 

Gastro1 76 698 3 21,15,40 

Gastro2 76 698 3 21,15,40 
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bers of features (ranging from 4 to 698), and different cluster sizes

(the smallest cluster contains 2 objects, the largest 4 4 4). All these

datasets are characterized by a limited number of clusters (the

maximum is 8); even if it is possible to resort to complex pro-

cedures to automatically estimate such number, here we simply

provided it in input to all the algorithms. All the datasets were
tandardized, an operation that is crucial for many clustering ap-

roaches. For some datasets, however, this operation lead to a

rastic reduction of the clustering accuracies for all techniques (for

he proposed approach as well as for the competitors); in such

ases, we operated on the original data. 

In the experiments herein reported, our method used binary

mbeddings based on the one-class 1-NN model [21,59] : this

cheme is derived from a local density estimation of the data by

he nearest neighbor classifier; the method is suitable also for high

imensional spaces, since it avoids explicit density estimation and

nly uses distances to the first nearest neighbor. More in detail,

or a given point, its membership to the one-class model is com-

uted as its distance to the nearest neighbor in the training set,

ormalized by the distance from this training object to its nearest

eighbour (for more details see [21,59] ). Despite its simplicity, this

ule allows obtaining non-linear decision boundaries (see Fig. 3 (e))

nd to scales well to moderately high-dimensional spaces. 

For a given experiment, we built the embedding space by us-

ng 100 models ( M = 100 ), i.e., we sampled 100 subsets of points.

e used both compact and elongated strategies; moreover, we also

xperimented an hybrid scheme, obtained by sampling M /2 sets of

oints with the compact sampling scheme and M /2 sets with the
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Table 2 

Clustering results, for different datasets and different versions of the proposed framework, using Purity and Adjusted Rand Index. 

Type of sampling: Compact – Purity 

Model Iris Ecoli Pima Glass WBC BTissue Wine Heart Lung Nose Gastro1 Gastro2 

BerMix (Sel) 0.893 0.743 0.668 0.671 0.938 0.667 0.938 0.716 0.485 0.818 0.613 0.560 

BerMix (Ens) 0.899 0.758 0.668 0.676 0.938 0.638 0.876 0.841 0.581 0.784 0.613 0.693 

CRAFT (Sel) 0.893 0.454 0.657 0.587 0.943 0.514 0.932 0.726 0.485 0.765 0.600 0.547 

CRAFT (Ens) 0.899 0.502 0.686 0.577 0.933 0.657 0.881 0.780 0.614 0.700 0.613 0.693 

Type of sampling: Compact – Adjusted Rand Index (ARI) 

Model Iris Ecoli Pima Glass WBC BTissue Wine Heart Lung Nose Gastro1 Gastro2 

BerMix (Sel) 0.584 0.404 0.094 0.297 0.768 0.453 0.816 0.047 0.097 0.644 0.134 0.026 

BerMix (Ens) 0.654 0.632 0.105 0.303 0.768 0.316 0.690 0.198 0.188 0.359 0.139 0.222 

CRAFT (Sel) 0.544 0.090 0.060 0.175 0.784 0.267 0.798 -0.005 0.039 0.548 0.095 0.044 

CRAFT (Ens) 0.835 0.716 0.110 0.255 0.748 0.310 0.690 0.015 0.228 0.323 0.118 0.222 

Type of sampling: Elongated – Purity 

Model Iris Ecoli Pima Glass WBC BTissue Wine Heart Lung Nose Gastro1 Gastro2 

BerMix (Sel) 0.926 0.851 0.674 0.657 0.922 0.600 0.955 0.750 0.646 0.821 0.560 0.573 

BerMix (Ens) 0.899 0.782 0.670 0.620 0.933 0.581 0.915 0.784 0.581 0.745 0.533 0.587 

CRAFT (Sel) 0.960 0.457 0.679 0.653 0.925 0.619 0.960 0.740 0.614 0.770 0.627 0.547 

CRAFT (Ens) 0.899 0.588 0.683 0.582 0.933 0.619 0.966 0.780 0.614 0.658 0.627 0.693 

Type of sampling: Elongated – Adjusted Rand Index (ARI) 

Model Iris Ecoli Pima Glass WBC BTissue Wine Heart Lung Nose Gastro1 Gastro2 

BerMix (Sel) 0.525 0.348 0.100 0.294 0.713 0.396 0.867 0.050 0.224 0.655 0.094 0.045 

BerMix (Ens) 0.674 0.684 0.106 0.286 0.748 0.367 0.901 0.329 0.185 0.458 0.061 0.070 

CRAFT (Sel) 0.742 0.075 0.108 0.284 0.723 0.328 0.884 -0.005 0.251 0.541 0.132 0.043 

CRAFT (Ens) 0.696 0.764 0.130 0.283 0.748 0.308 0.883 0.394 0.261 0.496 0.139 0.220 

Type of sampling: “No Choice” – Purity 

Model Iris Ecoli Pima Glass WBC BTissue Wine Heart Lung Nose Gastro1 Gastro2 

BerMix (Sel) 0.893 0.770 0.661 0.685 0.941 0.562 0.842 0.777 0.581 0.779 0.667 0.613 

BerMix (Ens) 0.899 0.779 0.666 0.610 0.933 0.581 0.915 0.774 0.581 0.678 0.533 0.587 

CRAFT (Sel) 0.893 0.466 0.708 0.620 0.940 0.591 0.842 0.777 0.549 0.776 0.573 0.573 

CRAFT (Ens) 0.899 0.466 0.692 0.582 0.931 0.591 0.977 0.777 0.614 0.678 0.600 0.707 

Type of sampling: “No Choice” – Adjusted Rand Index (ARI) 

Model Iris Ecoli Pima Glass WBC BTissue Wine Heart Lung Nose Gastro1 Gastro2 

BerMix (Sel) 0.771 0.424 0.084 0.313 0.778 0.319 0.598 -0.002 0.153 0.512 0.234 0.092 

BerMix (Ens) 0.654 0.610 0.106 0.294 0.748 0.367 0.748 0.345 0.167 0.375 0.073 0.062 

CRAFT (Sel) 0.886 0.073 0.165 0.234 0.773 0.305 0.619 0.027 0.108 0.573 0.082 0.065 

CRAFT (Ens) 0.644 0.720 0.118 0.172 0.743 0.316 0.931 0.277 0.261 0.367 0.101 0.263 
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longated scheme. This increases the variety of the library of clas-

ifiers; we call this scheme the “no-choice” option. 

The adopted sampling strategies require choosing two parame-

ers ( σ and N P ), which may be different depending on the given

ataset. In principle, the choice of these parameters is not very

ritical, since they simply provide “guidelines” for the sampling

f random points used to build the one-class classifiers. In prac-

ice, due to the limited number of models, this choice is crucial,

nd may affect the final result. As a general guideline, we can say

hat a preliminary evaluation (not presented here) has shown that

mall values of σ (in the range [0.1-0.9]) should be preferred, inde-

endently of the dataset. This is not surprising, since small values

ead to sets of nearby points, which characterize a limited region.

n the contrary, the impact of N P is less crucial. In our experi-

ents, we set σ to 0.1 for Iris, Ecoli, and Glass, to 0.3 for BTissue

nd Heart, to 0.5 for WBC, Wine, and Gastro2, 0.9 for Gastro2 and

.7 for the remaining datasets. Parameter N P was set to 10 for Iris,

ima, Glass, Wine, and Nose, and to 15 for the others. 

For clustering the embeddings, we used both the Bernoulli mix-

ure and the CRAFT approaches described in Section 3 . In partic-

lar, the Bernoulli mixture was initialized using a run of the K-

eans ++ algorithm (where we substituted the Euclidean distance

ith the Hamming distance); the EM algorithm is stopped when

he relative change in log-likelihood falls below a threshold. In or-

er to decrease the dependence of the result on the K-means ++
nitialization (which can be particularly problematic in case of a

mall number of models), we repeated the process 15 times, keep-

ng the mixture with the highest value of the log-likelihood. Con-

erning CRAFT, we used the implementation released by the au-
hors, 4 keeping all the parameters at their default values. We re-

eated the training 15 times, keeping the clustering with the best

alue of the objective function that underlies the method. 

The whole process (sampling, embedding and clustering) is re-

eated 50 times (i.e. L = 50 ), and the final clustering is obtained

y using the two procedures described in Section 3.5 ( Sel and Ens ).

For all the datasets, the quality of the clustering results was

ssessed using the purity index [60] and the adjusted Rand index

ARI) [61–63] , two classical measures of clustering quality. To com-

ute purity, each cluster is assigned to the class label that is most

requent in that cluster. Purity corresponds to the proportion of ex-

mples assigned to the correct label; it lies between 0 (worst) and

 (best). To compute the ARI, we first build a contingency table

etween the clustering and the true labeling; then the ARI is de-

ived by measuring the agreement between the two partitions (the

and index) corrected for the chance of the formation of the clus-

ers. Also in this case, the higher the index value, the better the

lustering. All the results are reported in Table 2 . 

Different observations can be made about the results in

able 2 and about the whole set of experiments. In particular, we

ocus on three different questions: (i) which is the best cluster-

ng method: Bernoulli mixture or CRAFT? (ii) which is the best

ype of sampling: elongated, compact, or both? (iii) finally, which

s the best scheme for aggregating the different clustering results:

election via clustering entropy or clustering ensemble? A sum-

ary of findings is reported in Table 3 . In particular, in every entry,

e report the investigated question, and the result of a paired t -
4 We thank Vikas Garg for providing the code. 
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Table 3 

Analysis of results. 

Aspect Result p-value # Exp 

1. All results: better Bernoulli mixture or CRAFT? Equal 6.25e −02 3300 

2. Automatic results: better Bernoulli mixture or CRAFT? Equal 5.49e −01 132 

3. All results: better compact or elongated sampling? Equal 1.48e −01 2200 

4. All results: better single or multi sampling? Better single 9.58e −82 2200 

5. Automatic results: better Selection (Sel) or Ensemble (Ens)? Equal 2.33e −01 132 

Table 4 

Comparison with alternative approaches using the purity index: Kmeans (“K-means”), Kmeans ++ (“K-means ++ ”), agglomerative clustering with 

Single Link Scheme (“HierCl-SL”), Complete Link (“HierCl-CL”) and Ward Link (“HierCl-WL”), Gaussian Mixture Models with diagonal, full and 

spherical covariance matrix (“GMM (diag)”, “GMM (full)” and “GMM (spher)”, respectively), Spectral clustering with unnormalized graph Laplacian 

(“SpectClus”), and with the normalized graph Laplacians in the version of Shi-Malik (“SpectClus (SM)”) and Jordan-Weiss (“SpectClus (JW)”), and 

affinity propagation (“AffProp”). Finally, “BEC” refers to the proposed binary embedding clustering approach. The best result in each column is 

shown in bold. 

Purity 

Method Iris Ecoli Pima Glass WBC BTissue Wine Heart Lung Nose Gastro1 Gastro2 

HierCl-SL 0.664 0.454 0.652 0.366 0.651 0.276 0.396 0.537 0.453 0.263 0.533 0.520 

HierCl-CL 0.879 0.758 0.651 0.493 0.906 0.467 0.836 0.537 0.549 0.552 0.560 0.520 

HierCl-WL 0.886 0.815 0.675 0.516 0.968 0.552 0.927 0.682 0.581 0.703 0.547 0.520 

K-means 0.886 0.797 0.660 0.540 0.960 0.572 0.966 0.831 0.549 0.650 0.547 0.520 

GMM (Diag) 0.906 0.424 0.651 0.352 0.650 0.572 0.972 0.709 0.388 0.644 0.520 0.520 

GMM (Full) 0.966 0.445 0.651 0.531 0.849 0.591 0.977 0.709 0.517 0.255 0.520 0.520 

GMM (Spher) 0.886 0.424 0.651 0.582 0.946 0.200 0.960 0.720 0.614 0.569 0.520 0.520 

SpectClus 0.671 0.445 0.651 0.366 0.651 0.276 0.396 0.537 0.453 0.263 0.520 0.520 

SpectClus (SM) 0.725 0.600 0.651 0.366 0.940 0.400 0.396 0.537 0.453 0.398 0.520 0.520 

SpectClus (JW) 0.812 0.809 0.678 0.493 0.968 0.448 0.396 0.537 0.549 0.599 0.520 0.520 

K-means ++ 0.886 0.830 0.660 0.577 0.962 0.562 0.966 0.831 0.646 0.650 0.547 0.520 

AffProp 0.899 0.839 0.651 0.573 0.959 0.591 0.910 0.811 0.517 0.784 0.533 0.573 

BEC 0.960 0.851 0.708 0.685 0.943 0.667 0.977 0.841 0.646 0.821 0.667 0.707 

Adjusted Rand Index (ARI) 

Method Iris Ecoli Pima Glass WBC BTissue Wine Heart Lung Nose Gastro1 Gastro2 

HierCl-SL 0.564 0.040 0.002 0.003 0.003 0.001 −0.007 −0.001 0.016 −0.002 0.005 −0.007 

HierCl-CL 0.642 0.763 −0.0 0 0 0.131 0.653 0.263 0.577 −0.001 0.169 0.180 0.073 0.047 

HierCl-WL 0.731 0.518 0.100 0.180 0.874 0.240 0.790 0.132 0.163 0.473 0.071 0.002 

K-means 0.730 0.529 0.074 0.206 0.846 0.309 0.897 0.438 0.169 0.389 0.071 0.019 

GMM (Diag) 0.834 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.915 0.174 0.0 0 0 0.376 0.0 0 0 0.0 0 0 

GMM (Full) 0.904 0.007 0.001 0.209 0.473 0.345 0.928 0.174 0.042 0.0 0 0 0.0 0 0 0.0 0 0 

GMM (Spher) 0.730 0.0 0 0 0.055 0.227 0.794 0.399 0.879 0.192 0.167 0.327 0.0 0 0 0.0 0 0 

SpectClus 0.564 0.039 −0.001 0.003 0.003 −0.005 −0.007 −0.001 0.015 −0.002 −0.021 −0.020 

SpectClus (SM) 0.564 0.675 −0.001 0.003 0.771 0.059 −0.007 −0.001 0.015 0.061 0.009 0.041 

SpectClus (JW) 0.564 0.631 −0.001 0.159 0.874 0.330 −0.007 −0.001 0.114 0.365 −0.016 −0.001 

K-means ++ 0.730 0.495 0.074 0.225 0.852 0.285 0.897 0.438 0.219 0.389 0.071 0.019 

AffProp 0.802 0.507 0.024 0.227 0.841 0.295 0.741 0.386 0.067 0.595 0.074 0.115 

BEC 0.886 0.764 0.165 0.313 0.784 0.453 0.931 0.394 0.261 0.655 0.234 0.263 
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5 https://it.mathworks.com/matlabcentral/fileexchange/28804- k- means++ 
6 Available from http://www.aston.ac.uk/eas/research/groups/ncrg/resources/ 

netlab/downloads/ . 
test (with a significance level of 5%) employed to statistically com-

pare the possible alternatives among all possible clustering results

where they have been applied on the same conditions. The num-

ber of such experiments is reported in the last column of the ta-

ble, and clearly depends on the investigated aspect: to give an ex-

ample, we can compare Bernoulli mixture and CRAFT on 1800 ex-

periments (12 datasets × 50 repetitions × 3 sampling strategies),

or the compact and elongated sampling strategies on 1200 exper-

iments (12 datasets × 50 repetitions × 2 clustering approaches).

These numbers are then doubled since the comparison is done us-

ing both purities and ARI values. The result of such t -tests is re-

ported in the second column, whereas the corresponding p -value

is displayed in the third column. 

From Table 3 , it can be concluded that the Bernoulli mixture

and the CRAFT approach are equivalent if we consider all the runs

(question 1) or the results obtained with the automatic procedure

(question 2). Notice that in this test we excluded the Ecoli dataset,

since CRAFT completely failed here — see Table 2 ; when includ-

ing this dataset the Bernoulli mixture is consistently better than

CRAFT. Concerning the type of sampling, the two strategies seem

to be equivalent (question 3); it also clear that there is no advan-
age in using them simultaneously (question 4). Finally, the two

utomatic procedures seem to be equivalent (question 5). 

.1. Comparison with alternative clustering methods 

This section reports results obtained with other well-known

lustering techniques, including classical approaches such as k-

eans, mixtures of Gaussians, and hierarchical clustering, as well

s more recent approaches, such as affinity propagation [57] , k-

eans++ 5 [43] , and spectral clustering [4] . For k-means and ag-

lomerative clustering (single link, complete link, and Ward link),

e used the versions implemented in Matlab, whereas for Gaus-

ian mixtures we employed the implementation from the Netlab

oolbox. 6 finally, the code for affinity propagation was downloaded

rom the authors’ web site. 7 

In the k-means methods (k-means and k-means++), we repeated

he clustering 20 times, by using different initializations (random
7 http://www.psi.toronto.edu 

https://it.mathworks.com/matlabcentral/fileexchange/28804-k-means++
http://www.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/downloads/
http://www.psi.toronto.edu


M. Bicego, M.A.T. Figueiredo / Pattern Recognition 83 (2018) 52–63 61 

f  

b  

t  

C  

t  

“  

w  

c  

i  

v  

t  

n  

C  

i  

s

 

r  

w  

p  

a  

c  

i  

h

5

 

o  

e  

c  

p  

t  

c  

i  

p  

p  

t  

s  

m  

i

A

 

t  

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

 

[  

 

 

[  

 

[  

 

 

 

[  

 

[  

[  

 

 

[  

 

 

 

[  

 

 

[  

 

 

[  

[  

[  

 

 

[  

[  

 

[  
or k-means, as described in [43] for k-means++), and retaining the

est result (in terms of objective function). The agglomerative clus-

ering methods, single link (“HierCl-SL”), complete link (“HierCl-

L”) and Ward link (“HierCl-WL”), were applied with Euclidean dis-

ances. In the Gaussian mixture models, we used three versions:

GMM (diag)”, with diagonal covariance matrices, “GMM (full)”,

ith full covariance matrices, and “GMM (spher)”, with spherical

ovariance matrices. In all versions we initialized the EM with 5

terations of k-means, stopping the procedure at likelihood con-

ergence. We used three versions of spectral clustering, one with

he unnormalized graph Laplacian (“SpectClus”), and two using

ormalized graph Laplacians, in the version of Shi-Malik (“Spect-

lus (SM)”) and Jordan-Weiss (“SpectClus (JW)”). Finally, for affin-

ty propagation (“AffProp”), we employed the version which allows

etting the number of clusters. 

The results are shown in Table 4 , for the purity and ARI crite-

ia. We can conclude that the proposed approach compares very

ell with alternative techniques, always ranking among the best

erformers and in many cases yielding the best result. The biggest

dvantage of the proposed method over the alternatives herein

onsidered is found in the higher dimensional datasets, highlight-

ng known difficulty of classical clustering techniques to operate in

igh-dimensional spaces (see, for example, the discussions in [5] ). 

. Conclusions 

In this paper, we proposed a novel clustering scheme based

n binary embedding. The proposed approach defines the binary

mbedding of an object as the output of a collection of one-class

lassifiers, each learned from a small subset of randomly selected

oints of the dataset to be clustered. The binary signatures are

hen clustered using a mixture of Bernoulli distributions or a re-

ently proposed binary biclustering approach called CRAFT. Empir-

cal results confirm the suitability of the proposed scheme in com-

arison with state-of-the-art alternatives. The main feature of the

roposed method is that it is agnostic to the shape of the clus-

ers: this feature can be useful also in other unsupervised scenario,

uch as biclustering. In this case, however, a proper way to recover

emberships of features is required: this aspect is currently under

nvestigation. 
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