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Abstract—Remote homology detection represents a central problem in bioinformatics, where the challenge is to detect functionally
related proteins when their sequence similarity is low. Recent solutions employ representations derived from the sequence profile,
obtained by replacing each amino acid of the sequence by the corresponding most probable amino acid in the profile. However, the
information contained in the profile could be exploited more deeply, provided that there is a representation able to capture and properly
model such crucial evolutionary information. In this paper we propose a novel profile-based representation for sequences, called soft
Ngram. This representation, which extends the traditional Ngram scheme (obtained by grouping N consecutive amino acids), permits to
consider all of the evolutionary information in the profile: this is achieved by extracting Ngrams from the whole profile,equipping them
with a weight directly computed from the corresponding evolutionary frequencies. We illustrate two different approaches to model the
proposed representation and to derive a feature vector, which can be effectively used for classification using a support vector machine
(SVM). A thorough evaluation on three benchmarks demonstrates that the new approach outperforms other Ngram-based methods,
and shows very promising results also in comparison with a broader spectrum of techniques.

Index Terms—Ngram; Sequence profile; topic models;
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1 INTRODUCTION

D ETECTING homology between proteins is a central
problem in bioinformatics, often representing the first

step to identify functionally or structurally-related proteins.
The task is typically faced by looking at amino acid sequence
similarity; in some very challenging situations, homologous
proteins exhibit low similarity, leading to the problem re-
ferred to as protein remote homology detection [1].

Several methods have been presented in the literature to
tackle the remote homology detection problem [2], [3], [4],
[5]; among them, a recent and promising class of approaches
[6], [7] exploits profile-based representations for sequences,
in order to derive richer feature vectors that can be fed into
a discriminative classifier like a Support Vector Machine
(SVM) [6], [7], [8], [9], [10]. More specifically, the approach
in [6] first computed the frequency profile of a sequence
employing the PSI-BLAST tool [2], then extracted a novel
representation called top-Ngram by looking at the N most
frequent amino acids in each position of the profile. Another
profile-based approach is proposed in the recent [7], where
a profile-based sequence is derived by rewriting each amino
acid in the original sequence with the most probable one
according to the profile, and standard Ngrams (i.e. groups
of N consecutive amino acids in this new sequence) are
extracted and used to classify sequences. In both cases,
the feature vector is obtained by counting the number of
times each Ngram (or top-Ngram) occurs in the “profile-
enriched” sequence1. These approaches achieve state of the
art prediction performances and held high potential.

• P. Lovato, M. Cristani and M. Bicego are with the Department of
Computer Science, University of Verona, Verona (Italy).

1. This paradigm of representing an object with the vector of counts
of its building blocks is often referred to as the bag-of-words model
[11].

However, none of these approaches fully exploits the
complete profile information: in particular, in both cases
only few amino acids of the profile are considered – one,
in the approach of [7], N in the top N-grams technique of
[6]. Moreover, such approaches do not use the frequencies
associated to the profile amino acids: for example, in the
approach of [7], every sequence amino acid is replaced by
the most frequent profile amino acid, no matter how much
frequent it is (simply the most frequent); by doing so, there
is no difference between a situation where a strong conser-
vation throughout evolution is present (e.g. the frequency
of the top amino acid is near 1, all the others are near 0)
and a situation where it is not present (e.g. the frequencies
are more or less identical among different amino acids). The
same reasoning holds also for the top-Ngram approach.

In this paper we propose a novel representation called
soft Ngram, which is able to take into considerations all these
aspects: by actively using the frequencies contained in the
profile, the proposed scheme exploits the complete amount
of evolutionary information therein encoded. The proposed
characterization is based on Ngrams, which are i) extracted
from the complete profile and ii) equipped with a weight
which takes into account the profile frequencies. Conserved
sites in the sequence are emphasized with higher weights,
reflecting their importance during evolutionary processes.
In essence, the representation is fully aware that in each
position of the sequence there are many plausible amino
acids, each with a different probability driven by evolution.

Starting from the soft Ngram, we propose two different
modeling approaches to derive a feature vector, which can
be used for classification and homology detection using
SVMs. The first one is akin to the bag-of-words model:
Ngrams are counted, but each occurrence is now weighted
with its profile-based frequency, so taking into account
the evolutionary importance of that Ngram – we call this
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approach soft bag-of-words. The second, more advanced
scheme, is inspired by a class of approaches, originally
introduced in the natural language processing field to model
document corpora, known as topic models. Topic models
have never been exploited for protein remote homology
detection, and we demonstrate throughout the paper their
suitability for the task. In particular, starting from the
Probabilistic Latent Semantic Analysis model (PLSA [12]),
we propose a novel one – called soft PLSA – which is
able to manage the proposed soft nature of the representa-
tion, characterizing patterns of co-occurring Ngrams. Once
learned, the soft PLSA model can be fruitfully employed
to i) derive a discriminative feature vector for classification
and ii) suggest the presence of functiona, conserved patterns
shared by the members of a protein family.

The proposed representation and the two models have
been thoroughly evaluated using three benchmarks: i) the
standard SCOP2 1.53 superfamily benchmark [4], represent-
ing the most widely employed dataset to assess the poten-
tialities of protein remote homology detection approaches;
ii) a novel superfamily benchmark, created from the most
recent and updated SCOP 2.043; iii) the SCOP 1.67 fold
recognition dataset, a benchmark designed to solve the more
challenging fold recognition problem. In all cases, results
demonstrate that our framework reaches satisfying figures
of merit with respect to other Ngram based techniques, and
shows – especially when the soft PLSA model is employed
– very promising results even when compared to a broader
spectrum of approaches proposed in the recent literature.

2 BACKGROUND: PROFILE-BASED NGRAM RE-
PRESENTATIONS

This section reviews the approaches of [6] and [7], which
derive an Ngram representation on the basis of the profile,
where an Ngram of a sequence S = s1 . . . sL is defined as a
consecutive subsequence vl of length N , vl = sl . . . sl+N−1.
The starting point of both approaches is the profile of
sequence S, which is the result of a multiple sequence
alignment between S and its closest neighbors found by a
database search (one of the most famous tools, also adopted
in this paper, is PSI-BLAST [2]); the profile is represented by
a matrix M

M =


m1,1 m1,2 . . . m1,L

m2,1 m2,2 . . . m2,L

...
...

. . .
...

m20,1 m20,2 . . . m20,L

 (1)

where 20 is the total number of standard amino acids, L is
the length of the sequence, and mi,l reflects the probability
of amino acid i (i = 1, . . . , 20) occurring at sequence posi-
tion l (l = 1, . . . , L) across evolution. Thus, the elements in
each column of M add up to 1.

Once the profile of a sequence is computed, the frequen-
cies in each column of M are sorted in descending order,
with the resulting sorted matrix denoted M̃ (right part of
figure 1b). An entry m̃i,l contains the frequency of the i-
th most probable amino acid in position l, which is then

2. http://scop.berkeley.edu/ [13]
3. available at http://www.pietrolovato.info/proj/softngrams.html

denoted s̃i,l. This matrix is then employed to extract the
Ngram representation. The two methods [6], [7] employ
different strategies to extract Ngrams from the profile matrix
M̃:

• Column-Ngram [6] In this approach, called in the
original paper top-Ngram, each column of M̃ is inde-
pendently considered. Given a column l, a column-
Ngram is the concatenation of the most probable N
amino acids, and is denoted by vl = s̃1,l . . . s̃N,l.

• Row-Ngram [7] In this approach, only the first
row of M̃ is considered (i.e. only the most prob-
able/frequent amino acid in each position of the
profile): the original sequence is rewritten by substi-
tuting each amino acid with the corresponding most
frequent amino acid of the profile. Then Ngrams
are extracted as in other approaches [14], i.e., by
considering N consecutive amino acids. Summa-
rizing, a row-Ngram vl is composed by amino
acids s̃1,l . . . s̃1,l+N−1 – please note that neighboring
Ngrams in the sequence overlap by N − 1 amino
acids.

From the description above it is evident that none of
these approaches fully exploits the complete profile infor-
mation contained in M̃: in both cases only few amino
acids of M̃ are considered – 1 for Row-Ngrams, N for
Column-Ngrams; moreover, the elements of M are used
only to determine the ranking, completely discarding the
evolutionary information contained in the values of M: the
approaches do not distinguish between a situation where a
strong conservation throughout evolution is present (the top
value of M̃ is near 1, all the others are close to 0) and a situa-
tion where this conservation is not present (values of M̃ are
more uniformly distributed). We will see how these aspects
are jointly considered with the proposed representation.

Once extracted, the set of Ngrams of a given sequence
has to be modeled and represented with a vector to be used
as input for the classifier. Some alternatives do exist: among
others, a promising approach proposes to derive a kernel
by computing similarities between Ngrams [15]. Another
possibility, which represents the main focus of this paper,
is realized by building a vector (sometimes called the bag-
of-words) by counting the number of times each possible
Ngram appears in the sequence. More in detail, given all
distinct Ngrams {v} – the dictionary – the bag-of-words c is
a vector of length V = |{v}| = 20N , where an entry c(v)
indicates the number of times the dictionary Ngram v is
present in the set of Ngrams extracted from the sequence.
This vector, computed for every sequence, is then used for
classification.

3 THE PROPOSED APPROACH

In this section the proposed approach is described: we first
present the soft Ngram representation and its major differ-
ences with the methods presented in the previous section;
then, the two modeling strategies to derive a fixed-length
feature vector are detailed. A scheme which sketches the
pipeline of the proposed approach is shown in Fig. 1.
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3.1 Soft Ngram representation
The basic idea behind the soft Ngram representation is that
the profile of a sequence S contains several information
that can be useful, such as the fact that different Ngrams
are plausible to appear in any position l of the sequence,
each with a different probability driven by evolution. More
in detail, the representation is obtained in two steps: Ngram
extraction, and weight assignment.

Ngram extraction.
Ngrams are extracted by tailoring the previous definition of
column- and row-Ngrams in the following way:

• Soft column-Ngram. Ngrams are extracted from the
whole column of S̃ (not only from the top N posi-
tions): in particular soft column-Ngrams are of the
form

vi,l = s̃i,l . . . s̃i+N−1,l

∀i ∈ [1, . . . , 20−N + 1], ∀l ∈ [1, . . . , L]

For each column, Ngrams are extracted with overlap
degree N − 1.

• Soft row-Ngram. Ngrams are extracted for all possible
rows of M̃: Soft row-Ngrams are of the form

vi,l = s̃i,l . . . s̃i,l+N−1

∀i ∈ [1, . . . , 20], ∀l ∈ [1, . . . , L−N + 1]

For each row, Ngrams are extracted with N − 1
overlap degree.

Weight Assignment.
The goal is to assign a weight to each soft column- or row-
Ngram extracted in the previous step. Such weight should
reflect the evolutionary frequencies of the amino acids
which compose it. Inspired by the score fusion technique
of [16], we propose two simple strategies to extract this
quantity – which we denoted as wl(v):

• Sum strategy, where the profile frequencies of the
amino acids constituting the Ngram are summed

wl(v) =
N−1∑
j=0

m̃v,l+j (2)

• Prod strategy, where such frequencies are multiplied

wl(v) =
N−1∏
j=0

m̃v,l+j (3)

Finally, note that if a particular soft Ngram v does not
occur in position l of the sequence profile, we set its weight
wl(v) = 0.

3.2 Modeling: soft bag-of-words
In the modeling phase, given a collection of sequences
S = {S1, . . . , ST }; the goal is to derive a feature vector
characterizing each sequence St ∈ S . We propose two
methods to achieve this, the former called soft bag-of-words
(presented here), the latter soft PLSA (described in the next
section).

Sequence S: E C S S ... R

A 0.05 0.07 0.08 0.12 ... 0.09 
R 0.00 0.06 0.17 0.13 ... 0.28

.
.
.

V 0.02 0.02 0.13 0.01 ... 0.02 

0.31 0.43 0.26 0.23 ... 0.28 
0.21 0.07 0.18 0.17 ... 0.10

.
.
.

0.01 0.01 0.00 0.01 ... 0.00 

E C G S ... R 
D A E C ... K

.
.
.

C E C W ... W 
.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

Profile M:

Sorted profile

2 gram dictionary
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AD
AE.

.
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EC.
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.
.
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.
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0
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(b)
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.
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.
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0
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l
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Fig. 1. The proposed soft row-Ngram representation. (a) The profile M
of a sequence is computed with PSI-BLAST. (b) Each column in the
profile is sorted, and soft Ngrams are extracted (row-wise) from S̃. In this
example, we highlight the occurrences of Ngram “EC” and individuated
the corresponding frequency values in M̃. (c) After having built the
dictionary, each soft Ngram representation vector wl is computed by
combining frequency values in the sorted profile matrix M̃. In the exam-
ple, w1(“EC”) = 0.74 corresponds to the weight of the first instance of
Ngram “EC”. (d) The final soft bag of words vector is derived by summing
all the wls extracted in the previous step.

In the traditional bag-of-words model, the feature vector
is obtained by counting the number of times each Ngram
of the dictionary occurs in the sequence. In our proposed
soft bag-of-words, the feature vector is obtained by a “soft”
counting process: the count contribution of each Ngram
extracted is equal to its weight. In other words, for each soft
Ngram in the dictionary, we summed the weights of all its
occurrences found in the set of Ngrams extracted from the
profile of sequence St. Given an entry ct(v) of the feature
vector characterizing sequence St, in the row-Ngram case,
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this quantity amounts to

ct(v) =
Lt−N+1∑

l=1

wt
l (v) (4)

whereas for the column-Ngram case, the summation goes
from 1 to Lt. With no loss of generality, in the remainder
of the paper all formulae and notations assume the row-
Ngram case: translation to the column-Ngram case is done
by changing the range of every summation over variable l
from Lt − N + 1 to Lt. In all equations, we also added the
super-index t to the weight variable wt

l to denote the weight
extracted from the profile relative to sequence St.

The vector ct, containing the quantity ct(v) for each
element v in the dictionary, represents the feature vector
characterizing St, and can be used in a classification setting.

3.3 Modeling: soft PLSA
A more sophisticated way of modeling the proposed rep-
resentation stems from the consideration that objects repre-
sented as counts may be successfully modeled in a prob-
abilistic way. For example, the class of approaches known
as topic models, originally introduced for natural language
processing, have been widely employed in several scientific
fields [17], [18], [19], motivated by their effectiveness and
expressiveness in dealing with large datasets [20]. In their
original formulation, topic models were aimed at describing
a set of documents, each one represented by words counts.
Probabilistic Latent Semantic Analysis (PLSA [12]) is one of
the first and most famous topic models introduced in the
literature, where the basic idea is that each document may
be characterized by the presence of one or more topics (e.g.
sports, finance, politics), which induce the presence of some
related words. The PLSA seems a suitable model also in the
context of protein remote homology detection (see Sec. 4). In
this peculiar scenario, documents correspond to sequences
and Ngrams correspond to words. From a probabilistic
point of view, the sequence may be seen as a mixture of
topics, each one providing a probability distribution over
Ngrams. It is important to note that the PLSA model can
be built on any bag-of-words representations, including the
profile-based approaches of [6] and [7]. However, it can not
be applied “as is” to our proposed soft representation, due
to the presence of the weights. In this paper we propose
an adaptation of the PLSA, which we call soft PLSA, able
to directly consider these weights. In essence, the soft PLSA
borrows the same metaphor of classic PLSA: given the set of
soft Ngrams extracted from the profile of a sequence St, the
presence of a particular soft Ngram v in such set is mediated
by a latent topic variable z ∈ Z = {z1, . . . , zK}:

log p(v, St) = log

[
p(St) ·

K∑
k=1

p(v|zk)p(zk|St)

]
=

= log

[
p(St) ·

K∑
k=1

βvkθ
t
k

]
(5)

In practice, the topic zk is a probabilistic co-occurrence of
soft Ngrams encoded by the distribution βvk. Intuitively,
θtk measures the level of presence of each topic zk in the

sequence St. On the other hand, βvk expresses how much
the soft Ngram indexed by v in the dictionary is related to
topic zk. Finally, p(St) is a prior that accounts for sequences
of different lengths. Under the soft PLSA model, the full
data log-likelihood for a training set of T sequences (i.e. the
probability of observing the whole set of Ngrams in the T
training sequences) is weighted by the soft value wt

l (v):

L =
T∑

t=1

V∑
v=1

(
Lt−N+1∑

l=1

wt
l (v)

)
log p(v, St) =

=
T∑

t=1

V∑
v=1

ct(v) log p(St) + ct(v)

(
log

K∑
k=1

βvkθ
t
k

)
=

=
T∑

t=1

V∑
v=1

[
ct(v) log p(St) + ct(v) log

K∑
k=1

βvkθ
t
k

]
(6)

where we highlighted the fact that the value ct(v) is the sum
over all weights assigned to the different occurrences of soft
Ngram v in the sequence.

Given the training set, the goal is to learn the parameters
of the model β and θ such that the loglikelihood of the
observations is maximized. Such parameters are learned
using an exact Expectation-Maximization (EM) [12], an it-
erative technique that minimizes a lower bound (called Free
Energy) of the negative loglikelihood −L. The algorithm
starts by initializing the parameters β and θ. Subsequently,
the following steps are iterated:

• the E-step, which computes the posterior over the
topics qkvt = p(zk|v, St) given the current estimate
of the model

• the M-step, where β, θ and the prior over sequences
p(St) are re-estimated given the q obtained with the
previous E-step.

For a more detailed review on the EM algorithm, interested
readers may refer to [21]. In our context, the E-step formula
is computed with the Bayes rule starting from the values of
β and θ:

p(zk|v, St) = qkvt =
βvk · θtk∑K
k=1 βvk · θtk

(7)

The M-step rules for updating θ and β are as follows:

βvk ∝
T∑

t=1

qkvt

Lt∑
l=1

wt
l (v) (8)

θtk ∝
V∑

v=1

qkvt

Lt∑
l=1

wt
l (v) (9)

p(St) ∝
V∑

v=1

Lt∑
l=1

wt
l (v) (10)

where the symbol∝ indicates that the result of each formula
should be normalized so that the probability constraint (sum
equal to 1) is satisfied. With the trained model, inference can
be performed on an unknown sequence Stest, in order to
estimate its topic proportion vector θtest. Such quantity may
be computed with a single M-step iteration.
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Following a hybrid generative-discriminative scheme
[17], [22] – where a generative model is used to derive a
feature vector used for discriminative classification – we de-
cided to employ as feature vector for a given sequence St the
corresponding topic proportions vector θt = [θt1, . . . , θ

t
K ]:

indeed, θt has already proven to be an effective feature
vector in several cases [17], [19], [23].

3.4 SVM classification
Once computed, the feature vectors cts (for the soft bag-of-
words) or θt = [θt1, . . . , θ

t
K ] (for the soft PLSA), can be used

to face the protein remote homology detection problem; as
done in many other remote homology detection approaches,
the training feature vectors are fed into a Support Vector
Machine, which is then used to classify the test protein
sequences. It is worth noting that extracting the feature
vectors is an efficient operation (it scales linearly with the
sequence length), but – due to its high dimensionality – can
burden the SVM training. This problem is alleviated when
using θt, since each sequence is then described by K topics
instead of V words.

4 RESULTS AND DISCUSSION

4.1 Experimental details
The experimental evaluation is based on three benchmarks:
the first one is a famous benchmark widely employed to
assess the detection capabilities of many protein remote
homology detection systems [4]. Such dataset4, extracted
from SCOP version 1.53, contains 4352 sequences from 54
different families. For each family, class labels are very
unbalanced, with a vast majority of objects belonging to the
negative class.

The second dataset has been created for our evaluation
to overcome the problem that the version 1.53 of SCOP is
fairly outdated (September 2000); therefore, we downloaded
sequences from the more recent SCOP 2.04, ensuring that
all pairwise similarities have E-value greater than 10−5 (a
total of 8700 sequences were extracted at the end). The
subdivision is carried out with the same protocol of the
SCOP 1.53 benchmark, resulting in 89 different subsets, each
one corresponding to one particular protein family5.

The third dataset was used to assess the performances of
our framework in a more challenging task: specifically, we
employed a fold benchmark extracted from SCOP 1.67 [24],
where homologous sequences are taken at a superfamily
level rather than at a family level — making this dataset
considerably harder than the SCOP 1.53 and SCOP 2.04
ones. The dataset contains 3840 sequences and is split in 86
different subsets6. To build profiles, we employed a public
implementation of the PsiFreq program7, developed and
employed in [7]. Using such tool, the profile is built starting
from a PSI-BLAST search on the database nr90; we left all
parameters as default.

The proposed soft Ngram approaches have been eva-
luated and compared against the corresponding non-soft

4. Available at http://noble.gs.washington.edu/proj/svm-pairwise/
5. Dataset available at http://pietrolovato.info/proj/softngrams.html
6. http://www.biomedcentral.com/1471-2105/8/23/additional
7. Available at http://bioinformatics.hitsz.edu.cn/main/˜binliu/remote

versions in different experimental conditions. In particular,
we performed different trials by varying the dictionary size
– we considered 1grams, 2grams, 3grams, and the concate-
nation of 1 and 2grams dictionaries (in this case the dictio-
nary contains 420 distinct elements – we denoted this con-
figuration (1,2)-grams). The soft PLSA has been compared
with the standard PLSA model8, learned on profile-based
Ngrams. Even if such model seems promising, to the best
of our knowledge it has never been investigated for remote
homology detection with profile-based representations. As
detailed in the previous section, the models (both PLSA and
soft PLSA) are trained on the training set alone, and feature
vector θs for testing sequences are obtained via an inference
step. Both models require the number of topics K to be
known beforehand. To set this parameter, we performed a
coarse search, finding that a reasonable range of topics lies
around [50, 150]. In all the experiments we noticed that the
learning is sensitive to the initial choice of the parameters
β and θ. For this reason, instead of the simple random
initialization, we followed the scheme presented in [25].

As in many previous works [6], [7], [8], [9], [10], [26],
classification is performed using SVM via the public GIST
implementation9, setting the kernel type to radial basis, and
keeping the remaining parameters to their default values.
Detection accuracies are measured: i) using the receiver
operating characteristic (ROC) score [27], which represents
the area under the ROC curve (the larger the better); ii) using
the ROC50 score [27].

The ROC50 score represents the area under the ROC50
curve (with a value ranging from 0 to 1), which plots true
positives as a function of false positives – up to the first 50
false positives. A score of 1 indicates perfect separation of
positives from negatives, whereas a score of 0 indicates that
none of the top 50 sequences selected by the algorithm were
positives [14].

4.2 Detection results and discussion

In the first set of experiments we compared the soft bag-of-
words and the soft PLSA with the corresponding standard
bag-of words and PLSA models, on the SCOP 1.53 super-
family benchmarks. ROC and ROC50 scores – averaged for
all families in the dataset – are presented in Tab. 1 for the
bag-of-words representation, and in Tab. 2 for the PLSA
model. To assess statistical significance of our results and
demonstrate that increments in ROC/ROC50 scores gained
with the proposed approach are not due to mere chance,
we performed a Wilcoxon signed-rank test with Bonferroni
correction [6], reporting in the tables this information.

From the tables, it can be observed that ROC scores are
always higher when the soft representation is employed
(except in one case, the ROC50 using 3-grams). Moreover,
in many cases the product strategy works better in com-
bination with row-Ngrams, whereas the sum strategy with
column-Ngrams: this seems reasonable since multiplication
implies statistical independence between amino acids, this
being a more appropriate assumption when the amino acids
of an Ngram are extracted from the same row.

8. Code at http://lear.inrialpes.fr/people/verbeek/software.php
9. Downloadable from http://www.chibi.ubc.ca/gist/ [4]
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TABLE 1
ROC and ROC50 scores computed on the SCOP 1.53. In the table we
compared between bag-of-words (BoW) and soft bag-of-words model

(*p < 0.05 **p < 0.01 ***p < 0.001)

ROC scores
Dictionary BoW softBoW, sum softBoW, prod
1-gram 0.906 0.930*
row 2-gram 0.929 0.947*** 0.947**
col 2-gram 0.923 0.944** 0.950***
row (1,2)-gram 0.940 0.957** 0.941
col (1,2)-gram 0.933 0.944 0.934
row 3-gram 0.888 0.920*** 0.901
col 3-gram 0.896 0.956*** 0.941***

ROC50 scores
Dictionary BoW softBoW, sum softBoW, prod
1-gram 0.695 0.755**
row 2-gram 0.772 0.796 0.818***
col 2-gram 0.713 0.771** 0.769**
row (1,2)-gram 0.760 0.844*** 0.768
col (1,2)-gram 0.743 0.772** 0.756**
row 3-gram 0.723 0.731 0.714
col 3-gram 0.648 0.779*** 0.754***

TABLE 2
ROC and ROC50 scores computed on the SCOP 1.53. In the table we

compared between PLSA and soft PLSA model (*p < 0.05
**p < 0.01 ***p < 0.001)

ROC scores
Dictionary BoW softBoW, sum softBoW, prod
1-gram 0.925 0.946
row 2-gram 0.960 0.963* 0.960***
col 2-gram 0.941 0.952*** 0.953***
row (1,2)-gram 0.954 0.970** 0.964**
col (1,2)-gram 0.948 0.949 0.959*
row 3-gram 0.920 0.932*** 0.922
col 3-gram 0.939 0.948** 0.950**

ROC50 scores
Dictionary BoW softBoW, sum softBoW, prod
1-gram 0.779 0.819***
row 2-gram 0.815 0.887*** 0.932***
col 2-gram 0.784 0.856*** 0.883***
row 3-gram 0.799 0.828*** 0.811**
col 3-gram 0.752 0.798*** 0.770**
row (1,2)-gram 0.836 0.917*** 0.900***
col (1,2)-gram 0.800 0.903*** 0.891***

In order to better investigate the behavior of the pro-
posed framework, we reported in Fig. 3 the ROC curves
obtained on the SCOP 1.53 benchmark. To draw the curves,
we considered all 54 families at once: this means that the
false positive rate and the true positive rate are not relative
to one particular family, but rather they are an average over
the different subsets. In each plot, we compared the soft
approach with its standard counterpart, reporting the area
under the curve in the legend. For every comparison, we
can confirm that the proposed soft methods outperform
their non soft counterparts. Interestingly, there is a major
boost when 1grams are employed. 1grams correspond to
the amino acids readily available from the profile, and are
the core piece of information that we are considering; this
may suggest that exploiting all amino acids in the profile
– along with their corresponding frequency – is a key
step in developing novel representations to ease the remote
detection problem.

Similar conclusions can be drawn by looking at the
results we obtained on the novel SCOP 2.04 dataset, on
which we performed the same comparison done for the
SCOP 1.53. We present a summary in Fig. 2, aimed at com-

TABLE 3
Average ROC scores for the 54 families in the SCOP 1.53 superfamily

benchmark for different methods. The reported results have been
directly taken from the reference between brackets.

Method ROC ROC50 References
Soft BoW, row (1,2)-gram, sum 0.957 0.844 This paper
Soft PLSA, row (1,2)-gram, sum 0.970 0.917 This paper

Bag of words based methods
SVM-Ngram 0.812 0.589 [7]
SVM-Ngram-LSA 0.860 0.628 [6]
SVM-Top-Ngram (n=1) 0.907 0.696 [6]
SVM-Top-Ngram (n=2) 0.923 0.713 [6]
SVM-Top-Ngram-combine 0.933 0.763 [6]
SVM-Ngram-p1 0.887 0.726 [7]
SVM-Ngram-KTA 0.892 0.731 [7]

Other methods
SVM-pairwise 0.908 0.787 [7]
SVM-LA 0.925 0.752 [7]
Profile (5,7.5) 0.971 0.796 [15]
SVM-Pattern-LSA 0.879 0.626 [6]
SVM-Motif-LSA 0.860 0.628 [6]
PSI-BLAST 0.676 0.330 [9]
SVM-Bprofile-LSA 0.921 0.698 [9]
SVM-PDT-profile (β=8,n=2) 0.950 0.740 [10]
HHSearch 0.911 0.801 This paper∗
SVM-LA-p1 0.958 0.888 [7]

∗ We recomputed the ROC50 score for the HHsearch method. Actually,
the one reported in [10] (0.99) seems incorrect, since, following the
definition in [14], the ROC50 score should always be lower than the
corresponding ROC score.

paring all soft versions with their hard counterpart. Indeed,
reported results confirm the suitability of the proposed soft-
Ngram approach, which – using this SCOP 2.04 benchmark
– outperformed in every trial the hard counterpart.

In Table 3, we reported comparative results with other
approaches of the literature applied to the SCOP 1.53
benchmark. When compared to other techniques that are
based on Ngram counting, the proposed approach (by using
both soft BoW and soft PLSA) sets the best performance
so far; moreover, it is also very competitive with respect
to a broader range of methods (the soft PLSA approach
results in the second best ROC score, and in the best ROC50
score). Please consider that these results can be even more
improved, for example by improving the quality of the
starting profiles – e.g. by narrowing the PSI-BLAST search
scope or considering only the more curated RefSeq database.

As a final test, we evaluated the proposed approach on a
slightly different and more challenging task, that is to detect
homologies at fold level rather than at superfamily level.
To do so, we employed a standard benchmark used in the
literature for the task, built from SCOP 1.67 [24]. Results
are reported in Tab. 4, where only the best configuration –
achieved using row (1,2)-gram for soft BoW and soft PLSA
– is reported. Even in this challenging case, the proposed
framework proved to be very effective, with our soft PLSA
approach setting a new state of the art also in comparison
with alternatives techniques.

4.3 Suitability of topic models for protein remote ho-
mology detection
This section is devoted to discuss the suitability of topic
models to the remote homology detection task. In particular,
we are convinced that topic models represent a good choice
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Fig. 2. ROC curves computed on the SCOP 2.04 dataset. Given a particular representation choice, in each subfigure the standard, “hard” average
score (represented in the x axis) is compared against the corresponding soft score (on the y axis): a dot above the diagonal means a better
performance for the soft model. Darker dots represents lower p-values.

in this context for a twofold reason: first, they permit to dis-
till the information contained in the bag-of-words obtained
from Ngrams, providing a more compact representation
where similarities between proteins are more expressive for
the remote homology detection task. In fact, by looking at
Tab. 1 and 2, the average improvement when using a topic
model w.r.t. using the simple bag-of-words is ∼1.19% in
ROC scores, and ∼8.98% in ROC50 scores. Note that this
is true also for the standard (not-weighted) counterpart.

The second consideration is that topic models can be
employed beyond classification: it is possible that inter-
pretation of latent topics leads to novel understanding of
Ngram patterns, that can not be derived by simply looking
at the bag-of-words of Ngrams. To provide some evidence
of this possibility, we performed an experiment showing
that co-occurent Ngrams – which are grouped together in
a single topic – may suggest the presence of functional,
conserved patterns shared by the members of a protein
family. Specifically, we took one family in the SCOP 1.53
benchmark (family 2.56.1.2), where every sequence is char-
acterized by a common Fatty Acid Binding Protein (FABP)
pattern of length 18 aa (covering on average 14% of each
sequence)10. We learned a soft PLSA model with 100 topics
on the training set defined by the SCOP benchmark protocol
(where family 2.56.1.2 is not considered). Then, we individ-
uated the most discriminative topic k̂ by looking at the SVM
scores: we considered as most discriminative the topic with
highest SVM score (as similarly done in [15]). Finally, we
looked at the top 10 Ngrams of that topic, sorted according
to the distribution βvk̂ = p(v|zk̂). Indeed, 5 of these Ngrams
are present in the FABP motifs of the sequences in family
2.56.1.2 (please note that this family was not present in
the training set), appearing 23 times. To put these numbers
into perspective, the probability of this result happening at
random is p = 2.5e-4 (computed by performing 1,000,000
randomization tests).

More than this, we performed a similar experiment with
the simpler soft bag-of-words model, in order to demon-
strate that this information can not be derived without

10. This pattern has been extracted by using the public tool Scan-
Prosite (http://prosite.expasy.org/scanprosite/)
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Fig. 3. ROC curves computed on the SCOP 1.53 dataset. In each sub-
figure, the proposed soft representation is compared with its standard
counterpart.
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TABLE 4
Average ROC scores for the 86 families in the SCOP 1.67 fold

benchmark for different methods. The reported comparative results
have been directly taken from the reference between brackets.

Method ROC ROC50 Reference
Soft BoW, row (1,2)-gram, sum 0.828 0.656 This paper
Soft PLSA, row (1,2)-gram, sum 0.861 0.723 This paper

Bag of words based methods
SVM-Top-Ngram (n=2) 0.813 0.642 [6]
SVM-Top-Ngram-combine-LSA 0.854 0.694 [6]

Other methods
PSI-BLAST 0.501 0.010 [24]
SVM-pairwise 0.724 0.359 [24]
SVM-LA 0.834 0.504 [24]
Gpkernel 0.844 0.514 [24]
Mismatch 0.814 0.467 [24]
eMOTIF 0.698 0.308 [24]
SVM-Bprofile (Ph=0.11) 0.804 0.644 [6]
SVM-Bprofile-LSA (Ph=0.11) 0.823 0.658 [6]
SVM-Nprofile-LSA (N=9) 0.823 0.658 [28]

topic models. Specifically, we trained the SVM on the same
training set represented with the soft bag-of-words, again
extracting the top 10 Ngrams according to the SVM score
(as done in the above experiment). In this case, we found
only 3 unique Ngrams appearing in the motif (appearing 9
times), with p-value p = 9.6e-2.

These numbers suggest that the information derived
with the topic model can be significantly richer than the one
extracted with the bag-of-words (and by sampling Ngrams
at random): this encouraging result supports the hypothesis
that topic models can recognize conserved portions of a
protein functional domain.

5 CONCLUSION

This paper investigated the potentialities of the soft Ngram
representation for protein remote homology detection, a
novel approach to characterize protein sequences. Soft
Ngrams are extracted from the profile of a sequence, explic-
itly considering and capturing the frequencies in the profile,
thus reflecting the evolutionary history of the protein. We
propose two modeling approaches to derive feature vectors
from the soft Ngram representation, employable as input for
the SVM discriminative classifier. Starting from the bag-of-
words model, we derived a soft PLSA model, that deals with
the proposed characterization for sequences. In a thorough
experimental evaluation, we demonstrated on three bench-
marks that the soft Ngram representation constitute a valid
alternative to current profile-based approaches, providing
also satisfactory results when compared to almost all the
approaches proposed in the literature.
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