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Biclustering represents an intrinsically complex problem, where the aim is to perform a simultaneous
row- and column-clustering of a given data matrix. Some recent approaches model this problem using
factor graphs, so to exploit their ability to open the door to efficient optimization approaches for well
designed function decompositions. However, while such models provide promising results, they do not
scale to data matrices of reasonable size. In this paper, we take a step towards addressing this issue, by
proposing a novel approach to biclustering based on factor graphs, which yields high quality solutions
and scales more favorably than previous methods. Specifically, we cast biclustering as the sequential
search for a single bicluster, and propose a binary and compact factor graph that can be solved efficiently
using the max-sum algorithm. The proposed approach has been tested and compared with state-of-the-
art methods on four datasets (two synthetic and two real world data), providing encouraging results with
respect both to previous approaches based on factor graphs and to other state-of-the-art methods.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In many scientific areas, it may be of interest to group/cluster a set
of objects, based on a set of observed features. In gene expression
analysis, for instance, the identification of subsets of genes showing a
coherent pattern of expression in subsets of objects/samples can
provide crucial information about active biology processes. Such in-
formation, which cannot be retrieved by classical clustering, can be
extracted by simultaneously clustering both the rows and the col-
umns of a given data matrix (where each row corresponds to a dif-
ferent object/sample and each column to a different feature), a task
that is known as biclustering. The problem of biclustering, also known
as co-clustering, and closely related to subspace clustering, has been
introduced in the bioinformatics field to analyse expression data [1–
7]; recently, it has been adopted in a wider range of applications such
as market segmentation and data mining [8–11].

Many approaches have been proposed to address the biclus-
tering problem, ranging from probabilistic models (such as the
plaid model [12] or FABIA [13]) to two-way clustering methods
[14–16]. A recent comprehensive review was produced by Ogha-
bian et al. [5].

In order to face the intrinsic complexity of biclustering, some
recent approaches started to exploit sophisticated computational
to).
models, which are able to provide very accurate solutions; one
example of this trend is the class of approaches based on factor
graphs (FG) [15,17,18]. FG are a class of graphical models [19]
which encode a global function as a collection of factors (local
functions) defined over subsets of variables [20], with such de-
composition being described via a bi-partite graph of variables and
factors. The main advantage in FG consists in the exploitation of
the global function decomposition to solve smaller and local sub-
problems, providing accurate approximation for the optimization
of the objective function. In fact, such decomposition can lead to
powerful algorithms, which have been used to effectively solve
various computational tasks [19]). A notable example is the affinity
propagation method [21], where the authors use a FG to encode an
exemplar-based model for the well known clustering problem
[21].

In the biclustering context, however, the potential of FG has not
yet been fully investigated, with only a few approaches having
been proposed [15,17,18]. Arguably, this is mainly due to the dif-
ficulty of designing FG with an effective trade-off between re-
presentation power and the computability. On the one hand, we
have to derive a decomposition of the function for the problem at
hand, which should be descriptive enough to capture its nature (in
this sense, the more complex the model, the better). On the other
hand, we have to consider the computational feasibility of the
resulting optimization/inference task, which highly depends on
the structure of the FG (in this case, the simpler, the better). For
example, the max-sum algorithm – which is the most popular
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choice for optimizing FG [22,19,21]1 – provides solutions that ap-
proximate the global optimum, where the quality of such solution
depends on the cycles present in the FG (the optimal solution is
guaranteed in case of no cycles [24]); moreover, its computational
effort strongly depends on the nature of the variables – e.g. binary
variables lead to very fast optimization, such as in the affinity
propagation method [21].

The crucial issues mentioned in the previous paragraph need to
be considered when designing FG-based approaches and are far from
being solved, particularly for biclustering [15,17,18]. Recent work has
adapted the affinity propagation method [21] to biclustering, by
performing iterative and sequential row-column clustering [15].
However, while that approach provides good results (on a synthetic
benchmark), the function being optimized is still designed for clus-
tering, not for biclustering; consequently, that approach fails in
providing a descriptive function to be optimized. This aspect has
been improved by clustering directly the entries of the data matrix,
extending the FG of affinity propagation with a constraint that only
allows clusters corresponding to biclusters (i.e., intersection of sub-
sets of rows and columns) [18]; the objective function now better
describes the problem, but the resulting model is too complex, with
too many cycles to be effectively optimized by the max-sum algo-
rithm (a fact that lead the authors of that work to propose a linear
programming method, which, however, does not scale beyond
10�10 matrices). An alternative and interesting approach consists in
making the model more compact (fewer variables) by using n-ary
(rather than binary) variables [17]. However, as mentioned above, the
binary nature of the variables is essential to obtain an efficient and
fast optimization algorithm; in fact, the optimization technique
therein proposed is only able to deal with matrices no larger than
10�10, while for larger matrices the authors introduced an ap-
proximate max-sum algorithm and a greedy approach.

In this paper, we take what we believe is an important step
towards efficient FG-based biclustering, by proposing a novel ap-
proach able to better face the afore-mentioned issues. More spe-
cifically: we reformulate biclustering as a sequential search pro-
blem, discovering one bicluster at time (an approach employed by
other authors [25–27]); we derive a novel binary FG that retrieves
one bicluster on the basis of a given coherence criterion. Crucially,
the proposed model remains compact and includes only binary
variables, allowing efficient optimization via the max-sum algo-
rithm, which drastically alleviates the scaling issues of previous
FG-based approaches.

We test our approach on two synthetic benchmark and two real-
world problems involving gene expression data. On the synthetic
benchmarks, which contain matrices of dimension 50�50, we com-
pare our approach with those of [17,18]; however, since those methods
cannot be applied in their original formulation for matrices of this size,
we used the approximate versions provided by those authors. Our
optimization procedure based on max-sum has been also favorably
compared with an alternative optimization based on the recent AD3

algorithm [28]. The real gene expression datasets (yeast and breast
tumor) allow comparing our approach with that in [17], as well as with
other state-of-the-art approaches [9]. The obtained results confirm the
suitability of the proposed FG-based method.
2. Background and related works

This section provides an introduction to biclustering and FG,
followed by a detailed discussion of the current FG-based ap-
proaches to biclustering.
1 This algorithm has been exploited also for biclustering, without using factor
graphs [23].
2.1. Biclustering

The goal of biclustering is the simultaneous clustering of the
rows and columns of a given data matrix. Formally, it can be for-
mulated as follows. Given a data matrix ∈ ×A n m, let = { … }N n1, ,
denote the set of row indices and = { … }M m1, , the set of column
indices. We denote as ATK the submatrix that includes the rows in

⊆T N and the columns in ⊆K M . Using this notation, we can de-
fine a ×p r (where ≤ ≤p n1 , ≤ ≤r m1 ) bicluster as submatrix ATK,
such that the rows in = { … }T t t, , p1 present a “coherent behavior”
(in some sense) across the columns in = { … }K k k, , r1 , and vice
versa. The available literature offers a wide range of coherence
criteria, the choice of which critically influences the nature of the
biclusters obtained [7,5,1,29].

2.2. Factor graphs

Let x be an l-dimensional vector of variables, and let g(x) denote
the value of some objective function for a given configuration x.
Formally, a factor graph includes two types of nodes: a collection
of variable nodes, one of each of the l variables ( …x x, , l1 , usually
drawn as circles) and a collection of factor nodes ( …f f, , d1 , usually
drawn as squares). The graph is bipartite in the sense that there
are only edges/connections between factor and variable nodes (not
between two variable or two factor nodes). Function f is re-
presented by this factor graph if can be factored as

∏( ) = ( )
( )=

g x f x ,
1t

d

t S
1

t

where ⊆ { … }S n1, ,t is the subset of variable nodes to which factor
node ft is connected, and xSt

denotes the corresponding sub-vector
of x. Factor graphs were created and are most often used in a
probabilistic inference context, where g(x) is usually the (poster-
ior) probability function in some inference problem: ( ) = ( )p x g x Z/ ,
where Z is a normalization constant [19]. One of the standard
problems in that context, finding the maximum a posteriori (MAP)
configuration = ( )x p xargmaxx , corresponds thus to finding the
maximizer(s) of g(x) [19,30]. Naturally, the probabilistic inter-
pretation is not mandatory and there are FG-based approaches
devoid of any probabilistic interpretation, as is the case of affinity
propagation [21]; there, the variables simply represent decisions,
and the FG expresses the decomposition of the global objective
function and possible constraints. In this paper, we adopt this non-
probabilistic view of FG.

As mentioned in Section 1, FG are very flexible models, since
there are no limitations on the form of the local functions ft; for
example, they can be designed to impose hard or soft constraints,
or have different types of variable domains (e.g., categorical, in-
teger, binary, real numbers). However, the choices made when
designing a FG have a drastic effect on the difficulty of the re-
sulting optimization problem.

2.3. Optimization of factor graphs

The optimization algorithms typically used for FG belong to
two classes: message passing and search-based [31]. The main
difference between these two classes is the way in which they
tackle the complexity of the optimization: message passing algo-
rithms aim at approximating the global objective function de-
scribed by the FG by performing local optimization and propa-
gating information throughout the graph; in contrast, search-
based algorithms aim at efficiently exploring the possible variable
assignments (i.e., the search space) [31]. Thanks to its remarkable
success in coding theory [32], message-passing methods are the
standard choice for most applications, with the max-sum
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algorithm being one of the most famous instances in this class,
having been used in many applications of FG models
[19,21,22,33,34]. Max-sum is a message passing scheme that ex-
ploits the structure of the graph, using the distributive law that
holds between the max and sum operations (hence its name) [22].
It can be shown that if the FG has no cycles (e.g., if it is a tree), then
max-sum can find the maximum of the objective function [24].

The max-sum algorithm is based on the definition of two
functions, called messages, which exchange information between
connected nodes:

1. From factor ft to variable xi (with ∈i St):

∑μ μ( ) = ( ) + ( )
( )

→
∈ ⧹

→
⧹{ }

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥x f x xmax log ;

2
f x i

x t S
m S i

x f mt i
St i

t
t

m t

2. From variable xi to factor ft (with ∈i St):

∑μ μ( ) = ( )
( )

→
∈ ( )⧹{ }

→x x
3

x f i
l i t

f x i
ne

i t l i

where ( ) ⊆ { … }i dne 1, , denotes the subset of factor nodes that are
connected to variable node i. These messages are iteratively ex-
changed until a convergence criterion is met. A common choice is
to stop if the variable configuration does not change for a given
number of iterations (in the case of binary or categoral variables)
or the objective function value changes less than some threshold.
The final variable configuration is obtained by assigning to each
variable the domain value that maximizes the summation of all
the incoming messages for to the corresponding node [19,21]. An
example of a FG and the max-sum algorithm are illustrated in
Fig. 1.

A crucial issue in the practical use of max-sum is the derivation
of efficient procedures to compute the messages. This is a non-
trivial task, especially for the messages from functions to nodes,
which involve a maximization that can be intractable. Devising
efficient and compact messages is clearly linked to the structure of
the FG, namely: the order of the factors, presence/absence of
constraints, type of variables (binary/discrete/continuous).
2.4. Biclustering with factor graphs

This subsection briefly reviews the approaches in the literature
that address biclustering by designing a FG [15,18,17]; this will
help in understanding and putting in context the approach that we
will propose below. We focus on [17,18], since [15] does not pro-
pose a novel FG for biclustering, but simply iteratively applies a
FG-based approach to clustering rows or columns.
(

Fig. 1. A simple example of a factor graph and max-sum messages.
2.4.1. Biclustering affinity propagation
The approach introduced in Ref. [18], called biclustering affinity

propagation (BAP), extends to the biclustering case the FG that
underlies the affinity propagation (AP) clustering method proposed
in Ref. [21].

In particular, authors of [18] proposes to directly group the data
matrix entries (instead of whole rows or columns), ensuring that
the obtained groups of entries correspond to biclusters: a subset of
rows and a subset of columns. This intrinsically defines a topolo-
gical constraint: the biclusters (after appropriate row and column
permutations) must have a rectangular shape. Hence, the authors
extend the FG underlying AP by introducing another constraint
ensuring the result to be a sub-matrix. This is done by defining a
4-dimensional binary model with × × ×n m n m variables, each
encoding the exemplar choices between the points (variable ci j t k, , ,

is 1 if and only the entry (i,j) chooses (t,k) as exemplar), with
factors representing the following three constraints:

(i) 1-of-N constraint (I factors): every entry must chose one, and
only one, exemplar;

(ii) exemplar consistency (E factors): if an entry (i,j) chooses entry
(t,k) as exemplar, (t,k) must choose itself;

iii) bicluster integrity (B factors): if entries (i,j) and (t,k) choose (z,
y) as exemplar, then (i,k) and (t,j) must also choose (z,y) as
exemplar;

The resulting FG is very large: for a ×n m data matrix, the model
has n m2 2 variables; moreover the model contains n m I and E
factors, plus n m3 3 B factors. For example, for a 10�10 matrix, the
model contains 104 variables and more than 106 factors. Moreover,
the model contains many cycles, so that the max-sum algorithm is
not effective. Because of that, the authors of [18] proposed a linear
programming solution, which however did not allow them to
analyse matrices larger than 10�10. The FG of this approach is
illustrate in Fig. 2a (as in [18], the 4D model is encoded as a 3D
model, where the third dimension encodes all the nm entries of
the matrix).

2.4.2. Exemplar based biclustering
The second FG-based approach [17], herein referred to as ex-

emplar-based biclustering (EB), shares many aspects with the above
described BAP method, and it also yields an exemplar-based bi-
clustering solution. The main difference concerns the description
of the representative choices: while in BAP [18] the variables are
binary, EB [17] uses integer-valued variables indexing the chosen
exemplars. This leads to a much more compact FG: nm variables,
instead of n m2 2 (see Fig. 2b). The constraints encoded in the model
are similar to those of BAP, but their encoding differs since the
variable type is different. In detail:

(i) the 1-of-N constraint is intrinsically encoded in the variables,
as their integer type forces each point to choose exactly one
exemplar;

(ii) exemplar consistency is now imposed to every couple of vari-
ables (g factors);

iii) bicluster integrity is imposed exactly as in the BAP model (f
factors);

The resulting model is much more compact, with a drastically lower
number of variables and factors. However, since the variables are
( )mn -ary, the efficient messages update rules for the max-sum al-
gorithm as proposed in AP [21] cannot be used here. In fact, the
largest matrix analyzed in Ref. [17] with standard max-summessages
has size 10�10; for larger matrices, the authors had to resort to an
approximate max-sum algorithm and a greedy approach.



Fig. 2. Factor graphs for biclustering.
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3. The proposed approach

Building upon the basic ideas proposed in Refs. [17,18], we
design a compact and binary FG model for biclustering, for which
we derive a fast and effective max-sum algorithm.

3.1. The ingredients

The proposed model uses four main ingredients.

1. Formulation of bisclutering as an incremental search for the largest
bicluster. Several approaches in the literature propose techni-
ques that sequentially identify the bicluster, one at a time
[25,26,13]. Once a bicluster in identified, it is masked in the data
matrix (e.g., by replacing it with background noise [25] and the
next bicluster is sought. In this class of methods, we use a model
with binary variables, one for each entry of the matrix, indicat-
ing if that entry belongs, or not, to the bicluster. We thus use
binary variables (as in BAP), but a compact set thereof (as in EB).
In our model, a solution is represented by a binary matrix

∈ { } ×C 0, 1 n m, where each entry cij indicates whether the entry
(i,j) belongs to the bicluster ( =c 1i j, ) or not ( =c 0i j, ). Since we are
looking for the largest possible bicluster, solutions where many
ci j, are set to 1 should be preferred.

2. Bicluster coherence criterion. The model should prefer solutions
containing coherent entries, or, equivalently, it should penalize
incoherent solutions. In our model, the incoherence of a
bicluster is measured as the sum of the pairwise incoherences
between all the points belonging to the bicluster. This differs
from BAP and EB, where only the coherence with the exemplar
of the bicluster is considered. We will see that our choice can
lead to more robust solutions in the presence of noise. There are
several possibilities to define the incoherence ( )I a a,ij tk between
two entries, depending on which kind of bicluster we are
seeking (constant-valued, additive, multiplicative, or others [7]).
The most straightforward option is to simply use a constant-
type incoherence (as in BAP):

( ) = ( − ) ( )I a a a a, . 4ij tk ij tk
2

By using this incoherence measure we direct the search towards
constant biclusters (i.e. biclusters with the smallest possible
variance). If we are aiming at additively coherent biclusters, the
incoherence can be defined as in Refs. [17,25]:

( ) = ( − + − ) ( )I a a a a a a, . 5ij tk ij tj tk ik
2

In fact this choice directs the search towards additively coherent
biclusters (i.e. biclusters where entry activation levels are given
by the sum of some constants, one for each row and column;
this is useful if we are looking for patterns among the columns
[7]).

3. A bicluster is a sub-matrix. The model should consider only valid
assignments, that is, corresponding to a bicluster: this require-
ment can be expressed by enforcing that the points belonging to
a bicluster have to constitute a sub-matrix (i.e., a subset of rows
and columns). In particular, considering every pair of rows (or
columns) in matrix C, the constraint is satisfied if any of the two
following conditions are met: i) the rows (or columns) share the
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same pattern or ii) one of the rows (or columns) is completely
zero. Due to the simplicity of this conditions, the number of
constraints drastically reduces: the EB and BAP models require
one constraint for every couple of entries, whereas this model
only involves a constraint for every pair of rows and every pair
of columns. This reduction is even more significant when the
number of rows is much smaller than the number of columns
(or viceversa), such as in some biology applications [5,7].

4. The entry level “counts”. For the fourth ingredient is based on the
observation that in many biclustering applications (such as
preference matrices, count matrices, gene expression datasets)
the most important biclusters are those containing high-valued
entries. This can be directly encoded in the model by rewarding
solutions that contain entries with high values (without loss of
generality, we assume that all entries aij have positive values).
This aspect was neglected in the EB and BAP models, where the
assignment to a bicluster was made only on the basis of the
coherence.
3.2. The formal model

Recall that the data matrix is denoted as
= ( ) ∈ = { … }A a i N n, 1, , ,ij for ∈ = { … }j M m1, , , such that ≥a 0ij .

The goal is to find a bicluster ATK, that is a sub-matrix of A con-
taining the rows in ⊆T N and the columns in ⊆K M . The proposed
model, graphically sketched in Fig. 2c, is fully defined by the
variables and factors next described.

The variables are organized in a binary matrix ∈ { } ×C 0, 1 n m,
where each entry cij (for ∈ ∈i N j M, ) indicates if the corre-
sponding entry belongs ( =c 1i j, ) or not ( =c 0i j, ) to the bicluster.
The objective function (to be maximized with respect to C) in-
cludes three types of factors:

� Unary factors (one per entry, function only of the corresponding
entry), given by

( ) = =
=

( )
⎪

⎪⎧⎨
⎩A c a c

a c, if 1

0, otherwise, 6
ij ij ij ij

ij ij

encouraging the bicluster to contain entries of A with high ac-
tivation level.

� Pairwise factors (one for each pair of entries) given by

( ) = − ( ) ( )O c c I a a c c, , , 7ij tk ij tk ij tk ij tk,

encouraging the bicluster to minimize its internal incoherence,
as assessed by the incoherence measure I.

� Column/row pair factors (one per pair of columns or pair of
rows), forcing the maximizer of the objective function to cor-
respond to a bicluster:

∑ ∑ ∑
( ) =

| − | =

−∞ ( )

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟B c c

c c c c
,

0, if 0

, otherwise 8

jk j k i
ij

i
ik

i
ij ik

: :

where c j: denotes the j-th column of C.

Summarizing, given the variables and factors defined above,
the proposed FG encodes the following function (to be max-
imized):

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑

( ) = ( ) + ( )

+ ( )
( )

= = = = = =

= =

F C A c w O c c

B c c

,

, .
9

i

n

j

m

ij ij
i

n

j

m

t

n

k

m

ij tk ij tk

j

m

k

m

jk j k

1 1 1 1 1 1
,

1 1
: :
Apart from the Bjk factors (which ensure bicluster solutions), we
have two competing driving forces: on the one hand, if two entries
are in the solution, say =c 1ij and =c 1tk , their activation levels (aij
and atk) are added to the objective function, which encourages
large biclusters; on the other hand, such inclusion decreases the
objective function by ( )w I a a,ij tk (note the minus sign in Eq. (7)),
discouraging incoherent points from being included in the solu-
tion. The relative strength of these two forces is controlled by
parameter w.
3.3. Optimization

To maximize the objective function in Eq. (9) we adopt the
max-sum algorithm. As mentioned in Section 2.2, that algorithm
uses two types of messages (from variables to factors and from
factors to variables), which are iteratively exchanged until a stable
configuration is reached. The computation of these message is a
crucial aspect of the algorithm, which may not be trivial due to the
maximizations involved in the messages going from factors to
variables (see Eq. (2)). Notice that, considering categorical vari-
ables with d possible label values and that a given factor depends
on k variables, it is necessary to consider an exponential number
dk of configurations; this quickly becomes intractable even for
moderate values of d and k. However, the fact that our proposed
model uses binary variables and hard constraints allows deriving
efficiently computable and compactly representable messages, as
detailed next.

Observe that every message sent to a variable needs to be
computed for all the possible configurations of that variable. The
binary nature of the variables means that this can be represented
in a very compact way: we can use a scalar message that expresses
the difference between the values corresponding to the two pos-
sible variable allocations. Given that our FG includes three types of
factors (Aij, Oij tk, , Bjk), we need to derive six types of messages
(three in each direction).

The message from factor Aij to variable cij is constant (equal to
aij) and the opposite message is simply zero. The remaining four
types of messages can be obtained after some mathematical ma-
nipulation (the full derivation is provided in the supplementary
material), and are as follows.

1. From variable ci j, to factor Oij tk, :

∑ ∑ψ σ η α= + +
( )^

^
.

10
ij
tk

tk

ij
tk

k
ij
k

ij

2. From variable ci j, to function Bi k, :

∑ ∑β η σ α= + +
( )^

^
.

11
ij
k

k
ij
k

tk
ij
tk

ij

3. From function Oij tk, to variable ci j, :

( ) ( ) ( )σ ψ ψ= ( ) ( ) + −⎡⎣ ⎤⎦ 12wI a a wI a amax min , , , , min , 0 .ij
tk

ij tk ij tk tk
ij

tk
ij

4. From function Bi k, to variable ci j, :

η Θ Λ= ( ) ( ) ( )
⎡⎣ ⎤⎦I Kmax min , , min , . 13ij

k

where



Fig. 3. Sketch of the factor graph showing the connections between one variable
and all its factors.

2 To retrieve different biclusters the methodology is repeated varying the initial
set of sub-matrices.
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Fig. 3 shows a sketch of the FG connections for a given variable,
and the messages exchanged. These messages, starting from an
assignment where are all =c 0ij , are exchanged and updated until
a convergence criterion is met. In our experiments, the algorithm
stops when the objective function does not change for a fixed
number of consecutive iterations.

3.4. Computational complexity and scalability

Given an ×n m data matrix, the model has ( )O n m2 2 space
complexity, due to the n m2 2 factors Oij tk, . Concerning time, the
message update procedure is quadratic in the number of columns
(or rows), thus being reasonably fast. In particular, the time
complexity is dominated by ηijk messages, which are ( )O n2 . The
other messages are less demanding, each having the following
computational costs: ψij

tk is O(n); βijk is O(n); sijtk is ( )O 1 .
The derivation of such messages allow us to analyse 50�50 ma-

trices with exact max-sum update rules. We think this is an important
step toward efficient FG-based biclustering, since previous methods
solved up to 10�10 matrices. Although this promising result, the
proposed approach cannot handle real matrices directly (e.g., the Yeast
dataset has almost one million entries); in particular, the memory
required by the s messages for n genes and m conditions involves
storing n m2 2 values. To circumvent this difficulty, we adopted a
scheme similar to that employed in Ref. [18]: the algorithm is executed
on different portions of the matrices; successively, we employ an
aggregation method to merge the obtained biclusters. The idea is that
by aggregating accurate results obtained on portions of the data ma-
trix can provide solutions of superior quality for the overall bicluster-
ing problem. This is largely confirmed by our experimental analysis.
More in detail, we employ the following procedure:

1. the whole matrix is randomly partitioned into non-overlapping
submatrices (a reasonable partition would not divide the data
matrix on both rows and columns, to reduce the complexity of
the re-aggregation step); on each of these submatrices, we run
the proposed algorithm;

2. the obtained biclusters are grouped using the (above mentioned)
affinity propagation algorithm [21]; the similarity criterion between
two biclusters is defined as the number of columns they share;

3. finally, we validate the groups of biclusters by looking at the FG
objective function in Eq. (9): in particular, we compute its value
for each bicluster group considering the matrix composed by
the rows and the columns of the biclusters belonging to that
group; then, if the objective function is positive (meaning that
the max-sum algorithm could have put them together), the
group is kept and the final bicluster is obtained by merging
rows and columns of all its biclusters.2
4. Experimental evaluation

In this section we evaluate the proposed approach using both
synthetic and real datasets derived from gene expressions. As a pre-
liminary step, we provide some empirical evidence on the effective-
ness and efficiency of the max-sum algorithm we derived, also com-
paring it with the very recent AD3 method [28], which in principle can
provide better solutions but at a cost of slower convergence. Next, we
evaluated the quality of the solutions provided by our approach in
comparison with the other FG-based approaches [17,18], as well as
other state-of-the-art techniques [13,35–38,25,39,40,17]. The goal of
these experiments is twofold: (i) to empirically show (on synthetic
datasets) that our model provides more robust solutions than previous
FG-based biclustering approaches; (ii) to assess the significance of our
method on real-world gene expression datesets, also in comparison
with different non-FG-based approaches.

4.1. Analysis of the optimization algorithm

We begin with some comments on the convergence of the objec-
tive function along the max-sum iterations, then we further motivate
its adoption through a comparisonwith the recent AD3 algorithm [28].
Concerning the first aspect, it is known that max-sum is only guar-
anteed to converge in the absence of cycles [19,24], a condition that is
clearly not satisfied by the proposed FG. However, in all the experi-
ments herein reported, the algorithm always converged, usually
within the first 250 iterations, with the messages reaching stable va-
lues. An example of the objective function evolution is shown in Fig. 4,
where it can be seen how it rapidly reaches its final value.

Concerning the second aspect, note that, as reported in previous
sections, there are different classes of methods for optimizing FG
models. When the probabilistic interpretation is not relevant, the
max-sum algorithm is arguably the most common choice, due to its
effectiveness and efficiency in many different scenarios
[22,19,21,33,34]. However, it is important to assess how max-sum
compares to other techniques, such as the recent ones based on dual
decomposition [31,28,41,42,30,43]. In particular, here we compare
max-sum with the recent AD3 (alternating directions dual



Fig. 4. Objective function evolution along the max-sum iterations. Each circle in-
dicate a valid configurations (assignment respecting the constraints) and each cross
indicates a non-valid configuration (the corresponding value of the objective
function is −∞ in these cases, thus we show the value of F without the Bjk factors).
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decomposition [28],3). In AD3, each factor is represented as a con-
strained optimization (sub)problem, solved via the augmented La-
grangian method, which works by introducing a quadratic penaliza-
tion on the constraint violation [28]. The authors of [28] provide
guidelines on how to solve exactly and efficiently some particular
types of sub-problems, namely those described with binary pairwise
factors imposing first-order logic constraints. However, AD3 can be
adopted for arbitrary factors, given access to a “black box MAP solver”
for the sub-problems generated by that factor. To instantiate AD3 for
our FG, we re-formulate it so that it contains only the type of con-
straints for which closed-form derivations (i.e. one-hot XOR, OR, OR-
with-OUTPUT, negations, De Morgans laws, and AND-With-Output
[28]). Hence, to efficiently enforce the biclustering constraints, we
added indicators selecting the “active” rows or columns and forcing a
variable cij to be one if and only if row i and column j are active. Since
we are keeping the intersection between selected rows and column,
the result is always a submatrix and hence a bicluster.

In order to compare the two optimization techniques, we used
the following synthetic dataset: (i) matrix A contains 20�20
random values uniformly distributed in [ ]0, 1 ; (ii) an additively
coherent bicluster, with 25% of the size of A, is placed at a random
position; (iii) finally, the entire matrix is perturbed with Gaussian
noise, with standard deviation equal to a percentage of the dif-
ference between the mean of the bicluster and the mean of the
background. Concerning this noise percentage, we considered
5 values ranging from 0 (no noise) to 20% (high noise); for each of
these noise percentage values, 15 matrices were generated,
yielding a total of 75 data matrices. Our max-sum algorithm and
AD3 were compared in terms of both computational time and
quality of the solution. This last aspect has been assessed using
two standard indices [17]: purity (i.e., the percentage of points
retrieved that actually belong to the real bicluster); inverse purity
(i.e., percentage of points belonging to the true bicluster which
have been retrieved by the algorithms). Notice that these quan-
tities are commonly known as precision and recall, in pattern re-
cognition and information retrieval.

Concerning execution time, AD3 turned out to be very slow in
this problem, with a computational time 3 order of magnitude
slower than that of our algorithm (as shown in Fig. 5b): this was
somehow expected, namely due to the number of constraints in-
troduced in the adaptation of the FG to the structure of AD3.
Concerns quality, Fig. 5a shows the averaged product of purity and
inverse purity as a function of the noise level, showing that max-
sum seems to be slightly more robust to noise in this experiment.
These results provides further evidence that, if the FG is well de-
signed, the max-sum algorithm can provide very fast and robust
optimization.
3 The code is available at https://github.com/andre-martins/AD3.
4.2. Experiments on synthetic datasets

The proposed approach was compared with the two FG-based
methods described in Section 2, BAP [18] and EB [17], using the same
synthetic data generation method described in the previous subsec-
tion. In this case, we used 30matrices for each noise level (for a total of
150 matrices), and each matrix has dimensions 50�50. In this ex-
periment, we considered two types of biclusters: constant-valued
biclusters (we call this “constant bicluster benchmark”) and additively
coherent biclusters (we call this “evolutionary bicluster benchmark”).
For both BAP and EB, we employed the approximate versions pro-
posed in the corresponding papers, because the dimension of the
analyzed matrices is far beyond the computational capabilities of their
exact versions. In particular, for BAP we used the heuristic aggregation
methodology proposed in Ref. [18], which groups results obtained on
smaller matrices (here we used 5�5 matrices, with no overlap). Re-
garding similarity, we employed the negative of the Euclidean distance
(as proposed in Ref. [18]) for the constant bicluster benchmark,
whereas for the evolutionary bicluster benchmark, we adopted the
negative of Eq. (5). 4

Concerning EB, we used the authors’ implementation.5 of the
greedy algorithm given in Ref. [17]. Since this algorithm provides a
pool of biclusters as solution, for a fair comparison all parameters
were varied inside the suggested range6 using ten equally spaced
values and only the bicluster which maximizes the product of
purity and inverse purity was considered.

For the proposed max-sum method, the experimental details
are the following:

� Message scheduling: even if different schedule are available [22],
we adopt the most common approach of updating the messages
in parallel, based on those from the previous iteration. For
example, looking at the FG in Fig. 1, when computing μ ( )→ cf c 32 3
at time t, the values of μ ( )→ cc f 22 2

at time −t 1 are used.
� Convergence criteria: the algorithm is stopped if the variable

configurations do not change for 100 consecutive iterations.
� Parameter w: we tune the coherence factors weight w using the

same strategy adopted for EB: in particular, we test 8 different
values ranging from 2�8 to 2�1, and we use the best result.

The results are shown in Fig. 6, where purity and inverse purity
are plotted as a function of the noise level. Each point represents
the average over the 30 runs at the corresponding noise level.

As shown in Fig. 6, the tested approaches provide similar per-
formance on the synthetic benchmark, thus a statistical test is
required to prove if the differences between the retrieved solu-
tions are significant. We performed a paired T-test comparing
other FG based algorithms against the one we propose. Specifi-
cally, in the plots, a full marker on the EBG (or BAP) curve indicates
that the difference between such method and the proposed ap-
proach is statistically significant with significance level of 5%.

These results show that the proposed approach significantly
outperforms the two approximate BAP and EB methods, especially
for higher levels of noise, thus confirming the need for more ro-
bust optimization strategies in noisy scenarios. Concerning the
two competing FG-based methods, it is important to note that BAP
only performs well on the constant bicluster benchmark. Arguably,
using Eq. (5) as similarity is not enough to appropriately identify
evolutionary biclusters, which may be due to the fact that if two
points are on the same row (or columns) the function (5) returns
zero as coherence value, increasing the chance that those two
4 This type of bicluster was not considered in Ref. .[18]
5 Available at http://sist.shanghaitech.edu.cn/faculty/tukw/sdm11code.zip
6 Parameter ranges are described in the code documentation.

https://github.com/andre-martins/AD3
http://www.sist.shanghaitech.edu.cn/faculty/tukw/sdm11code.zip


Fig. 5. The plot a shows a comparison of the Purity and Inverse Purity obtained by the two optimization algorithms on a dataset with increasing noise level; while plot b
shows a comparison of the computational time occurred to obtained such results.

Fig. 6. Purity and inverse purity for matrices with constant and additively coherent (evolutive) biclusters.
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points are included in the solution. This leads to larger biclusters
including also background entries. The EB algorithm seems to be
more robust, even if suffering more in case of additive coherent
biclusters. Maybe, in this case, assuming that a bicluster is fully
described by a single entry (the exemplar) is too strict, especially
when the complexity increases due to the presence of strong
noise.
4.3. Gene expression data

The proposed algorithm was tested on two real gene expression
datasets: the Yeast dataset [44] and the Breast Tumor dataset [5]. This
type of matrices contains the expression levels of genes (rows) in a set
of experimental conditions (columns): the goal is to retrieve biclusters
where a subset of genes presents a coherent behavior in a subset of



Table 1
Results on Yeast dataset. Results for other approaches have been taken from Fig. 3
in Ref. [17]. Algorithms reference: Cheng and Church [25], ROCC [39], Bimax [40],
EB [17].

Significance Level (%) 5 1 0.5 0.1 0.01

Cheng&Church ∼80 ∼70 ∼70 ∼55 ∼45
ROCC ∼98 ∼98 ∼98 ∼98 ∼98
Bimax 100 100 100 100 100
EB 100 100 100 100 100
Proposed 100 100 100 100 100

Table 2
Results on Breast tumor dataset. Results for other approaches have been taken from
[5]. Algorithms reference: FABIA [13], ISA [35], Hierarchical [36], SAMBA [37], FLOC
[38].

FABIA ISA Hiearc. SAMBA FLOC Proposed

55% 63% 70% 73% 85% 87.5%
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experiments. These experiments have been performed adopting the
heuristic described in Section 3.4. We assess the performance on both
datasets following the experimental protocol proposed in Ref. [17]: the
obtained biclusters were evaluated by analyzing the Gene Ontology
terms of the genes belonging to the same bicluster via the
FuncAssociate7 web-service, using five significance levels. To avoid
implementation mistakes, we decided to collect other approaches
performance from the state-of-the-art without re-executing the ex-
periments. Unfortunately, different methods have been tested on dif-
ferent datasets and for these reasons, even if the evaluation protocol
adopted was the same in the two datasets, we used two different
tables to show the results.

For the Yeast dataset, in order to be comparable with the re-
sults in Ref. [17], only the 100 largest biclusters (with a maximum
overlap of 25%) were considered as part of the solution. Table 1
reports percentage accuracies obtained with our algorithm, for
different significance levels, together with other state-of-the-art
results from [17]. The table shows that the proposed approach
compares very well with other methods on this dataset.

For Breast Tumor dataset, as it is commonly done in the literature
[45,46], we began by performing variance-based gene selection, in
order to reduce the dimensionality of the data matrix. Then, we ap-
plied our method, using the validation protocol adopted in Ref. [5]:
only the 40 largest biclusters were considered as part of the solution,
for which the Gene Ontology index was evaluated at a 5% significance
level. The results are reported in Table 2, in comparison with all the
state-of-the-art methods studied in Ref. [5]; we can conclude that our
method sets a new state-of-the-art for this dataset.
5. Algorithm variants

This section provides some guidelines on how it is possible to
extend the proposed approach in order to obtain more specific
models to be exploited where particular structures for the
biclusters are required.

One of the advantages in using Factor Graphs is represented by the
possibility of easily modifying the model by introducing or removing
novel factors. As a possible extension, we firstly consider that biclus-
tering has been largely employed to analyse temporal series in gene
expression context with very good results (e.g., [48]). Concerning the
analysis of gene expression temporal series, the goal is to obtain
biclusters where the experimental conditions (generally represented
by the data matrix columns) form a contiguous subset; and this is not
a constraint involved in the basic setup of our method. The second
advanced model we propose derives from the consideration that
setting the parameter w in Eq. (9) may be not trivial in some situa-
tions; please note that this parameter regulates the biclusters di-
mensions. For this reason we introduce a novel class of factors in the
model allowing the user to define a favoured size for the biclusters.

Although the model was not designed to analyse temporal series
or to retrieve a prefixed dimension biclusters, by introducing a novel
set of factors, such constraints can be included in the proposed ap-
proach, provided that the update rules of the max-summessages can
be computed efficiently. To devise this advanced model we resort to
a recent class of factors widely known in literature as Tractable
Higher Order Potentials (THOP) [47]. With the term THOP we refer to
a group of factors/constraints adoptable in binary models and for
whom the Max-Sum update rules can be efficiently derived [21,47].

5.1. Temporal series model

In this context we present an extended model devised for
7 http://llama.mshri.on.ca/funcassociate/
temporal series data which includes the convex-set potentials.
Briefly, given a set of binary variables = { … }x x x, , l1 , the convex-
set potential imposes that activated variables (variables equal to 1)
must form a contiguous subset (i.e. no zeros between ones are
allowed). This characteristic can be exploited in many biclustering
contexts such as the analysis of temporal series.

Practically, to retrieve biclusters from the resulting FG some
modifications in the messages update rules are needed. The update
rules derivation for the THOP factors have been taken from [47]. Since
messages going from variables to functions involve only summations,
handling them is really simple. Messages γij are the summation of all
the messages incoming in cij except for ρij. Regarding basic messages
(ψij

tk and βijk) their summation will include γij, as follow:

∑ ∑ ∑ ∑ψ σ η α ρ β η σ α ρ= + + + = + + +
^

^

^

^
. .ij

tk

tk

ij
tk

k
ij
k

ij ij ij
k

k
ij
k

tk
ij
tk

ij ij

On the other hand, basic model messages going from factors to
variables are not influenced by the introduction of such modules.
New factor messages for the convex-set constraint as follows:

( )
ρ = ( = ) + ( = )

+ − ( ) ( )

− − + +

− +

MS c c MS c c

MS c MS c

, 1 , 1

max , .

ij j j j N j

j j N

1: 1 1 1: 1

1: 1 1:

Considering ρ messages provided by each variable as weights,
( = )− −MS c c, 1j j1: 1 1 is a function retrieving the maximum weighted

contiguous subsequence in the subset { … }−c c, , j1 1 and forcing cj�1 to
be equal to 1 (if the second part is missing, no variables are
constrained).

5.2. Preferred size model

To implement such model we resort to another class of THOP
known as cardinality potential. Cardinality potentials allow the
user to guide the solution to be of a preferred size (i.e. the number
of ones in x). Such feature can be exploited in various contexts
(e.g., market segmentation where market budget could be fixed
[8]). These potentials can be specified in different manners de-
pending on the problem to solve (e.g., ∑ =x ki i , ∑ ≠x ki i , ∑ >x ki i ,
∑ <x ki i , with ∈ k ), here we present the general representation
from which the more specific ones can be derived. The cardinality
potential we present is a function ( ∑ )Q xi i assigning a score to
each possible cardinality value in { … }l0, 1, 2, , , hence → Q: .

Regarding messages updates, as for the temporal series model,
the messages from variables to functions involve the summation of
all the messages incoming in cij except for χij; whereas basic

http://www.llama.mshri.on.ca/funcassociate/


Fig. 7. Biclustering Factor Graph possible extensions. Two alternatives of the basic model where convex-set constraint (Fig. 7a) and the cardinality potential (Fig. 7b) are
applied to every column. Such factors can be added on both rows or columns depending on the desired solutions.
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messages will include χij, as follow:

∑ ∑ ∑ ∑ψ σ η α χ β η σ α χ= + + + = + + +
^

^

^

^
. .ij

tk

tk

ij
tk

k
ij
k

ij ij ij
k

k
ij
k

tk
ij
tk

ij ij

For the messages going from factors to variables the computation
is slightly more complex than the temporal series model because
different steps are needed. The detailed procedure is shown in
Algorithm 1.

Algorithm 1. Computation of the χ messagesij .
R

1

2

3

5

6
7

8

9

1

1

1

1

1

1

equire: Incoming messages πi:.

: Sort πi: in descending order obtaining π *ib
where *ib is the

index of the incoming message with bth largest value
: for ∈ { … }z N0, , do

: π( ) = ∑
′

+ ( ′ − )
′− = *

⎡⎣ ⎤⎦u z Q z 1z
z

i1 1 z
4:
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′
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′
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⎡⎣ ⎤⎦u z Q z 1z
z

i1 0
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z

: end for
: for ∈ { … }z N0, , do

: ( ) = ′ ( ′)∈{ … }s z c zmaxL
z z1 0, , 1

: ( ) = ′ ( ′)− ∈{ … } −s z c zmaxR
z z N1 , , 1

0: ( ) = ′ ( ′)∈{ … }s z c zmaxL
z z0 0, , 0

1: ( ) = ′ ( ′)∈{ … }s z c zmaxR
z z N0 , , 0

2: end for

3: χ ( ) = ( ( ) − ) ( ( ) + )−
⎡⎣ ⎤⎦s r j s r j0 max 1 , 1ij

L R
0 1

4: χ ( ) = ( ( ) − ) ( ( ) + )⎡⎣ ⎤⎦s r j s r j1 max 1 , 1ij
L R
1 0

5: χ χ χ= ( ) − ( )1 0ij ij ij
Advanced models are presented in Fig. 7. Note that the usage of
such factors is not exclusive, hence we can obtain other models where
both of them are included allowing us to obtain more specific solu-
tions which are contiguous and, preferably, of a given size.
6. Conclusions

In this paper, we proposed a novel biclustering method based on
factor graph modeling and optimization tools. In particular, we pro-
pose an incremental approach where biclusters are sequentially
identified, one at a time. To find each bicluster, we proposed a binary
and compact factor graph depending on the data matrix entries,
which is maximized via the max-sum algorithm. More specifically,
we derived an approach to efficiently update the messages that
constitute that algorithm, which we analyzed in terms of space and
time complexity. The empirical evaluation reported in the paper
showed that our approach favorably compares with the previous
state-of-the-art methods on both synthetic datasets and real data,
testifying for its practical significance.
Appendix A. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.patcog.2016.08.033.
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