
Enriched Bag of Words for Protein Remote
Homology Detection

Andrea Cucci, Pietro Lovato, and Manuele Bicego(B)

Dipartimento di Informatica - Ca’ Vignal 2, Università degli Studi di Verona,
Strada le Grazie 15, 37134 Verona, Italy

manuele.bicego@univr.it

Abstract. One of the most challenging Pattern Recognition problems
in Bioinformatics is to detect if two proteins that show very low sequence
similarity are functionally or structurally related – this is the so-called
Protein Remote Homology Detection (PRHD) problem. Even if in this
context approaches based on the “Bag of Words” (BoW) paradigm
showed high potential, there is still room for further refinements, espe-
cially by considering the peculiar application context. In this paper we
proposed a modified BoW representation for PRHD, which enriches the
classic BoW with information derived from the evolutionary history of
mutations each protein is subjected to. An experimental comparison on
a standard benchmark demonstrates the feasibility of the proposed tech-
nique.
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1 Introduction

In recent years, several Pattern Recognition problems have been successfully
faced by approaches based on the “Bag of Words” (BoW) representation [21].
This representation is particularly appropriate when the pattern is character-
ized (or assumed to be characterized) by the repetition of basic, “constituting”
elements called words. By assuming that all possible words are stored in a dic-
tionary, the BoW vector for one particular object is obtained by counting the
number of times each element of the dictionary occurs in the object. One of
the main advantages of this representation is that it can represent in a vector
space many types of objects, even ones that are non-vectorial in nature (like
documents, strings, sequences), for which less computational tools are available.
The success of this paradigm has been demonstrated in many fields [2–4,21]:
in particular, in the bioinformatics context, different BoW approaches [6,14–16]
have been proposed in recent years – with the name of N-gram methods – to face
the so-called Protein Remote Homology Detection (PRHD) problem [1,10,12].
This represents a central problem in bioinformatics aimed at identifying func-
tionally or structurally-related proteins by looking at amino acid sequence simi-
larity – where the term remote refers to some very challenging situations where
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homologous proteins exhibit very low sequence similarity. In this context, the
BoW paradigm is instantiated by considering as words the so-called N-grams, i.e.
short sequences of aminoacids of fixed length (N), extracted from the aminoacidic
sequence – in the basic formulation [6] – or even from evolutionary representa-
tions, i.e. the profiles [14,15].

In this context, approaches based on the BoW representation achieved state
of the art prediction performances. Yet, the potentialities of this representation
have not been completely exploited, but can be enriched by using some peculiar-
ities of the specific application scenario. In particular, to solve the PRHD task
it is needed to capture the homology between proteins, linked to evolutionary
aspects, such as insertions, deletions and mutations incurred between the two
sequences. Let us concentrate to this last operation, which represents the case
when an aminoacid in the sequence is substituted with another aminoacid dur-
ing evolution. Biologically, there are mutations which are very likely to happen
(due to the similar chemical-physical characteristics of the aminoacids), whereas
some others are less likely. A good representation for PRHD should capture this
aspect; the BoW approach, in its original formulation for PRHD, does not per-
mit to model this aspect1: if there is a mutation, we simply count for a different
word, independently from the fact that the mutation is highly probable or not
to happen in nature. However, the BoW paradigm can be extended to cope with
this aspect, and this represents the main goal of this paper. More in detail, here
we propose a BoW approach to PRHD which modifies the process of counting
words, in order to take into account the evolutionary relations between words.
The idea is straightforward: in the classical setting, when we observe a word w,
we increment its counter by 1. Here we propose to extend this process and to
increment also the counters of words which are “biologically likely” mutations
of the word w. More specifically, we propose to increment the counter of all
other words w′ by a value which is directly proportional to the probability of
mutation of w in w′. This information is estimated from the so-called substitu-
tion matrices (the most famous example being the BLOSUM [9]), employed in
sequence-alignment approaches, which quantitatively measure how likely it is, in
nature, to observe particular mutations. In this sense, the BoW vector is enriched
by evolutionary information derived from the specific application scenario.

The proposed approach has been thoroughly evaluated using the standard
SCOP2 1.53 superfamily benchmark [12], representing the most widely employed
dataset to test PRHD approaches. Obtained results demonstrate that the pro-
posed approach reaches satisfactory results in relation to other N-gram based
techniques, as well as in comparison to a broader spectrum of approaches pro-
posed in the recent literature.

The rest of the paper is organized as follows: in Sect. 2 we summarize
the classic Bag of Words approaches for Protein Remote Homology Detec-
tion, whereas in Sect. 3 we present the proposed approach. The experimental

1 Actually, in computer vision, some approaches dealing with weights have been pro-
posed – e.g. see [17].

2 http://scop.berkeley.edu/ [7].

http://scop.berkeley.edu/
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evaluation is described in Sect. 4; finally, in Sect. 5, conclusions are drawn and
future perspectives are envisaged.

2 BoW Approaches for PRHD

In this section we summarize how a BoW representation can be extracted from
a biological sequence – this scheme being at the basis of different PRHD systems
[6,14–16]. First, we introduce how “words” and “dictionary” are defined in this
context. We consider as words sequence N-grams: a N-gram of a sequence S =
s1 . . . sL is defined as a subsequence of N consecutive symbols gl = sl . . . sl+N−1.
Once fixed the length N , we can define a dictionary D as the set of all pos-
sible subsequences of length N built using the alphabet A (the four symbols
A, T,C,G in case of nucleotides, or 20 symbols in case of aminoacids). Therefore
the dictionary D contains W = AN words.

Given a sequence S, its Bag of Words representation BoW (S) is obtained
by counting how many times each word (N-gram) vi ∈ D occurs in S. Let us
introduce more formally the counting process, mainly to fix the notation used
to present the proposed approach. In the first step all the N-grams g1, ...gG
present in the sequence S are extracted (where G depends on the length L of
the sequence and on the degree of overlap with which the N-grams are extracted
from the sequence). Then, each gi is represented via a vector wi,

gi −→ wi = [0, 0, · · · , 1, · · · 0] (1)

This W -dimensional vector encodes the fact that gi corresponds to the j-th
word vj of the dictionary D via the “1-of-W” scheme: in the wi vector all the
elements are zero, except one, which is 1; the position of the non zero element is
the position in the dictionary D of the N-gram gi extracted from the sequence.
Given such representation, the Bag of Words representation of S is obtained by
summing element-wise all the vectors w1, ...,wG:

BoW (S) = w1 + w2 + · · · + wG (2)

See the left part of Fig. 1 for a schematic sketch of the BoW scheme.
This representation has been successfully employed in the case of Protein

Remote Homology Detection, typically as direct input to discriminative clas-
sifier such as Support Vector Machines [14,15], or after the employment of
more sophisticated models, such as topic models [16]. In all these approaches,
the BoW representation has been extracted from different kinds of biological
sequences: raw sequences (as in [6]), evolutionary representations of the biolog-
ical sequences – called profiles (as in [14,15]), or even in combination with the
corresponding 3D structures (as in [16]).

3 The Proposed Approach

The main idea behind the proposed approach stems from the observation that
the classic Bag of Words scheme for Protein Remote Homology Detection is
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Fig. 1. Sketch of the Bag of Words representation and the proposed Enriched Bag
of Words approach. We are considering nucleotidic sequences (therefore the alphabet
contains the symbols A,T,C,G); in the specific case, the sequence length is 7 (L = 7),
and we used N-grams of length 2, with overlap = 1. This means that the number of
N-grams extracted from the sequence is 6 (G = 6).

not able to encode evolutionary relations which can exist between words: if a
substitution occurs (i.e. an aminoacid is replaced by another during evolution),
the classic BoW simply counts for another word in the dictionary, independently
from how likely is this substitution: actually, in nature, there are definitely differ-
ent probabilities of mutation between aminoacids (which compose the words in
the BoW), which depend on the family, the chemical properties or the structural
features. To cope with this aspect, we propose a scheme based on the following
idea: if an N-gram gi in the sequence corresponds to the word vj , we increment
the count of vj by 1 (as in the classic BoW), but we also increment the coun-
ters of the words which are “biologically likely” mutations of the word vj : such
increments are clearly directly proportional to the probability of being mutation
of vj .

More formally, a given N-gram gi, corresponding to the j-th word of the
dictionary, is represented by w′

i, defined as:

gi −→ w′ = wi + ej (3)
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where wi is defined as in Eq. (1) (all zeros and a 1 in position j), and

ej = [ej1, ej2, · · · , ejW ] (4)

is the enrichment vector, a vector of length W which, in every position k, indi-
cates how much probable is that the k-th word of the dictionary is a mutation
of vj . This vector permits to explicitly encode the biological a priori knowledge
on the relation which occurs between the words of the dictionary.

Given this correction, the Enriched Bag of Words representation is obtained
by following the same scheme of Eq. (2), i.e. by the columwise summation of
all w′

i:
EBoW (S) = w′

1 + w′
2 + · · · + w′

G (5)

Rearranging the summation, we obtain:

EBoW (S) = BoW (S) + E(S) (6)

where E(S) represents the “enrichment” (or correction) made to the Bag of
Words representation of sequence S.

3.1 Computing the Enrichment Vectors

The enrichment vectors are obtained by starting from the so-called substitution
matrices (the most famous one called BLOSUM [9]), matrices which encode
the biological knowledge related to mutations. This matrix is typically used to
perform sequence alignments, and a given entry (i, j) encodes the rate at which
the aminoacid i is likely to mutate into the aminoacid j (the higher, the more
likely it is). Intuitively, this matrix has the highest values on the diagonal; for
off-diagonal elements, the matrix should reflect the fact that there are some
mutations that are highly improbable, due for example to physical or chemical
properties of aminoacids.

To define our enrichment vectors, we start from the approach used to derive
the BLOSUM matrix, proposed in [9]. In that paper, the matrix has been built
by starting from blocks of related sequences3. From these blocks (more than 2000
blocks have been used in the original paper of [9]), the expected probability of
occurrence of each pair of symbols can be computed, and this represents our
starting information. For example, in the case of the nucleotidic sequences (i.e.
the alphabet is composed by ‘A’, ‘T’, ‘C’, ‘G’), this matrix is

M1 =

⎡
⎢⎢⎢⎣

P (A → A) P (A → T ) P (A → C) P (A → G)
P (T → A) · · · · · · P (T → G)

. . .
P (G → A) · · · · · · P (G → G)

⎤
⎥⎥⎥⎦

3 In biological terms, related sequences are the ones which belong to the same evolu-
tionary family – namely, they share the same biological function.
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where P (x → y) indicates the probability that the nucleotide ‘x’ mutates into
the nucleotide ‘y’. If we use as words 1-grams, namely the entries of the alphabet
A, then we can directly employ this matrix to derive the required enrichment
vectors. For N > 1, however, we should provide a larger matrix, containing the
mutation probability for each pair of N-grams. Here we define this probability
via the multiplication of the probabilities of pairs of symbols; for example, in
the case of 2-grams, we have

P (xy → kj) = P (x → k)P (y → j)

We are aware that by employing this simple scheme we are assuming that the
symbols inside the N-gram are probabilistically independent: however this sim-
plifying assumption is accepted and employed in many applications dealing with
biological sequences – e.g. for multiple sequence alignment [18]. In formula, the
mutation matrix MN for N-grams of length N is obtained inductively by employ-
ing the Kronecker tensor product “⊗”:

MN = MN−1 ⊗ M1 (7)

Finally, the matrix of enrichment vectors for N-grams of length N EN =
[e1; e2; ...; eW ] is obtained by normalizing the mutation matrix in order to have
a reasonable range.

EN =
MN

maxi,j MN
(8)

4 Experimental Evaluation

The experimental evaluation is based on a famous benchmark4 widely employed
to assess the detection capabilities of many protein remote homology detection
systems [12], extracted from SCOP version 1.53 and containing 4352 sequences
from 54 different families. The protein remote homology detection task is cast
into a binary classification problem: to simulate remote homology, 54 different
subsets are created: in each of this, an entire target family is left out as positive
testing set. Positive training sequences are selected from other families belonging
to the same superfamily (i.e. sharing remote homology), whereas negative exam-
ples are taken from other super-families. Please note that class labels are very
unbalanced, with a vast majority of objects belonging to the negative class (on
average the positive class (train + test) is composed by 49 sequences, whereas
the negative one is made by 4267).

As in many previous works [5,6,13–15,19], classification is performed using
SVM via the public GIST implementation5, setting the kernel type to radial
basis, and keeping the remaining parameters to their default values. Detection
accuracies are measured using the receiver operating characteristic (ROC) score
and the ROC50 score [8]. In both cases, the larger the value the better the
4 Available at http://noble.gs.washington.edu/proj/svm-pairwise/.
5 Downloadable from http://www.chibi.ubc.ca/gist/ [12].

http://noble.gs.washington.edu/proj/svm-pairwise/
http://www.chibi.ubc.ca/gist/
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detection. In particular, the former represents the usual area under the ROC
curve, whereas the latter measures the area under the ROC curve up to the
first 50 false positives. A score of 1 indicates perfect separation of positives
from negatives, whereas a score of 0 indicates that none of the top 50 sequences
selected by the algorithm were positives.

4.1 Results and Discussion

The proposed approach has been compared with the corresponding classic Bag
of Words representation in different experimental conditions. In particular, we
tested the improvement obtained by the enrichment on BoW representations
defined from the raw sequence and from its evolutionary representation (the
profile), using different N-grams (1-gram, 2-gram, 3-gram). For what concerns
the proposed method, we employed different variants of the BLOSUM matrices.
Roughly speaking, a different number after the name “BLOSUM” indicates a
more or less strict definition of “similar sequences” in the construction of blocks
(see Sect. 3.1).

ROC and ROC50 scores, averaged over all the families of the dataset, are
shown in Table 1. To assess statistical significance of our results and demonstrate

Table 1. ROC (top) and ROC50 (bottom) scores. “EBoWX” indicates that the enrich-
ment vectors have been obtained by using the BLOSUMX matrix. In bold we put results
for which the p-value of the statistical test is less than 0.05.

Sequence based

1-grams 2-grams 3-grams

BoW 0.8601 0.8709 0.8117
EBoW-45 0.8644 0.8998 0.9131
EBoW-50 0.8638 0.8996 0.9139
EBoW-62 0.8647 0.8990 0.9114
EBoW-80 0.8653 0.8968 0.9061
EBoW-90 0.8652 0.8950 0.9016

Profile based

1-grams 2-grams 3-grams

BoW 0.9070 0.9290 0.8876
EBoW-45 0.9054 0.9458 0.9494
EBoW-50 0.9048 0.9453 0.9494
EBoW-62 0.9042 0.9453 0.9466
EBoW-80 0.9046 0.9440 0.9413
EBoW-90 0.9051 0.9427 0.9384

(ROC)

Sequence based

1-grams 2-grams 3-grams

BoW 0.6054 0.6331 0.5848
EBoW-45 0.6256 0.6925 0.7175
EBoW-50 0.6270 0.6888 0.7216
EBoW-62 0.6274 0.6763 0.7052
EBoW-80 0.6325 0.6894 0.6776
EBoW-90 0.6301 0.6886 0.6737

Profile based

1-grams 2-grams 3-grams

BoW 0.6928 0.7741 0.7220
EBoW-45 0.6552 0.7914 0.7832
EBoW-50 0.6670 0.7830 0.7944
EBoW-62 0.6719 0.7863 0.7931
EBoW-80 0.6826 0.7829 0.8007
EBoW-90 0.6731 0.7774 0.8151

(ROC50)
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that increments in ROC/ROC50 scores gained with the proposed approach are
not due to mere chance, we performed a Wilcoxon signed-rank test, reporting
in the tables in bold the results for which the corresponding p-value is less than
0.05 (i.e. bold numbers indicate a statistically significant difference). From the
tables different observations can be derived. In general, it can be seen that the
proposed enrichment is almost always beneficial for 2-grams and 3-grams, with
some really important improvements – for example, with 3-grams and BoW
based on sequences, the ROC (ROC50) score improves from 0.81 to 0.91 (from
0.58 to 0.72), this representing a remarkable result. This is more evident by
looking at the ROC scores. For what concerns the different BLOSUM employed,
no differences can be observed in the ROC scores; however, considering the
ROC50 scores, it seems evident that this choice has an impact. Unfortunately,
a general rule can not be derived: for some configurations a stricter BLOSUM
is better, for others the other way around holds. In general, we can say that
for 2-grams and 3-grams there is always a configuration for which a statistically
significant improvement can be obtained.

For 1-grams such improvement is not so evident (ROC50 results also high-
light one case when the biological enrichment results in a worst performance).
For what concerns 2- and 3-grams, it seems evident that the proposed enrichment
permits to derive a better representation for classification. We think that this is
due to a twofold beneficial effect that the approach produces on the representa-
tion: from one hand, we are injecting useful information which permits to recover
from the uncertainty present in the counting process – a peculiarity of this appli-
cation. From the other hand, the proposed approach permits to reduce the huge
sparsity of the Bag of Words vectors within this application. In fact, within the
SCOP datasets the sequences have an average length of 200, thus resulting in
around 200 N-grams (if we consider the maximum possible overlap); when using
3-grams, the Bag of Words vector has 8000 entries (the size of the dictionary,
203) to be filled with around 200 ones; this implies that most of the entries are
zero (this problem is less severe with 2-grams). Even if good classification meth-
ods able to deal with sparse representations exist, in this specific case a SVM
with the rbf kernel has been used, for fair comparison with state of the art, thus
this sparsity problem may have an impact. To provide some empirical support
to our intuition, we performed two experiments, focusing on BoW computed
from profiles. In the first, we select as Enrichment Matrix a random probability
matrix – this solution would in principle alleviate the sparsity problem, but it
does not injects any evolutionary information. In the second, we removed from
the Enriched BoW low values so that the number of zero-value entries is the
same as in the standard Bag of Words representation – this solution only injects
evolutionary information, without solving the sparsity problem. ROC values are
shown in Table 2: the accuracies obtained in the 3-grams case suggest that there
is a beneficial effect both in only the reduction of the sparsity (BoW plus random
Enrichment) and in the truncated injection of relevant information (Truncated
Effect): however the proposed approach, which combines both effect, obtain the
best effect. This is not so evident by looking at the results with 2-grams, where
only the complete approach permits to improve the accuracies.
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Table 2. Properties of the Enriched BoW representation in the PRHD.

Classic BoW BoW + random E Truncated EBoW Proposed EBoW

2-grams 0.9290 0.9086 0.9213 0.9458

3-grams 0.8876 0.9140 0.9042 0.9494

As a final analysis, we reported in Table 3 some comparative results with
other approaches of the literature applied to the SCOP 1.53 benchmark. When
compared to other techniques that are based on Bag of Words, the proposed
approach behaves very well, outperforming all the alternative techniques; looking
at the global picture, the table shows very promising results, also in comparison
with other approaches, where satisfactory performances are reached both using
the ROC and the ROC50 evaluation measures. Please note that the results
can be further improved, for example by deriving the enrichment vectors from
more recent and accurate substitution matrices or by tuning the impact of the
enrichment (for example by putting a weight α in Eq. (3)).

Table 3. Average ROC scores for the 54 families in the SCOP 1.53 superfamily bench-
mark for different methods.

Method ROC ROC50 Reference

Enriched BoW (3-gram) 0.949 0.815 This paper

Bag of words based methods

SVM-N-gram 0.826 0.589 [6]

SVM-N-gram-LSA 0.878 0.628 [6]

SVM-Top-N-gram (n= 1) 0.907 0.696 [14]

SVM-Top-N-gram (n= 2) 0.923 0.713 [14]

SVM-Top-N-gram-combine 0.933 0.767 [14]

SVM-N-gram-p1 0.887 0.726 [15]

SVM-N-gram-KTA 0.892 0.731 [15]

Other methods

SVM-pairwise 0.908 0.787 [15]

SVM-LA 0.925 0.752 [20]

Profile (5,7.5) 0.980 0.794 [11]

SVM-Pattern-LSA 0.879 0.626 [6]

SVM-Motif-LSA 0.860 0.628 [6]

PSI-BLAST 0.676 0.330 [5]

SVM-Bprofile-LSA 0.921 0.698 [5]

SVM-PDT-profile (β = 8, n = 2) 0.950 0.740 [13]

SVM-LA-p1 0.958 0.888 [15]
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5 Conclusions

In this paper we proposed an enriched BoW representation for Protein Remote
Homology Detection, which injects evolutionary information into the counting
process, thus resulting in a richer and biologically relevant representation. The
proposed scheme has been tested on a standard benchmark, obtaining very
promising results. As a future work, we plan to investigate the suitability of
the proposed scheme in other domains, such as text processing. Clearly, in this
latter case, the main challenge is to define how words are related through simi-
larities in meaning.
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