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Abstract. In recent years, the use of unmanned vehicles for moni-
toring spatial environmental phenomena has gained increasing atten-
tion. Within this context, an interesting problem is level set estima-
tion, where the goal is to identify regions of space where the analyzed
phenomena (for example the PH value in a body of water) is above or
below a given threshold level. Typically, in the literature this problem
is approached with techniques which search for the most interesting
sampling locations to collect the desired information (i.e., locations
where we can gain the most information by sampling). However, the
common assumption underlying this class of approaches is that ac-
quiring a sample is expensive (e.g., in terms of consumed energy and
time). In this paper, we take a different perspective on the same prob-
lem by considering the case where a mobile vehicle can continuously
acquire measurements with a negligible cost, through high rate sam-
pling sensors. In this scenario, it is crucial to reduce the path length
that the mobile platform executes to collect the data. To address this
issue, we propose a novel algorithm, called Skeleton-Based Orien-
teering for Level Set Estimation (SBOLSE). Our approach starts from
the LSE formulation introduced in [10] and formulates the level set
estimation problem as an orienteering problem. This allows one to
determine informative locations while considering the length of the
path. To combat the complexity associated with the orienteering ap-
proach, we propose a heuristic approach based on the concept of
topological skeletonization. We evaluate our algorithm by compar-
ing it with the state of the art approaches (i.e., LSE and LSE-batch)
both on a real world dataset extracted from mobile platforms and on
a synthetic dataset extracted from CO2 maps. Results show that our
approach achieves a near optimal classification accuracy while sig-
nificantly reducing the travel distance (up to 70% w.r.t LSE and 30%
w.r.t. LSE-batch).

1 INTRODUCTION

The goal of environmental analysis is to collect information, gen-
erating an accurate model for a specific environmental process. For
example when monitoring the quality of a body of water, operators
might be interested in modeling how crucial parameters such as PH
level, Dissolved Oxygen and temperature vary across time and space.
These analyses usually require the collection of large data sets in
harsh conditions, hence the use of mobile sensors such as unmanned
ground vehicles (UGVs), unmanned aerial vehicles (UAVs) or au-
tonomous surface vessels (ASVs). For an exhaustive overview on
advancements and applications see [7].

A successful monitoring operation must acquire a sufficient
amount of data to build an accurate model of the environmental phe-
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nomena of interest. However, the data collection process must con-
sider limited resources such as energy and time. Therefore, it is cru-
cial to carefully select measurement locations to acquire as much
information as possible while minimizing energy and time required
for data collection. An important aspect to consider is that the choice
of the future locations to visit is dependent on previously collected
data. Traditional, oft-line sampling methods [6] do not represent a
proper choice in this context — we refer to these processes as passive
learning methods. Krause and Guestrin [14] survey advances to effi-
ciently evaluate observation selection and illustrate the effectiveness
of the approaches on environmental phenomena monitoring.

In contrast, active learning techniques [1, 16] aim to incrementally
build a model of the environmental process during the data collection
phase. Such techniques are very well suited for guiding mobile sen-
sors and can be used to focus the data collection process on specific
regions of the environment, so as to minimize the energy required for
navigation [18].

In the simplest setting, the analysis process aims at collecting uni-
formly distributed data over a selected area. However, in many sci-
entific and environmental monitoring applications, we are not inter-
ested in the precise value of the phenomena in every single location,
rather we are interested in locating the regions of the space where
the measurements exceed a given threshold level. This problem is
typically referred to as the “level set estimation problem” [11]. For
example, monitoring the water in a lake may require identification of
the regions where the PH level of the water exceeds a critical value or
to detect contours of biological and chemical plumes. Previous work
on the level set estimation problem such as [5] focuses on a network
composed by a combination of static and mobile sensors, while [20]
focused on controlling the movement and communication of a sensor
network without giving much attention to the choice of the sampling
locations.

Figure 1. Platypus Lutra-T

In a more recent work on level set estimation [10] the data col-
lection task is formalized as a classification problem with sequen-
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tial measurements; the proposed LSE algorithm uses Gaussian Pro-
cesses (GP) [17]) to estimate sampling points that reduce uncertainty
around a given threshold level of the modeled function. The authors
show a near-optimal classification for every region of the space with
a reduced number of sampled locations compared to previous ap-
proaches. However, in the standard algorithm they do not explicitly
take into account the path between the sampling locations, but they
simply choose as the next point to be visited the most informative
point, according to an ambiguity measure they derive from the Gaus-
sian Process. They discuss the possibility to reduce the path length
of the mobile sensor by proposing a batch version of their algorithm,
where they determine a set of new sampling locations, again accord-
ing to the the ambiguity measure derived from the Gaussian Process.
Even if an efficient path between these points can be computed, again
the choice of such points does not consider at all the distance the
mobile sensor must cover to visit all such locations. Finally, more
recently, [11] proposed a new receding horizon approach built on the
LSE algorithm. Their method is designed for ASVs equipped with a
probe that allows an aquatic sensor to be lowered into the water, and
the algorithm uses a path planner to select sampling locations that lie
on a feasible path for the probe within a predefined vertical transect
plane.

In this paper, we also address the problem of level set estimation
by using active learning techniques with sequential measurements.
However, in our case, we have a further objective, namely we aim
also at determining efficient paths for mobile sensors (instead of de-
termining single sampling locations) so to optimize the data collec-
tion process. Specifically our techniques are motivated by the recent
development of low-cost, small mobile platforms that can perform
continuous-sampling in various body of waters (lakes, rivers and
coastal areas). For example, consider the autonomous surface vessel
shown in Figure 1. This platform is small (about 1 meter long and 50
cm wide) and it is equipped with various probes that can measure pa-
rameters such as PH, Dissolved Oxygen, temperature, and electrical
conductivity with sampling rate between 1 and 10 Hz. In this setting
the cost to perform a single measurement is negligible, and the most
crucial issue for the data collection process is the battery lifetime for
the vessel. In fact, to meet the space constraint of this platform, bat-
teries have a limited capacity that results in constraints on total path
length. Hence, in this work we aim at optimizing the total path length
required by the agent to achieve near optimal classification of the an-
alyzed regions, rather than the number of samples extracted during
the executions (which is an important criteria for previous works).

In this perspective, the approach we propose formulates the Level
Set Estimation problem as an Orienteering Problem (OP) [22]. In the
general formulation of the OP we start with a set of locations, each
one associated to a given score, and the goal is to choose the loca-
tions to visit so to maximize the sum of the scores while keeping the
time (or the distance travelled) below a given budget. In the level set
estimation problem we can see the sampling candidates as the loca-
tions to be visited, each one equipped with an informativeness score.
For example we can use the already introduced ambiguity [10] to
measure the value of the points. In this case, the LSE solution intro-
duced in [10] simply chooses the most ambiguous point as the next
point to be visited. The batch variant simply selects few points, again
without considering the path. In contrast, by solving the OP in this
setting, we are now trying to maximize the total informativeness of
the points visited while keeping the travelled distance below a given
budget, i.e. while explicitly considering the cost of the exploration
(i.e., the length of the path). The OP is known to be NP-Hard. While
we can use heuristic approaches to solve the problem, to perform

on-line exploration we need to reduce the size of the orienteering in-
stance (i.e. the number of possible locations to be visited). To this
end, we propose a heuristic based on topological skeletonization, a
process introduced in the image processing communitiy [9] aimed at
reducing regions in a binary image to a thin (skeletal) representation
— the skeleton, sometimes also called medial axis. In particular, we
approximate the regions of the possible points to be visited (i.e. the
unclassified points) with their skeleton, thus drastically reducing the
size of the orienteering instance. As we will show in our empirical
evaluation, this heuristic does not significantly affect the accuracy of
the classification.

As a final comment, it is important to note that a related approach
has been proposed in [19], where an orienteering-inspired technique
has been applied to a related but different problem concerning infor-
mation gathering. However, there are several important differences
with respect to our work: i) the technique introduced in [19] does
not aim at solving the level set estimation problem; ii) they propose
an algorithm to solve the submodular orienteering problem (a par-
ticular kind of OP introduced by Chekuri and Pal [3]); iii) finally,
our main objective is to determine efficient paths for mobile sensors
(instead of determining single sampling locations) so to optimize the
data collection phase and reduce the energy required in this process.

The main contributions of this paper to the state of the art are:

e We propose a novel algorithm that uses an orienteering formula-
tion to solve the level set estimation problem.

e We propose a topological skeletonization as a heuristic to reduce
the number of points on which we apply the orienteering algo-
rithm.

e We empirically evaluated our algorithm comparing it to the cur-
rent state of the art approach (i.e., LSE and LSE-batch [10]).
Specifically, we consider a real-world dataset composed of mea-
surements of the PH level of the water acquired with our mo-
bile watercraft, and a synthetic dataset based on publicly avail-
able CO2 maps. Results show an advantage in terms of total travel
distance, hence proving the feasibility of a skeleton-based orien-
teering approach to solve the level set estimation problem.

2 PROBLEM STATEMENT AND
BACKGROUND

In the same spirit of [10], we formalize our approach for the level set
estimation problem as an active learning problem, where we want
to select next measurement locations so to optimize the information
gathering process.

The environmental phenomena of interest is represented by an un-
known scalar field. The area of the environment is discretised in a
matrix where each element represents a location with an associated
scalar value. For example, in practical application each element could
be associated to a squared meter of the environment’s surface and
each element represents a sampling location x; that must be classi-
fied according to a threshold level.

Specifically, given a threshold level h and a set of locations
D C Rd, we want to infer knowledge about the unknown scalar
field f : R? — R and then to classify all points € D into either
H = {z | f(z) > h} (called superlevel set) or L = {z | f(z) < h}
(called sublevel set). The scalar field is modeled with a Gaussian Pro-
cess (GP) [17]. The problem then is to select the best set of locations
x; where to perform (noisy) measurements y; = f(x;) + e; while
optimizing the total path length required for the mobile agents to
analyze these points. Our proposed approach faces this problem us-
ing an Orienteering-based approach. Since the Orienteering problem
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is computationally heavy, reducing the number of candidate points
to be considered is crucial: in our approach this is done by exploit-
ing a skeletonization-based heuristic. In the remainder of this section
we will summarize the needed background: the Gaussian Processes,
the formulation of the Level Set problem with Gaussian Processes —
together with the solutions proposed in [10]-, the Orienteering prob-
lem and the Topological skeletonization.

2.1 Gaussian Processes

Gaussian Processes are a very important and widely used tool in ma-
chine learning [17]. In probability theory, a Gaussian Process (GP)
is a statistical distribution and offers a way to model an unknown
function without using parameters. In our case the function to be
modeled is the scalar field f. A GP is completely defined by its
mean function p(x) that formulates prior knowledge about the val-
ues of the function f 3, and its covariance function (also called kernel
function) k(x,x") which encodes the smoothness properties of the
function samples. A GP can then be denoted as GP(u(z), k(z,z')).
At a given time ¢, we consider a set of noisy measurements Y; =
{y1,y2, -+ ,y:} taken at locations X; = {z1, 22, - ,z+}. We as-
sume that y; = f(x;)+e; where e; ~ N(0,02) (i.e., measurements
noise with zero mean) and we consider a GP prior GP(0, k(z, z')).
Under these assumptions, the posterior over f is still a GP and its
mean and variance can be computed as follows [17]:

pe(z) = k()" (Ke + 00D) 1Y) (1
op(z) = k(z,2) — k()T (Ki + 020) 'kq (2) 2)

where k;(2) = [k(z1,2), -, k(z, z)]7
and K¢ = [k(z, 2")]s,0rex,

Using the above equations, we can update the GP with the new
knowledge acquired through the observations (i.e., the set of mea-

surements).

2.2 Level Set Estimation using Gaussian Processes

The formulation of the level set estimation problem using Gaussian
Processes has been introduced in [10]. We have a set of sample loca-
tions D (that represents our area of interest) and we want to classify
each location z; € D into the two sets H or L previously defined
by a threshold level h. This formulation uses the inferred mean (1)
and variance (2) from the GP learnt on the scalar field to construct an
interval:

Qi) = [p-1(@) £ BP0 (a)] @

for any point x € D, where the parameter 3 acts as a scaling factor
for the interval. The algorithm uses the intersection of all previous
intervals to define a confidence interval

Q@:ﬂ@m @)

The classification of a point « into H or L depends on the position
of its confidence interval with respect to the threshold level h. Intu-
itively if the entire interval lies above h, then with high probability
f(xz) > h and x should belong to H. Similarly if the entire inter-
val lies below A then x should belong to the L set. These conditions
are relaxed by introducing an accuracy parameter € which acts as a

3 This can be assumed to be zero without loss of generality

trade-off parameter between classification accuracy and number of
samples required. Specifically:

H; = {z | min(C¢(z)) + € > h} )
Ly = {z | maz(Cy(z)) —e < h} (6)

This confidence interval allows the algorithm to either classify a
point into the superlevel or the sublevel set. However, this classifica-
tion scheme does not permit classifying all locations z; € D at time
t when |Y;| < | D], leaving a set of unclassified locations:

Hence for the points that belong to Uy, we have to defer the decision
until enough information is available. Given this formulation the goal
is to select new sampling locations x; € U to acquire new data and
classify the points in U; according to the equations (5) and (6).

2.2.1 The solutions of [10]: the LSE algorithm and the LSE
batch algorithm

[10] proposed two solutions to this problem, both based on the con-
cept of ambiguity of the candidate points. In particular, at a given
iteration, the algorithm exploits the confidence intervals Cy(z) de-
rived from the Gaussian Process to calculate the ambiguity of all
unclassified points:

ai(z) = min{maz(Ci(x)) — h, h — min(C¢(z))} 8)

Given this concept, two solutions are presented in [10] to select
the set of next points to be sampled:

1. LSE: in this case, the set of the next points to be sampled is com-
posed by only one point, in particular the one with the highest
ambiguity. Clearly, this solution does not take into consideration
the distance of the chosen point from the current position, i.e. it
does not consider the length of the path.

2. LSE Batch: this second algorithm is aimed at alleviating this prob-

lem, and opts for the selection of multiple locations to be sam-
pled next. In particular, such locations are sequentially selected
by considering both their ambiguity defined in eq. (8) and their
joint mutual information, as derived from the Gaussian Process —
for more information see [10] and [11]. An efficient path between
such locations is then computed.

Although the main goal of the LSE Batch approach is to select
multiple locations and to compute an efficient path between them,
this algorithm is far in spirit from what we propose in this paper: ac-
tually, as in the LSE algorithm, the length of the path is not a variable
explicitly considered in the choice of the points to be sampled next.
The main reason for this is that in both cases their assumption is that
the process of acquiring new data is costly. Therefore their main goal
is to minimize the number of sampling locations.

2.3 Orienteering

The Orienteering Problem (OP) originates from the sport game of
orienteering. In this game, the start and end points are specified along
with other locations (i.e., checkpoints) which have associated score.
The players aim at visiting as many checkpoints as possible in order
to maximize the total score and have to reach the end point within a
given time frame. The same problem can model several different con-
texts. For example, consider the problem in which a traveling sales-
person has a set of cities which he could visit. Assuming that the
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saleperson knows the number of sales he/she can expect in each city,
the goal is then to plan a route so as to maximize the total number
of sales while keeping the total length of such route within a given
budget (i.e., the maximum distance he/she can travel in one day).

More formally, the OP can be formulated in the following way:
given a set of N locations each with a score .S; > 0, a starting loca-
tion 1, an ending location N and the travel time ¢;; for all couples
of locations 7 and j (with ¢ # j), the goal is to determine a path, lim-
ited by a given budget 7,4, that visits a subset of these locations,
in order to maximize the total collected score.

The OP can intuitively be defined with the aid of a weighted undi-
rected graph G = (V, E) where V. = {v1,...,un} is the set of
nodes (locations) and F is the set of edges. In this formulation the
nonnegative score S; of location 7 is associated with a vertex v; € V'
and the travel time ¢;; between location ¢ and j is associated with
each edge e;; € E. The OP consists of determining a Hamiltonian
path over a subset of V, including the start node (v1) and end node
(vn), and having a length not exceeding the bound 7,4z, in order to
maximize the total collected score.

Therefore, the orienteering is a combination of node selection
and shortest path computation between these nodes, hence it can be
casted as a combination of the Knapsack Problem (KP) and the Trav-
eling Salesman Problem (TSP) problems [4], where the KP goal is to
maximize the total score collected while the TSP aims at minimizing
the travel distance. This formulation is typically referred to as a gen-
eralized travelling salesman problem (GTSP) [8]. The orienteering
problem is known to be an NP-hard problem, as it contains the well
known traveling salesman problem as a special case.

This NP-hard problem arises in routing and scheduling applica-
tions and it is also known as the selective traveling salesperson prob-
lem ([15], [21]) or the maximum collection problem ([13]). A num-
ber of practical applications has been modeled as OP and many
heuristic approaches have been developed to combat the inherent
complexity of the OP. In most cases, the orienteering is defined as a
path to be found between distinct locations, rather that a circuit where
v1 = vn. In some applications, however, v can coincide with vy
but the difference between both formulation is not significant. For a
general review we suggest the survey proposed by Vansteenwegen et
al. [22].

2.4 Topological Skeletonization

In digital image processing and shape analysis, skeletonization is a
process for reducing regions in a binary image to a thin (skeletal)
representation while throwing away most of the original pixels (see
example in Figure 2). The skeleton preserves and usually empha-
sizes the geometrical properties of the shape, such as its connectivity,
topology, length and direction.

Skeletonization was first introduced by Blum [2], and it can be de-
scribed by using an intuitive model of fire propagation. If one “’sets
fire” at all points on the boundary of an image the skeleton forms
at the points in the region where two or more “fires” meet. This in-
tuitive description has several different mathematical definitions and
in the relevant literature it is sometimes referred to as medial axis or
thinning [9].

Skeletonization has been used in several applications ranging from
computer vision to image analysis and digital image processing.
There are many algorithms that are tailored for different application
contexts. Such approaches mainly vary in run time and properties of
the produced skeleton (e.g., whether it is a connected component or
not), however they all significantly compress the input. In this paper

we are interested in skeletonization mainly to reduce the number of
points that we must consider when planning the route for the robotic
platforms. Hence, we select a basic approach based on morphologi-
cal operators (see Section 4.3)
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Figure 2. Example of a topological skeletonization applied to an image.
On top the binarized input image and on the bottom the skeletonized version.

3 SBOLSE ALGORITHM

Using both the LSE solutions proposed in [10], the mobile sensor is
guided toward the most informative points, without taking into ac-
count the path of the mobile sensor. For example, the LSE algorithm
assumes that the mobile sensor moves from the current position to
the next selected location following a straight line. Another issue is
that the measure is collected only at the final location, without con-
sidering all the points traversed by the sensor along its path. On the
contrary, here we consider applications where measuring devices can
provide data while the robotic platform is moving. For example, the
mobile platforms we use here are equipped with probes that measure
various parameters (e.g., the PH level) with a given frequency while
the platform is moving. In this scenario, our goal is then minimizing
the path length while collecting as much information as possible to
correctly classify all points x; € D.

In what follows we present our Skeleton-Based Orienteering for
Level Set Estimation (SBOLSE) algorithm, which starts from the
LSE framework but is specifically designed for continuous sampling
sensors in which the cost required to extract a sample is negligible
but it is necessary to optimize the total path of the mobile platform
to minimize battery consumption.

The proposed algorithm considers the knowledge about unclas-
sified locations x; € U; to build an OP instance and to select a
sequence of visit locations (i.e., a path). The algorithm aims at op-
timizing the information that can be acquired along the path while
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meeting the budget on the travel distance. Next, we propose a heuris-
tic approach based on the topological skeletonization to combat the
computational complexity associated with the OP, empirically show-
ing that the classification accuracy does not suffer a significant degra-
dation while greatly reducing the computation time.

Algorithm 1 SBOLSE algorithm

Input: set D, threshold h, accuracy parameter e,

prior known data X C D, starting location Zs¢qrt

Qutput: sets H and L

t+0

To < Tstart

: Ho (—@,LO (—@,Uo(—D

: while H, U Ly # D do

t—t+1

Compute GP posterior u(z) and o (z) for all z € U,
Classity and update H;, L, U; according to LSE [10]
T 4 current position

G « buildGraph(z., Ut)

path < orienteeringStep(G, budget)

11: Execute path

12: H(—Ht,L(—Lt

WD R LN

—_
e

The pseudo-code of Algorithm 1 describes the steps of our
SBOLSE approach. The algorithm maintains three sets of points:
the current superlevel H; and sublevel L; sets, as well as the set
of unclassified points U. At each iteration ¢ we update the Gaussian
Process posterior by integrating the new information gathered at the
preceding iteration (line 6). Then we compute the confidence inter-
vals Cy(z) for each point x € Uy(z), classify them in one of the
three sets and then compute the sequence of locations to be visited.
To compute such sequence of locations we consider the ambiguity
defined by equation (8) of the unclassified points and build an OP
instance. Specifically, in line 9 we create a graph from the unclassi-
fied points U; (Algorithm 2) and then compute a path (line 10) using
the orienteeringStep procedure (Algorithm 3). The algorithm termi-
nates when H; U Ly = D, i.e. when all points are classified and
thus U; = (). Note that during the execution of the path (Algorithm
1, line 11) if the platform moves over locations not yet analyzed but
already classified according to LSE [10], these are evaluated and, in
case, re-classified considering newly acquired data.

3.1 Building the graph

In the buildGraph procedure we take all the unclassified locations Uy
and we build an un directed weighted graph, where all locations are
connected. This graph will then be used in the orienteering proce-
dure.

As shown in Algorithm 2, the first node of the graph represents
the current location of the mobile sensor (line 1). This location de-
fines the starting position for the orienteering solver. Subsequently
we build the nodes set V and the edges set E. The function w(-) de-
notes respectively the weight of a node or the weight of an edge. The
weight of a node w(v;) (line 7) is the ambiguity measure (equation 8)
of the location that the node represents. The weight of the first node
is an exception as this represents the current position of the mobile
sensor and hence the location has been visited and classified. The
weight of the edges w(e;;) (line 13) is the travel distance between
the locations represented by the nodes v; and v;.

Algorithm 2 buildGraph procedure

Input: current position x., unclassified elements U,
Output: weighted undirected graph G

1: Vv =z,

2: w(vy) <0

3:n<+1

4: for all z; € U; do

5: n<n+1

6: V—VUu, =
7: w(vn)  a(z;)

8 E+ 10

9: forallv; € V do
10: for all v; € V do
11: if v; 75 V; then
12: F+ FEU €
13: w(ei;) « dist(vs,vj)
14: G+ (V,E)

3.2 Orienteering Step

Algorithm 3 orienteeringStep procedure
Input: graph G = (V, E), budget B
Output: best Path

1: bestPath <+

2: bestPathValue < 0

3: for 7 in range(2, |V|) do

4: if dist(v1,v;) < budget then

5: path < orienteeringHeuristic(G, v1, v;, B)
6: if value(path) > best PathV alue then

7: bestPath < path

8: best PathV alue + value(path)

In the orienteeringStep procedure we use the previously built undi-
rected weighted graph G and consider this as the input to the orien-
teering problem. In particular we have a fixed starting point (i.e. the
current location of the mobile agent), but we do not have an ending
point (which is required in the classical formulation of the orienteer-
ing problem). It makes clearly sense that the starting point should
be equal to the destination point, however in the classic orienteering
problem the rewards of every node are fixed. In our case, rewards
changes during the execution of the procedure since the information
value of every location decreases while the robot acquires new data.
Hence, making a single run of orienteering would not take into ac-
count the adaptivity required by such scenario. Therefore, we iterate
the process for smaller segments. The choice of the length (budget)
of these segments allows a tradeoff between adaptivity and compu-
tation requirements. To choose the destination we perform an orien-
teering heuristic multiple times (Algorithm 3, line 5), assuming as
destination every unclassified location in the graph that is reachable
with the given budget. Every time we solve an orienteering instance
we obtain a new path. The procedure keeps track of the best dis-
covered one and returns this as final route to be executed from the
SBOLSE algorithm. Specifically with value(path) (line 6 and 8)
we indicate the summation of the nodes’ weights in that route, that
is value(path) = 3_, .., w(vi). Since the orienteering problem
aims at maximizing the score within a given travel budget, using this
procedure we obtain a path that maximizes the information selected
among the unclassified locations for the level set estimation prob-
lem. In this work we did not focus on the computational efficiency



L. Bottarelli et al. / Skeleton-Based Orienteering for Level Set Estimation 1261

but rather on a novel formalization of the problem. The choice of hav-
ing a completely connected graph and repeating the orienteering step
n-times for every possible reachable destination represents the sim-
plest choice for formalizing this problem. Improving these aspects
to reduce the computation required is matter of future work. Current
times do not prevent real-time operations.

3.3 Skeletonization

In most practical applications of level set estimation the input is a
set of dense points that must be classified. Specifically, when we
start the data acquisition process, we must consider the entire surface
of the selected portion of the environment. These data are typically
discretized and organized in a matrix where each entry represents a
small portion of the surface (i.e., a square of 50 centimeters in our
experiments).

Now, given some smoothness of the environmental phenomena,
locations with higher classification uncertainty usually cluster into
areas where the unknown scalar field has high probability to cross
the threshold level. Considering all such points could be considered
redundant. This motivates the use of a topological skeletonization
algorithm to compress the input.

Specifically, we consider the matrix containing the information
about the ambiguity measure (eq. 8) of the unclassified points Uy
as a binary image, where unclassified points are set to 1 and classi-
fied points are 0. We then apply a topological skeletonization to such
image, and we maintain as interesting points to be classified only
the points of the skeleton. This greatly reduces the number of loca-
tions that we must consider in the buildGraph procedure presented
in section 3.1 (see the example in Figure 3).

3.4 Theoretical analysis

For what concerns the theoretical analysis of our approach, notice
that Gotovos et. al. with Theorem 1 in [10] prove the convergence
of the LSE algorithm. Even though the selection procedure of our
SBOLSE algorithm differs from LSE, we used the same classifica-
tion rules (Algorithm 1, lines 6-7). As in LSE, our technique iterates
until every point is classified with respect to a threshold level h and
with an accuracy parameter €, hence we can ensure the convergence
of the SBOLSE algorithm.

4 EMPIRICAL EVALUATION

In this section we now present an empirical evaluation of our pro-
posed technique. First (in sections 4.1 and 4.2) we present the com-
parison of our technique with state of the art approaches on two dif-
ferent datasets. Then, in section 4.3, we analyze the results of the
topological skeletonization applied to the ambiguity measure (as ex-
plained in section 3.3), showing that this heuristic significantly re-
duces the size for the orienteering instances while preserving the
overall classification accuracy.

Specifically we compare: i) Our SBOLSE technique with a variant
of the LSE algorithm [10], which we designed to meet the continuous
sampling setting; ii) The batch version of the two approaches tested
in i). More specifically, the algorithms we compare are:

e SBOLSE: Our algorithm as explained in section 3.

e CS: This algorithm is a variant of the LSE as described in [10].
The classification and sample selection is the same except that
all locations on the straight line between the last position and the

Figure 3. Example of the topological skeletonization applied to the data
matrix containing the ambiguity measure for the unclassified points U¢. On
top the data matrix before the skeletonization, a darker color corresponds to

an higher value of ambiguity. On the bottom the skeletonized version.

next selected location are analyzed so to simulate a continuous
sampling sensor.

e CS,x x: This algorithm is a variant of the LSEpq¢ch as described
in [10]. Similarly to CS we analyze all locations in the straight line
between one location and the next one to simulate a continuous
sampling sensor, X X identifies the dimension (i.e. the number of
elements) of the batch. We performed tests with batches of differ-
ent sizes and determined as optimal value a batch size of 30. We
did not observe a significant reduction of the total path length with
batches of size larger than 30.

Regarding our SBOLSE algorithm, we implemented a simple ori-
enteering heuristic inspired by the center of gravity technique as pro-
posed by Golden et al. [8]. We performed the skeletonization with a
basic algorithm, based on morphological operators, as implemented
in the MATLAB function bwmorph. We used the F1-score as in [10]
to assess the classification accuracy for all the results of our tests. The
F1-score is often used in information retrieval for measuring binary
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classifications. In our case we consider the superlevel set as the pos-
itives and the sublevel set as the negatives elements.

4.1 Real data experiments

The first dataset consists of real-world data relative to the PH level
extracted from waters of the Persian Gulf near Doha (Qatar) using
the boat in Figure 1. The data collected has been aggregated in a
68 x 93 matrix where each element represents a sampling location
x; that must be classified according to a threshold level. In particular,
each element represents 0.5 square meters of the analyzed surface.
The value associated to that element is the average of all the samples
extracted in that portion of the surface. An example of this dataset is
shown in Figure 4.

Figure 4. Scalar field of the real-world dataset, i.e. the PH level of waters
extracted in the Persian Gulf near Doha (Qatar).

On this first set of experiments we considered three different
thresholds to classify the PH scalar field, specifically 7.40, 7.42 and
7.44. We performed some test to determine the best parameter setting
for B and € in such a way that the classification accuracy is high for
all the algorithms we compare.

Following standard approaches in the literature (e.g., [10]), we
start from ten random initial prior composed by 10% of the elements
of the matrix, for a total of 30 instances per algorithm. The priors
were used to fit the hyperparameters of an isometric Matérn-3 co-
variance function. The results of this set of experiments are shown in
Table 1. For a fair comparison the budget for the orienteering subrou-
tine has been set to the same length that would have been traveled by
the standard LSE algorithm, that is the distance between the current
location and the selected sampling point. In this way both methods
consider the knowledge about the environment with a new GP update
after the same amount of traveled distance.

We can observe that the F;-score, (which indicates the accuracy
of the classification) is higher than 97% for all the algorithms. Re-
garding the total path length, our SBOLSE algorithm performs very
well, reducing the path required by the mobile sensor by about 70%
compared to the standard LSE algorithm proposed in [10]. Also the
comparison with the batch version of the LSE algorithm still show
an advantage by about 32% in the total path length.

Table 1. Results of Fy-score and total path length using the real world PH
dataset extracted from waters of the Persian Gulf near Doha (Qatar), T is the
average of all experiments and S E is the standard error of the mean.

F1-score Path Length
T SEz | T SE+
SBOLSE | 97.23 0.066 | 473.6 6.203
CS 98.22 0.039 | 1560.8 18.582
CSp30 97.54  0.061 | 687.9 14.296
100 T T T T T
SBOLSE CSun cs
95
@ a0/
S
¢
Lo d
801 ~
750 2&)0 400 660 1 2‘00 14‘00 1600 1800
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Figure 5. Runtime F1-score comparison on the typical example instance
of the real dataset, varying the path length between SBOLSE, CS and CSp3¢
algorithms.

4.2 Synthetic CO2 dataset experiments

The second dataset consists of 10 matrices 60 x 179. In this case we
assume that each element represents 1 square meters of the surface.
These matrices have been extracted from the color channels of por-
tions of CO2 analysis images* to obtain a dataset with a scalar field
consistent with a typical environmental topology. One example of a
matrix from the dataset is presented in Figure 6. The main purpose
of this dataset is to test our technique on bigger matrices (more that
10,000 elements to classify) and to assess the quality of the algorithm
on data different than a scalar field extracted from a body of water.

Figure 6. Example of one of the synthetic scalar fields extracted from a
CO2 analysis map.

In our experiments we considered a threshold equals to 85% of the
maximum value in the scalar field. Also in this case we determined

4 http://oco.jpl.nasa.gov/galleries/gallerydataproducts/
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the best parameter setting and then performed tests with all the three
algorithms previously described with five random initial prior com-
posed by 10% of the elements of the matrix, for a total of 150 exper-
iments. Again the priors were used to fit the hyperparameters of an
isometric Matérn-3 [17] covariance function. The results of these ex-
periments are shown in table 2. We can observe that these are similar
to what was obtained in the real-world dataset. Specifically we obtain
areduction of about 75% of the path length compared to the standard
LSE algorithm and about 25% compared to the batch version.

Table 2. Results of F1-score and total path length using the synthetic CO2
dataset, 7 is the average of all experiments and S E5 is the standard error of

the mean.
F1-score Path Length
z SEz | T SE+
SBOLSE | 97.99 0.100 | 1355.6 26.156
CS 98.66 0.071 | 5588.1 136.864
CSp30 98.25 0.089 | 1782.7 34.052

4.3 Topological skeletonization results

This test aims at computing some statistics on the unclassified points
U during the execution of the algorithm before and after the op-
eration of topological skeletonization. In particular, we empirically
show that this heuristic significantly reduces the amount of points
that need to be analyzed during the orienteering step. In Figure 7
we can observe the average reduction in the number of unclassified
points after the skeletonization on a typical example instance of the
real dataset. This directly translates in space reduction of the graph
G used to perform the orienteering operation.

60-

50+

40r

%

'|=% deleted points
===% deleted information

5 10 15 20 25
# SBOLSE loop iteration

Figure 7. Reduction in the number of unclassified points and information
after the topological skeletonization, during the execution of the SBOLSE
algorithm

As reported in previous section, to perform the skeletonization we
used a basic algorithm based on morphological operators as imple-
mented in MATLAB function bwmorph. Although the operation is
very simple and fast and with such a technique we do not take into
account the amount of information in the deleted points, in Figure 7

we can observe that after this operation, statistically the percentage
of points and information deleted are similar. This is due to the fact
that, given the typical environmental phenomena, in the area repre-
senting the unclassified data, the highest amount of available infor-
mation (points with the highest ambiguity value) is concentrated in
the middle of the area itself. This suggests that the skeletonization is
a good heuristic to apply in order to discard some of these points.

The applied algorithm based on morphological operators in some
of the cases reduces the area giving a skeletonization centered where
the information is concentrated (see Figure 3), whereas in other lo-
cations this is not the case. However this observation leaves open the
possibility of applying different skeletonization techniques that bet-
ter preserves this property, further increasing the usefulness of our
technique. For example many definitions of skeleton make use of
the concept of distance function [12], which is a function that for
each point inside a shape gives its distance to the closest point on the
boundary. Further investigations could use a similar concept in order
to generate a skeletonization based on the amount of data present in
the area.

We now show a comparison between two versions of our SBOLSE
algorithm, with and without skeletonization of the orienteering in-
stances, specifically we performed the experiments on the real world
dataset. Results in table 3 show that the application of the skele-
tonization heuristic does not significantly influence the classifica-
tion quality. At the same time, however, this method allows us to
greatly reduce the complexity of the orienteering heuristic as previ-
ously shown in Figures 7

Table 3. Comparison between our SBOLSE algorithm using the
orienteering subroutine with and without the topological skeletonization on
the unclassified data Uy

F1-score Path Length

T SEz | = SE+

with 9737 0.152 | 449.0 7414
without | 97.70  0.075 | 525.0 13.891

S CONCLUSION

In this paper we proposed a new algorithm (i.e., SBOLSE) for the
level set estimation problem, considering mobile watercraft equipped
with continuous-sampling sensors. Our technique formulates the
level set estimation problem as an orienteering problem where the
ambiguity about the classification of a location represents the score
in the orienteering formulation. Our SBOLSE algorithm implements
an orienteering heuristic solution as a subroutine to select an infor-
mative path that meets a given travel budget. Moreover, we present an
approach based on the topological skeletonization to reduce the size
of the orienteering instance we solve, allowing for on-line classifi-
cation. Results show that our approach significantly outperforms the
current state of the art algorithms for the level set estimation prob-
lem (i.e., LSE and LSE-batch) in terms of total travel distance, while
maintaining a near-optimal classification quality.

ACKNOWLEDGEMENTS

This work was supported by the European Unions Horizon 2020
research and innovation programme under grant agreement No
689341. This work reflects only the authors’ view and the EASME
is not responsible for any use that may be made of the information it
contains.



1264

L. Bottarelli et al. / Skeleton-Based Orienteering for Level Set Estimation

REFERENCES

(1]

(2]

(3]

[4]
[5]

(6]

[7]

(8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. A. Batalin, M. Rahimi, Y. Yu, D. Liu, A. Kansal, G. S. Sukhatme,
W. J. Kaiser, M. Hansen, G. J. Pottie, M. Srivastava, and D. Estrin,
‘Call and response: Experiments in sampling the environment’, in Pro-
ceedings of the 2Nd International Conference on Embedded Networked
Sensor Systems, SenSys 04, pp. 25-38, New York, NY, USA, (2004).
ACM.

Harry Blum, ‘A Transformation for Extracting New Descriptors of
Shape’, Models for the Perception of Speech and Visual Form, 362—
380, (1967).

Chandra Chekuri and M. Pal, ‘A recursive greedy algorithm for walks
in directed graphs’, in 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’05), pp. 245-253, (Oct 2005).

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein, Introduction to Algorithms, MIT Press, third edn., 2009.

K. Dantu and G. Sukhatme, ‘Detecting and tracking level sets of scalar
fields using a robotic sensor network’, in Robotics and Automation,
2007 IEEE International Conference on, pp. 3665-3672, (April 2007).
A. Dhariwal, B. Zhang, B. Stauffer, C. Oberg, G. S. Sukhatme, D. A.
Caron, and A. A. Requicha, ‘Networked aquatic microbial observing
system’, in International Conference on Robotics and Automation, pp.
4285-4287, Orlando, FL, (May 2006). IEEE.

M. Dunbabin and L. Marques, ‘Robots for environmental monitoring:
Significant advancements and applications’, Robotics Automation Mag-
azine, IEEE, 19(1), 24-39, (March 2012).

Bruce L. Golden, Larry Levy, and Rakesh Vohra, ‘The orienteering
problem’, Naval Research Logistics (NRL), 34(3), 307-318, (1987).
Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing
(3rd Edition), Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.
Alkis Gotovos, Nathalie Casati, Gregory Hitz, and Andreas Krause,
‘Active learning for level set estimation’, in Proceedings of the Twenty-
Third International Joint Conference on Artificial Intelligence, IJICAI
’13, pp. 1344-1350. AAAI Press, (2013).

G. Hitz, A. Gotovos, F. Pomerleau, M.-E. Garneau, C. Pradalier,
A. Krause, and R.Y. Siegwart, ‘Fully autonomous focused exploration
for robotic environmental monitoring’, in Robotics and Automation
(ICRA), 2014 IEEE International Conference on, pp. 2658-2664, (May
2014).

Anil K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1989.

S. Kataoka and S. Morito, ‘An algorithm for single constraint maxi-
mum collection problem’, Journal of the Operations Research Society
of Japan, 31(4), 515-31, (1988).

Andreas Krause and Carlos Guestrin, ‘Near-optimal observation selec-
tion using submodular functions’, in National Conference on Artificial
Intelligence (AAAI), Nectar track, (July 2007).

Gilbert Laporte and Silvano Martello, ‘The selective travelling sales-
man problem’, Discrete Applied Mathematics, 26(2), 193 —207, (1990).
M. Rahimi, R. Pon, W. J. Kaiser, G. S. Sukhatme, D. Estrin, and M. Sri-
vastava, ‘Adaptive sampling for environmental robotics’, in Robotics
and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE Interna-
tional Conference on, volume 4, pp. 3537-3544 Vol.4, (April 2004).
C. E. Rasmussen and Williams C. K. 1., Gaussian Processes for Ma-
chine Learning, MIT Press, Cambridge, MA, USA, 2006.

Aarti Singh, Robert Nowak, and Parmesh Ramanathan, ‘Active learning
for adaptive mobile sensing networks’, in Proceedings of the 5th Inter-
national Conference on Information Processing in Sensor Networks,
IPSN ’06, pp. 60-68, New York, NY, USA, (2006). ACM.

Amarjeet Singh, Andreas Krause, and William J. Kaiser, ‘Nonmyopic
adaptive informative path planning for multiple robots’, in Proceed-
ings of the 21st International Jont Conference on Artifical Intelligence,
IJCATI’09, pp. 1843-1850, San Francisco, CA, USA, (2009). Morgan
Kaufmann Publishers Inc.

S. Srinivasan, K. Ramamritham, and P. Kulkarni, ‘Ace in the hole:
Adaptive contour estimation using collaborating mobile sensors’, in
Information Processing in Sensor Networks, 2008. IPSN ’08. Interna-
tional Conference on, pp. 147-158, (April 2008).

T. Thomadsen and T. Stidsen, ‘The quadratic selective travelling sales-
man problem’, Technical report, Informatics and Mathematical Mod-
elling, Technical University of Denmark, DTU, Richard Petersens
Plads, Building 305, DK-2800 Kgs. Lyngby, (2003).

Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden,
“The orienteering problem: a survey’, EUROPEAN JOURNAL OF OP-
ERATIONAL RESEARCH, 209(1), 1-10, (2011).



