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a b s t r a c t

In the past, the huge and profitable interaction between Pattern Recognition and biology/bioinformatics was

mainly unidirectional, namely targeted at applying PR tools and ideas to analyse biological data. In this pa-

per we investigate an alternative approach, which exploits bioinformatics solutions to solve PR problems: in

particular, we address the 2D shape classification problem using classical biological sequence analysis ap-

proaches – for which a vast amount of tools and solutions have been developed and improved in more than

40 years of research. First, we highlight the similarities between 2D shapes and biological sequences, then

we propose three methods to encode a shape as a biological sequence. Given the encoding, we can employ

standard biological sequence analysis tools to derive a similarity, which can be exploited in a nearest neigh-

bor framework. Classification results, obtained on 5 standard datasets, confirm the potentials of the proposed

unconventional interaction between PR and bioinformatics. Moreover, we provide some evidences of how it

is possible to exploit other bioinformatics concepts and tools to interpret data and results, confirming the

flexibility of the proposed framework.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

Research in Computational Biology and Bioinformatics experi-

nced an unprecedented growth in the last years, mainly due to

he fruitful interaction with many disciplines and fields of computer

cience. Among others, Pattern Recognition/Machine Learning tech-

iques have been successfully exploited in this context [1], for many

ifferent reasons: it is possible to “learn from examples”, derive quan-

itative models, handle non vectorial data, and deal with many classi-

cation, clustering and detection problems commonly encountered

n life sciences. In many cases the particular Pattern Recognition

odel has not been applied “as is”, but has been adapted and mod-

fied to take into account biological constraints and needs. Some-

imes, this produced approaches that are very different from original

ethodology – a clear example is the profile-HMMs [2].

To some extent, it can be stated that this tight interaction has been

ainly unidirectional, with biology/life science gaining the largest

enefit1. In this paper, we explore an alternative direction, trying to

nswer the following question: can we reverse the typical direction

f interaction between Pattern Recognition and Bioinformatics? Or, in
✩ This paper has been recommended for acceptance by Sven Dickinson.
∗ Corresponding author. Fax: +390458027068.

E-mail address: manuele.bicego@univr.it (M. Bicego).
1 In different cases bioinformatics issues have led to novel pattern recognition

ethodological challenges – the most famous example being the biclustering problem

3].
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ther words, can we exploit advanced bioinformatics models and solu-

ions to solve pattern recognition tasks?.

To the best of our knowledge, this perspective is rather new in the

iterature – the only relevant example is the video-genome project2

4] – and it seems a promising direction for two different reasons.

irst, if we are able to encode the Pattern Recognition problem in bi-

logical terms then we can exploit the huge range of effective, op-

imized, and interpretable bioinformatics tools developed by more

han 40 years of research. These tools heavily rely on the solution

f general pattern recognition tasks such as matching, classification,

etrieval, clustering, distance computation and so on. For example,

n the video-genome project [4], authors established an analogy be-

ween biological sequences and videos, defining the so called “video-

NA”, a way to map features extracted from video frames into nu-

leotidic biological sequences. Having encoded the problem in bio-

ogical terms, authors were then able to address the video retrieval

ask by using the famous BLAST [5] – an extremely fast and effective

euristic-driven algorithm for biological sequence retrieval. Second,

nd more important, the main goal in bioinformatics research is to

erive knowledge from biological data: therefore, the interpretabil-

ty of methods and solutions is a key feature, and many visualiza-

ion, inspection and interpretation tools are available in the literature.

hese tools may be very useful also in the Pattern recognition scenar-

os, to better understand the different aspects of the data for a given
2 See http://v-nome.org/about.html

http://dx.doi.org/10.1016/j.cviu.2015.11.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2015.11.011&domain=pdf
mailto:manuele.bicego@univr.it
http://v-nome.org/about.html
http://dx.doi.org/10.1016/j.cviu.2015.11.011
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3 http://www.ebi.ac.uk/Tools/msa/clustalw2/
problem: actually, in recent years interpretability has become a strin-

gent need in Pattern Recognition [6].

This paper makes another step in this direction, providing some

further evidence on the effectiveness and interpretability of bioinfor-

matics approaches for Pattern Recognition problems. In particular, in

this paper, we propose and discuss a bioinformatics approach to 2D

shape classification. Analysis of 2D shapes represents an important

and vibrant research area (often paving the way for 3D object clas-

sification). Many approaches appeared in the literature (see for ex-

ample the reviews [7,8]): very often, the 2D shape is encoded by the

contour, which proved to be an effective and natural choice in many

applications. Here we propose some methods to encode the shape

contour as a biological sequence, employing tailored bioinformat-

ics tools to perform classification. In the huge literature related to

2D shape analysis, many approaches exploit sequence alignments

tools to perform shape matching ([9–13], just to cite a few) –

some sequence matching-based approaches which start from shape-

skeletons have also been proposed [14–16]. Focusing on our main

target, i.e. to use biological sequence alignment tools, it should be

noted that few approaches exist that employ techniques developed

for biological sequences to perform shape classification or match-

ing [17,18]. Nevertheless, these approaches propose a very different

perspective with respect to our approach (and the video genome

project), where the main goal is to encode the PR problem in bi-

ological terms, hence exploiting tools developed for biological se-

quence analysis. In other words, to exploit Bioinformatics tools for

Pattern Recognition, one can consider two main steps: (i) encod-

ing the PR problem in biological terms; (ii) applying bioinformatics

tools to solve the problem. From this point of view, the approaches

in [17,18] are rather poor, employing one particular technique for

one particular purpose, and not considering a biological encoding

which would allow the use of a wide class of algorithms for sequence

analysis.

In this paper we do explicitly consider this aspect: first, we es-

tablish an analogy between 2D shapes and biological sequences, this

motivating the employment of bioinformatics tools. Then we pro-

pose three ways for transforming a silhouette, encoded with the 8-

directional chain code [19], into an aminoacidic sequence; given that,

we can compute the similarity between shapes by using established

biological sequence alignment tools. Such similarity is then exploited

for classification in a K-nearest-neighbor setting. Finally, we show

that other biological tools and concepts (such as multiple sequence

alignment, conserved domains and locality and quality of alignment)

can be used for a deeper analysis of the results. We performed differ-

ent experiments with five standard shape datasets; on one hand, we

show that classification results are very competitive with the state-

of-the art. On the other hand, we show that poor results we obtained

on a retrieval case can be analysed in a deeper way by exploiting other

biological sequence mining tools.

2. Background

This section briefly summarizes the bioinformatics tools exploited

in our analysis. First, we present a preliminary overview of biolog-

ical sequence alignment, so to clarify notations and terminology.

Then, we present the tools employed for pairwise sequence align-

ment and multiple sequence alignment, trying to highlight specific

aspects which are useful for our task.

2.1. Biological sequence alignment

Understanding and modelling the behavior of living cells is

strongly dependent on the analysis of biological sequences, both nu-

cleotide sequences – i.e. strings made with the 4 symbols of DNA,

namely ATCG – and aminoacid sequences – i.e. strings with symbols
oming from a 20 letter alphabet. The most important basic opera-

ion is sequence alignment, which is a crucial step in many computa-

ional biology and bioinformatics analyses. The alignment of a pair of

equences aims at finding the best registration between them. This

s done by taking into account the biological nature of the input se-

uences, so that biological (usually evolutionary) events, such as mu-

ations and rearrangements, are clearly expressed [20].

From a practical point of view, alignment is obtained by insert-

ng spaces inside the sequences (the so called gaps) so to maximise

he point-wise similarity between them – a graphical example can

e seen in Fig. 1. Such maximization relies on two important param-

ters. The first one is the so-called substitution matrix B(i, j) which

ndicates the penalty to be paid for a mismatch between symbols

and j. This encodes the fact that in nature substitutions between

minoacids/nucleotides are not all equally likely. Different alterna-

ives exist (such as the PAM [21] and the BLOSUM [22] matrices), each

ne exploiting biological a priori knowledge such as chemical prop-

rties of aminoacids. The second parameter is called the gap penalty

air, which is a pair of numbers specifying the cost of inserting and

he cost of extending a gap in one of the sequences (in biology, in-

serting a new gap has a different impact with respect to extending an

existing one).

.2. Pairwise sequence alignment

The simplest instance of sequence alignment aims at finding the

est registration between two sequences. In this case the approaches

an be divided into global and local: global methods try to find an

lignment between the entire strings, whereas local approaches aim

t finding short regions of high similarity. Historically, the most fa-

ous pairwise sequence alignment algorithms are the Needleman-

unsch [23] (which operates globally) and the Smith-Waterman [24]

which is local); both methods rely on dynamic programming to solve

he problem efficiently. In particular, they both have a time complex-

ty of O(MN), with M and N being the lengths of the two sequences.

e chose these two established tools, dating back to 70s/80s, in order

o be as basic as possible; however large margins of improvements

xist, since many advanced algorithms appeared in the last 30 years;

ne clear example is the popular BLAST (Basic Local Alignment Search

ool) [5], which implements a set of simple but effective heuristics to

rastically reduce the time complexity of the alignment.

A by-product of the alignment process is the alignment similarity

core: such quantity measures how “well aligned” the two sequences

re. This score can be reasonably intended as a similarity measure

etween two sequences.

.3. Multiple sequence alignment

When the goal of sequence analysis is to infer evolutionary events

rom a set of sequences, rather than reasoning in terms of pair-

ise alignments, the best option is to simultaneously align all the

equences, performing the so called multiple sequence alignment

MSA - [25]). In this context, the most widely used approach em-

loys a heuristic search known as progressive technique, which builds

p the final alignment by combining pairwise alignments – starting

rom the most similar pair and progressing to the most unrelated.

n this scenario, the most famous tool employed by researchers is

lustalW3 [26].

Given a multiple alignment, different information can be inferred.

or our scope, we will exploit two aspects:

1. The quality of the multiple alignment, which can be used to un-

derstand the local reliability of the sequence alignment (i.e. where

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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Fig. 1. Pairwise sequence alignment. A simple alignment is shown, highlighting the differences between matches, mismatches and gaps. As a convention, a vertical line connecting

two symbols indicates a perfect match; a colon indicates a mismatch which is likely to occur in nature; finally, a dot corresponds to a very unlikely mismatch.
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and how well the sequences are aligned). This can be assessed

with publicly available tools such as the CORE web service4 [27].

2. The conserved domains, namely regions which are very conserved

in the whole set of sequences: in biology, these regions are of cru-

cial importance for the correct function of the molecules, since a

mutation in such zone can have drastic effects. Different simple or

advanced tools are available to discover such conserved domains,

such as those implemented in the software ConFind5 [28]: in this

case conserved domains are defined in terms of the maximum en-

tropy allowed per position, the number of exceptions to the max-

imum entropy allowed and the minimum region length.

. The proposed approach

In this section we present our approach: in particular, we first link

D shapes and biological sequences, which may motivate the em-

loyment of bioinformatics tools in this context. Then we introduce

he three methods used to encode shapes into biological sequences;

nally, we detail how to transform alignments into a classification

cheme.

.1. 2D shapes and biological sequences

In this part we will describe some characteristics of biological se-

uences which can be present also in 2D silhouettes; such aspects

re explicitly or implicitly taken into account by many biological se-

uence analysis tools, and can motivate and support the usage of such

ools for the analysis of 2D shapes.

The first and most obvious similarity concerns the observation

hat 2D shapes can be effectively represented as sequences, similar

o what is present in the biological case. From a general point of view,

roteins represent the basic elements of every living cell, each one

esponsible for a different function of the cell. Proteins are 3D struc-

ures, which are directly mapped (through a projection) to a 2D dis-

rete string (the aminoacid sequence). In the same way, a 3D object

an be projected to the contour of one of its corresponding 2D as-

ects. In both cases there is a loss of information: it is difficult to re-

over the 3D object from the contour, as well as in biology it is difficult

o recover the 3D structure of the protein from the sequence. Never-

heless, such projections are very useful: in both domains, similarities

etween 3D structures can be inferred by looking at similarities in the

equence domain.

In the 2D shape domain a classical contour representation exists,

hich shares many similarities with the biological representation:

he chain code scheme [19]. This approach describes each point of

he contour with a symbol taken from a 4- or 8-symbols alphabet,

imilarly to the biological case which uses a 4- or 20-letter alphabet.

hile being simple, such representation is very descriptive, allowing

o encode all possible contours of all possible 3D objects – as the bi-

logical sequence can describe all possible proteins. Moreover, such

epresentation is also useful to discriminate between shapes, as it has

een shown in different successful cases [8,29].
4 http://www.igs.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi?stage1=1&daction=

ORE::Regular
5 http://www.colorado.edu/chemistry/RGHP/software/
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Another aspect concerns occlusions, which can represent a prob-

em when analyzing 2D shapes: part of the object is not visible or,

orse, is covered by another object. This results in a contour which

ay have missing parts or “replaced” parts. This situation has a clear

ounterpart in biological sequences, and corresponds to sequence in-

ertions, deletions or mutations. Many sequence analysis tools have

o deal with this problem. Actually, local alignment tools (such as

he classic Smith-Waterman [24]) rank alignments not on the ba-

is of the whole sequence, but only using a set of highly similar

mall segments, which can prevent small occlusions from becoming

roblematic.

It is also important to note that there is a crucial difference be-

ween the two domains: 2D shapes tend to be closed, whereas bio-

ogical sequences are not concerned with periodicity. This aspect is

losely related to the choice of the starting point, which often repre-

ents an issue in the contour-based 2D shape classification. In all our

xperiments, a good starting point was reasonably determined by a

imple pre-alignment of the shapes.

A final comment: as already mentioned in the introduction, it is

orth considering that the main goal in biology/bioinformatics is to

ecover information which can help the understanding of the com-

lex behavior of living organisms: therefore, a great importance has

een always given to the interpretability of methods and solutions –

ith many visualization, inspection and interpretation tools available

n the literature. These tools may be very useful also in Pattern Recog-

ition, where interpretability has become a stringent need in recent

ears [6]. This aspect has been largely investigated in this paper: by

inking 2D shapes and biological sequences we can then leverage a

ide variety of tools, developed to address the great amount of differ-

nt problems faced by Bioinformatics tools, where matching is only

ne of the possible tasks. In fact, more than showing that a very com-

etitive shape classification tool can be devised, we provide evidence

n possible exploitations of other bioinformatics tools, not strictly de-

oted to matching, usable to perform general mining and knowledge

xtraction from 2D shapes. Exploiting concepts such as high similar-

ty segments, conserved domains and quality of multiple sequence

lignments, we were able to show the effectiveness of our approach,

roviding a better understanding of some of the results. Remarkably,

ll these analyses have been carried out by using classical web tools

hat bioinformatics experts are using every day (ClustalW, Tcoffee,

onFind).

.2. Encoding schemes

In the following we describe some methods to encode 2D shapes

nto biological sequences, in particular exploiting the 20-symbols al-

habet of aminoacids.

Encoding scheme 1: Single. We start by describing every 2D

hape with the chain code representation: such codes are used to rep-

esent a boundary by a connected sequence of straight-line segments

ith a specified length and direction [19]. Typically, this representa-

ion is based on 4- or 8- connectivity of the segments, as shown in

he left part of Fig. 2: first we select an initial point, then we follow

he contour in a clockwise order, and we select the code based on

he direction taken towards the next pixel. Clearly, this descriptor is

nvariant to translation, but it is not invariant to rotations and scale

http://www.igs.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi?stage1=1&daction=CORE::Regular
http://www.colorado.edu/chemistry/RGHP/software/
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Fig. 2. Biological shape mappings: On the left, the general idea of the chain code. On the right, a graphical visualization for the mappings described in the text.

a

t

t

changes6. Even if we are aware that many more complex descrip-

tors are available (such as Multi-scale contour fragments [11,30]), this

simple approach allows an easy encoding of a shape into a biologi-

cal sequence; it also facilitates the exploitation of visualization tools.

Remarkably, even with this simple scheme, we already achieve sat-

isfactory results. Since Chain Codes are not invariant to rotation, the

initial point should be carefully selected. In particular, in all our ex-

periments, we determine such initial point by first pre-aligning the

shapes using a Procrustes analysis, and then selecting the most upper

left point of the contour.

The first strategy to encode 2D shapes into biological sequences

is rather simple, in order to analyse the basic potential of our ap-

proach. In particular, each chain code value is directly mapped onto

an aminoacid. More in detail, the chain codes are mapped onto the

first 8 aminoacids, as given in the IUPAC coding7: A, R, N, D, C, Q, E,

and G. Even if this scheme is very simple, some good results have al-

ready been obtained – see our preliminary works [31,32].

Encoding scheme 2: Triplets. The second encoding scheme is

based on two ideas, both aimed at exploiting the whole set of 20

aminoacids available in nature. Given the chain code representation,

we consider the shape as composed by many short subsequences of

length 3 – also called k-mers or N-grams in some papers. This idea of

analysing short fragments of contiguous symbols – which is not new

in the 2D shape classification scenario [29,30] – seems to be a reason-

able choice also in biology: it has been recently shown that different

information can be extracted, at the genomic level, from the analysis

of the distribution of such words [33,34].

If we consider subsequences/fragments of length 3 (i.e. triplets),

then we have 83 possible values (when using 8 directional chain-

code), i.e. every sequence can be described using words coming from

a dictionary of 83 entries; the main idea of the triplet encoding is to

find a mapping between this dictionary and the aminoacidic alpha-

bet; once given this mapping we can substitute every occurrence of

a given fragment in a sequence with the corresponding aminoacid.

To find this mapping, we adopt a way of reasoning similar to the

one used by nature, where specialized molecules read a triplet of

DNA (also called codon) and translate it into an aminoacid. This

code, which starts from a low cardinality alphabet (A,T,C,G), is redun-

dant: there are 43 = 64 possible codons, which are mapped on 20

aminoacids by means of a lookup table. In our mapping we exploited

directly this scheme of nature: we considered triplets of chain codes,
6 A well known extension of the chain code, called differential chain code, is invari-

ant to rotation; however, a preliminary set of experiments revealed a degradation in

performances. This may be related to the loss of information due to the use of deriva-

tive operation.
7 http://www.iupac.org/publications/pac/1984/pdf/5605x0595.pdf

c

t

s

9

nd we found a mapping between each of them and a codon (i.e. a

riplet of DNA characters). Since we used a 8-directional chain code,

here will be more triplets mapped into a single codon.

More in detail, the mapping is performed in two steps:

1. Chain code triplets clustering: in this phase all the chain code

triplets8 are clustered into 61 groups, in order to allow, in the

second step, to compute a one to one mapping with codons (we

used 61 codons, not considering stop codons, which are particu-

lar triplets which are used in nature to depict the end of the se-

quence). The clustering is performed using an agglomerative hi-

erarchical scheme, with the average link rule (as in the UPGMA

algorithm, a widely used technique for phylogeny). The distance

between two triplets of chain code x = x1x2x3 and y = y1y2y3 is

defined as

d(x, y) =
∑

i

min [mod(xi − yi, ˜8), mod(yi − xi, ˜8)] (1)

We chose this distance as it allows to group together parts of con-

tours with very small perturbations9.

2. Mapping codons to clusters of chain code triplets: this sec-

ond phase aims at finding a direct correspondence between ev-

ery cluster (group of chain code triplets) and every codon. In

this case we adopt two approaches: the former starts from the

observation that aminoacids (and therefore codons) do not ap-

pear in nature with the same frequency; since the same holds

for chain code triplets in a given dataset, a reasonable choice is

to map triplets to codons by aligning the frequencies (we em-

ployed the codon frequencies of the Homo sapiens10), so that a

triplet which appears often in a dataset is mapped to a DNA triplet

widely present in nature – we call this scheme Triplets-Freq. The

second method tries to align pairwise distances between codons

and chaincode triplets. Specifically, we try to preserve the relation

every codon/triplet has with all the other codons/triplets. To do

that, we compute for every codon its averaged distance to all the

other codons: this represents a measure of how “central” is the

codon in the population. We repeated this operation for groups of

chaincode triplets. Finally, the mapping is carried out by aligning

these two measures of centrality: as before, the ordering of codon

and triplet centralities returns the direct mapping – we call this
8 We discard from the clustering the triplets which are meaningless (such as those

ontaining “40”, which indicates a “move to right” followed by a “move to left”) and

hose not present in the considered dataset – in average about 300 triplets were con-

idered.
9 For example, a cluster is composed by 000, 001, 010, and 011.

10 Available at http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=

606.

http://www.iupac.org/publications/pac/1984/pdf/5605x0595.pdf
http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=9606
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Fig. 3. From codons to chaincode triplets using the Triplets-Dist scheme. The left part of the figure shows, for 6 biological codons and 6 chaincode triplets, their distance (the height

of each bin in the histogram) relative to each other. The average distance is then sorted, both for codons and for triplets of chain code, resulting in two rankings. Pairing the two

rankings will give the final mapping.
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d

scheme Triplets-Dist, summarized in Fig. 3. Distances between

triplets of chain codes have been obtained as described before (i.e.

as a result of the the average link scheme), whereas distances be-

tween codons have been computed with the Tajima–Nei function.

This function, introduced in [35], computes the distance between

two nucleotidic sequences by counting the mismatches which oc-

cur between them, each one weighted by the frequency of each

symbol in the sequence. Even if this method was proposed sev-

eral years ago, this distance is still largely applied when compar-

ing DNA sequences.

Once we established the mapping between chain code triplets and

odons, we use the standard biological lookup table for translating

very codon into an aminoacid, hence obtaining the final encoding.

Summarizing, a given 2D shape is encoded into a biological se-

uence by scanning its chain code sequence and extracting triplets:

e considered overlapped triplets, in order to remove the depen-

ence from the reading frame (right part of Fig. 2). After extraction,

very triplet is mapped to the aminoacid via one of the two map-

ings described above (Triplets-Freq or Triplets-Dist); as a result the

equence of aminoacids is obtained.

.3. From sequence alignment to shape classification

Given the encoding, it is now straightforward to define a classifi-

ation strategy based on standard K-nearest neighbor classifier [36]11.

iven an unknown object X and a distance, this classifier finds the K

oints in the training set which are nearest to X, assigning X to the

ost frequent class in that set. This is a natural choice because, given

ur framework, it is straightforward to define a distance between 2D

hapes: after encoding the two shapes into aminoacid sequences, we

an align them and use the alignment error as a measure of distance.

In our experiments we used both local and global alignment tools:

n particular, we employed the two historical approaches described

n previous section, namely the Needleman-Wunsch [23] and the

mith-Waterman [24] algorithms. We used, as substitution matrix,

he classical family of BLOSUM matrices [38]12.
11 We are aware that, given a similarity matrix, interesting alternatives to K-NN ex-

st (e.g. the dissimilarity-based representation paradigm [37]). However, KNN is accu-

ate and simple enough to demonstrate the suitability of our proposed approach – in

his paper we are more interested in showing the feasibility of our perspective, rather

han reaching state of the art results. Moreover, this technique is very easy to interpret,

ince it gives an intuitive motivation of the assigned class label by showing the nearest

eighbor to the user.
12 Recently we investigated the possibility of employing substitution matrices which

re learnt from shape datasets, see [39].

r

. Classification results and discussion

In this section we evaluate the proposed framework in the context

f shape classification. In particular, we first describe the datasets we

sed and the corresponding evaluation protocols; then we provide

ome details on the parameters of the proposed framework; finally

e present and discuss our classification results, putting them in per-

pective with respect to the state of the art.

.1. Datasets and classification protocol

The proposed framework has been analysed using five different

atasets:

• The Vehicle Shape dataset (Vehicle)13 [40], which contains 120

vehicle shapes classified in 4 classes; following [40], classification

accuracies have been determined using 10-fold cross validation.
• The Chicken Pieces dataset (Chicken)14 [41], containing 446

shapes of chicken pieces, divided in 5 classes; in this case we em-

ployed the the Leave-One-Out (LOO) protocol, since most of the

literature methods tested on this dataset in the past have been

evaluated using this protocol.
• The MPEG-7 CE-Shape-1 dataset (MPEG-7)15 [42], representing

a widely employed dataset used as reference in many 2D shape

classification analysis; it contains 1400 shapes, divided in 70

classes. In this case we used both the Leave One Out and the Aver-

aged Holdout Cross Validation (with 10 repetitions) – these being

the two most common choices for classification16 [30].
• The ETH80 dataset (ETH80)17 [43], which contains 80 high-

resolution color images of 3D objects from 8 categories: each ob-

ject is represented by 41 images taken from different points of

view, leading to a total of 3280 images. For this dataset we used

the leave-one-object-out protocol, as detailed in the original pa-

per [43].
• The Animal dataset (Animal)18 [44], which contains 2000 shapes

describing 20 kinds of animals — each category has 100 animal

images. The dataset is very challenging, containing articulation

changes, part missing, large-scale intra-class variation, and noisy
13 http://visionlab.uta.edu/shape_data.htm.
14 http://algoval.essex.ac.uk:8080/data/sequence/chicken/.
15 http://www.dabi.temple.edu/∼shape/MPEG7/dataset.html
16 On the contrary, the Bull’s eye test [9] is typically employed to measure the

etrieval performances.
17 http://www.d2.mpi-inf.mpg.de/Datasets/ETH80
18 https://sites.google.com/site/xiangbai/animaldataset

http://visionlab.uta.edu/shape_data.htm
http://algoval.essex.ac.uk:8080/data/sequence/chicken/
http://www.dabi.temple.edu/~shape/MPEG7/dataset.html
http://www.d2.mpi-inf.mpg.de/Datasets/ETH80
https://sites.google.com/site/xiangbai/animaldataset
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Table 1

Results for different datasets, coding strategies, alignment algorithms and parameter

configurations.

Coding Algo Vehicle Chicken MPEG MPEG ETH80 Animal

(LOO) (HO)

(Default configuration)

Single NW 0.883 0.915 0.976 0.954 0.907 0.817

Single SW 0.904 0.904 0.974 0.949 0.903 0.802

Triplets-Freq NW 0.908 0.872 0.969 0.933 0.861 0.728

Triplets-Freq SW 0.906 0.845 0.966 0.929 0.858 0.697

Triplets-Dist NW 0.935 0.881 0.966 0.932 0.870 0.687

Triplets-Dist SW 0.922 0.886 0.959 0.925 0.859 0.654

(Advanced configuration)

Single NW 0.926 0.917 0.981 0.961 0.915 0.837

Single SW 0.924 0.910 0.979 0.957 0.914 0.823

Triplets-Freq NW 0.929 0.890 0.975 0.947 0.876 0.772

Triplets-Freq SW 0.932 0.863 0.971 0.940 0.867 0.731

Triplets-Dist NW 0.929 0.881 0.976 0.947 0.886 0.736

Triplets-Dist SW 0.930 0.888 0.969 0.940 0.880 0.702

Table 2

Comparison with the state of the art: chicken and vehicle.

Methodology Accuracy

(Chicken pieces)

1-NN + Levenshtein edit dist [47] ≈0.67

1-NN + HMM-based distance [48] 0.738

1-NN + mBm-based features [48] 0.765

SVM + HMM + Marg. kernel [49] 0.775

1-NN + approx. cyclic dist [47] ≈0.78

SVM + HMM + Top Kernel [50] 0.808

SVM + cyclic string edit [51] 0.811

SVM + HMM + Trans embedding [52] 0.811

SVM + HMM-based entropies [53] 0.812

SVM + HMM + Fisher Kernel [50] 0.817

SVM + HMM + FESS-embedding [50] 0.830

Contour Fragments [54] 0.845

SVM + HMM + CB Fisher kernel [55] 0.858

SVM + HMM + NL Marg. kernel [49] 0.855

Lattice-Computing (LC) [56] 0.865

SVM + Kernel Edit Distance [57] 0.871

SVM + IT kernels on n-grams [29] 0.895

Linearity Closed Curves [58] 0.933

Our best 0.917

(Vehicle – all from [40])

SVM + curvature 0.625

Ergodic HMM + Max Lik. 0.625

Left Right HMM + Max Lik. 0.708

Circular HMM + Max Lik. 0.733

SVM + Zernike moments 0.792

SVM + Fourier descriptors 0.825

HMM + Weighted likelihood 0.842

Our best 0.935
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shapes. Following [30], we compute the classification accuracy

with the averaged holdout protocol (with 10 repetitions).

Some examples of the various datasets are highlighted in Fig. 4.

For all datasets, as in other approaches (e.g. [12]), 2D shapes have

been pre-aligned using a classic Procrustes analysis. This allows to

select a good starting point for the contour. Moreover, following [45],

in the ETH80 and MPEG-7 case we sub-sampled the contour retaining

only 200 points.

4.2. Experimental details

For all datasets we apply the proposed framework: we extract

the shape chain codes and we encoded them using the 3 coding

strategies described in the previous section (Single, Triplets-Freq and

Triplets-Dist). We compute similarities between sequences using two

alignment schemes: the Needleman–Wunsch (NW) and the Smith-

aterman (SW), as implemented in the MATLAB Bioinformatics tool-

box (the alignment score has been normalized by the length of the

two compared sequences). Finally, we perform the classification with

the K-NN rule (with K automatically selected with Leave One Out

cross-validation on the training set).

As explained in the Section 2, different parameters can be set

within the bioinformatics tools; as a general rule, for most of them,

we used the default values which are typically offered to the user –

this represents the typical choice in biology when no extra informa-

tion is available. However, for what concerns the two most important

parameters of sequence alignment (the substitution matrix and the

gap opening/extending penalty), we tested two possible configura-

tions: in the first one, we used the default configuration: BLOSUM62 as

substitution matrix and the pair (11,1) for gap penalties – where the

former number represents the gap opening penalty, and the latter the

gap extending penalty. In the second configuration, we adjusted the

biological parameters in order to take into account the specific sce-

nario (the shape classification context) – also in biology the tuning of

parameters represents the best way to insert a priori knowledge into

the process. In particular, in biology, the default gap penalty is rather

high, since in this context it is not usually desirable to break a biolog-

ical sequence. In the shape context, however, such a strong constraint

does not hold: actually, gaps can significantly help in dealing with

occlusions and scale changes. Therefore we changed the gap penalty

from (11,1) to (6,2) – we restricted our choices to standard gap costs

implemented within the BLAST algorithm. Furthermore, we used a

substitution matrix which highly penalizes changes in the sequences

(namely, the algorithm is forced to try to align the sequences in the

best possible way). The idea here is that whereas there are cases in

biology where it is preferable to allow a high degree of mutation (i.e.

tolerating mismatches), in the 2D shapes context an exact matching

may be preferable. In particular we used a BLOSUM90 matrix (the

higher the number after the word “BLOSUM” the more “conservative”

the substitution matrix) – we called this Advanced configuration.

4.3. Results and discussion

All results, for all datasets, all coding strategies, all alignment al-

gorithms and parameters are presented in Table 1.

In order to get an idea of the statistical significance of the results,

we computed for all experiments the standard errors of the mean, a

common way of estimating the variance of the accuracy [46], com-

puted by dividing the averaged accuracy by the squared root of the

number of objects. In all experiments concerning the five datasets

such errors were all less than 0.0077, 0.0008, 0.0001, 0.0023, 0.0004

for the Vehicle, the Chicken, the MPEG, the ETH80, and the Animal,

respectively.

From the table it is evident that the proposed framework performs

reasonably well, being also very competitive with respect to the state

of the art — reported in Tables 2, 3 and 4.
Going more into the details, it is interesting to note that for the

hicken, the MPEG, the ETH80 and the Animal datasets the Simple

ncoding represents the best choice, whereas for vehicle a substan-

ial improvement is obtained when using the two triplets codings

especially with the default configuration of the alignment param-

ters). At the same time, in the vehicle dataset the Smith-Waterman

lgorithm provides better results, whereas for the remaining four the

eedleman–Wunsch gives superior performances. This may be due

o the low between class variability in the vehicle dataset, hence it

s more convenient to employ a local algorithm such as SW, which

an better align local parts, namely details – which are also better

aptured by the richer Triplets coding. On the contrary, in the other

atasets, the differences between the classes is more pronounced (in

uch datasets the challenge is represented by the intra-class variabil-

ty), therefore a global alignment method can be more appropriate.

n any case, in all configurations a proper tailoring of the alignment

arameters led to an improvement of the performances.
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Fig. 4. Examples from the datasets used.

Table 3

Comparison with the state of the art: MPEG and ETH80.

Methodology HO LOO

(MPEG-7)

Procrustes 1-NN [59] – 0.916

Tangent kernel SVM [59] – 0.936

Graph inner distance [60] – 0.947

Graph transduction distance [60] – 0.957

Manifold kernel SVM [59] – 0.966

Polygonal multi-resolution [11] – 0.976

String of symbols [61] – 0.974

Chance probabilities [62] – 0.974

String kernels [63] – 0.978

Robust symbolic representation [12] – 0.986

Kernel edit distance [57] – 0.989

Skeleton paths [44] 0.867 –

Contour segments [44] 0.911 –

ICS [44] 0.966 –

Class segment set [64] 0.909 0.979

BCF [30] 0.972 0.989

Our best 0.961 0.981

Table 4

Comparison with the state of the art: Animal. Table is taken from [30] and [69].

Methodology Accuracy

(ETH80)

Color histogram [43] 0.649

PCA gray [43] 0.830

PCA masks [43] 0.834

SC + DP [43] 0.864

IDSC + DP [9] 0.880

IDSC + Morphological strategy [65] 0.880

Height functions [10] 0.887

Robust symbolic representation [12] 0.903

Kernel edit distance [57] 0.913

BCF [30] 0.915

Our best 0.915

(Animal)

Class segment set [64] 0.697

IDSC [9] 0.736

Bag of SIFT [66] 0.749

Contour segments [44] 0.717

Skeleton paths [44] 0.679

ICS [44] 0.784

CS&SP&IDSC-F [44] 0.787

CS&SP-DP [67] 0.807

Shape tree [68] 0.800

HOG-SIFT BoW [66] 0.804

BCF [30] 0.834

Contextual BOW [69] 0.860

Our best 0.837
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. Deeper analysis

In this part we provide an example of how it is possible to ex-

loit the huge amount of bioinformatics tools to have a deeper un-

erstanding of the results. To do that, we evaluated our framework in

slightly different task (the retrieval task), trying to exploit bioinfor-

atics tools and concepts to better understand results that were not

atisfactory. Even if related, the retrieval task is slightly different from

lassification: given a testing object, the goal is to retrieve as many

hapes as possible from the same class. Clearly, given our framework,

retrieval system can be easily defined: given an unknown shape en-

oded in an aminoacid sequence, its alignment with respect to all se-

uences of the dataset can induce a ranking which allows to extract

he most similar shapes.

The MPEG-7 dataset has been widely applied in the retrieval task,

here the performances are compared using the well established

rotocol called bull’s eye test [9]: for every query shape, we count

he number of objects that belong to the same class in the top 40

atches; the retrieval rate is then measured as the ratio of the to-

al number of shapes from the same class (which at most is 20) to

he highest possible number (which is 20 · 1400 = 28, 000). A large

mount of results appeared in the literature on this task, with some

ery advanced techniques reaching impressive retrieval rates – for ex-

mple, an almost perfect retrieval accuracy was given in [70], where

any different distance measures are fused using co-transduction.

Using our proposed framework, the best result we achieved was

bulls eye score of 77.24%: in this case, our algorithm does not rep-

esent a valuable competitor of other specific algorithms, probably

ecause it is too general to face the larger complexity of the retrieval

ask with respect to the classification task. Let us go deeper on this

spect: within our framework, which exploits KNN for classification,

he starting point is the same for both classification and retrieval,

amely the similarity of the query (testing shape) with all objects

n the dataset. Roughly speaking, it can be said that here good classi-

cation performances can be obtained if the query shape has a very

ood match with some of the correct training shapes (i.e. that belong

o the same class) – in the extreme case of Nearest Neighbor, it is

nough that the query has the highest match with only one correct

hape, no matter how low are the matching scores with all the re-

aining correct shapes. On the contrary, in order to have a good re-

rieval rate, the query shape should have a rather good match with all

he shapes of the same class – in MPEG a perfect retrieval is obtained

hen all the correct shapes are retrieved among the first 40 hits (over

400). Therefore, in our case, the retrieval task is definitely more diffi-

ult than the classification task: within the proposed framework, it is
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Fig. 5. Visualization of high similarity segments for two query shapes: in each part, for every shape of the training set (right), we show with a continuous bold line the high

similarity segments after the pairwise alignment with the query shape (left).

Class 60

Fig. 6. The class of rays from the MPEG-7 dataset with the conserved domains highlighted with a continuous bold line.
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evident that it is possible to derive good matches of the query shape

with many correct shapes, but not with all.

In the last part of this section we will provide some more complex

versions of the framework which are able to partially alleviate this

problem. Before that, however, we would like to show an example

of how it is possible to exploit some other standard bioinformatics

tools to qualitatively investigate the intuitions sketched before. In

particular, we started by visually analysing the alignment results,

in particular inspecting and visualizing the regions of high similar-

ity derived from the application of the local Smith Waterman al-

gorithm. Visual analysis of alignments represents a standard tool

employed by bioinformaticians, which allows to recover from align-
ent errors as well as to detect interesting parts of the paired se-

uences. In our case, we visualized classes where classification and

etrieval were both satisfactory, as well as classes where classification

as appropriate but retrieval failed. As an example, we report in Fig. 5

wo query shapes, together with the corresponding high similarity

egions obtained after aligning them with all the other shapes of the

ame class. The first example refers to a class where both classifica-

ion and retrieval are good. It shows that the regions of high similar-

ties are (i) long and, more importantly, (ii) mainly involved with the

ame part of the shape. In contrast, in the second example, only the

rst matches are with long segments; moreover, the matched parts

re different – compare for example the first match with the fourth.
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Fig. 7. Quality of MSA: the graphical representation highlights the quality of the alignment – the darker the color the better the alignment; (left) the class of hearts, (right) the

class of rays.

C

m

t

s

i

c

c

r

i

t

a

e

g

e

C

g

c

s

t

a

c

s

m

e

s

F

t

a

t

o

v

o

p

t

6

m

s

e

s

l

t

W

m

E

t

learly, since there are different shapes in the same class with a good

atch, satisfactory classification results can be obtained when using

he K-NN. Nevertheless, as mentioned before, for retrieval, a given

hape should have a good match with all the shapes of the same class,

.e. there should be a unique shared region characterizing the whole

lass, which should be retrieved in all shapes. Clearly, this is not the

ase for the example shown in figure – indeed, for the ray class the

etrieval rate was really poor.

Another confirmation of this fact can be found by visually inspect-

ng the so-called conserved domains; as described in the previous sec-

ion, such regions represent parts of the biological sequences which

re present in all the sequences belonging to a given set; they are key

lements for the correct functioning of the molecules, with many al-

orithms and tools developed in last 20 years to find them. Here, to

xtract them, we performed a multiple sequence alignment using the

lustalW online software19, and we then employ the ConFind pro-

ram [28] on the multiple alignment. For illustrative purposes, the

onserved domains of the ray class are shown in Fig. 6 (in solid red),

uperimposed to the original 20 shapes. From this figure it is evident

hat there is not a truly and trustable conserved domain related to

particular peculiar part of the shape, thus the retrieval rate in this

ase cannot be satisfactory.

A further and final confirmation can be extracted by directly in-

pecting and visualizing the quality of the multiple sequence align-

ent of all the sequences belonging to a given class, for example

mploying the Tcoffee core evaluation program [27] on the multiple

equence alignment given by ClustalW. We report two examples in

ig. 7 again with the hearts and the rays (only part of the visualiza-

ion is displayed): it is evident that it is impossible to find a reliable

nd high quality multiple alignment for the right class (rays) – while

his is necessary to solve the retrieval task. In contrast, for the class

n the left (hearts), the multiple sequence alignment turned out to be

ery accurate, this is reflected on the retrieval accuracy of the system

n this class.

As a final contribution, we investigated some variants of the pro-

osed framework, to provide a more robust distance matrix. In par-

icular, we investigated three lines:

1. Alternative Boundary representations. We investigated different

contour-based representations for the shape, such as the gener-

alized chain code, the curvature [51], the Inner-Distance Shape

Context [9], and the Contour Fragments [30]. For continuous rep-
19 freely available at www.ebi.ac.uk/clustalw2

s

resentations (such as curvature, IDSC and CF), we had to perform

a vector quantization in order to obtain discrete aminoacid sym-

bols: in particular we quantized the signals to 400 levels, encod-

ing each level with a pair of aminoacids. In all cases, retrieval rates

were again not so impressive, where the best result (80.4%) was

obtained with the Contour Fragments.

2. Alternative alignment schemes. Following the spirit of the

manuscript, we also tried to exploit another bioinformatics algo-

rithm in order to improve the retrieval accuracy. In particular, in-

stead of repeating pairwise alignments of the query sequence to

every single training sequence, we tried to align such query si-

multaneously to all the training sequences, in order to obtain a

global and robust alignment. The results confirmed the feasibil-

ity of our choice, with the retrieval rate reaching a value of 85%;

we consider this a significant result: looking at the state of the art

results sketched in the bottom part of Table 1 of [70] (matching

algorithms without distance-matrix post processing), we can ob-

serve that recent techniques obtained retrieval rates from 80% to

89%20.

3. Post-processing of distance matrix. Finally, we also tried to post-

process the distance matrix, motivated by the fact that many

of the most effective approaches to shape retrieval adopted this

scheme [70]. In particular we applied the scheme proposed in [60]

to the distance matrix obtained with our proposed approach. That

scheme learns context-sensitive shape similarity by graph trans-

duction; by using such approach we achieved a 89.1% retrieval

rate.

. Conclusions

In this paper we explored the possibility of exploiting bioinfor-

atics concepts, tools and solutions to address the 2D shape clas-

ification problem. In our framework, the contour of a 2D shape is

ncoded using the chain code, and then transformed into biological

equences through three encoding strategies. We then employ bio-

ogical sequence alignment tools to compute a similarity measure be-

ween sequences/shapes, and we use a KNN classification approach.

e also proposed some tailoring of the biological sequence align-

ent tools, which take into account the specific application scenario.

xperimental results, on five benchmark datasets, confirm the poten-

ials of the proposed scheme. We also carried out a further analy-

is to investigate the use of other bioinformatics tools and concepts
20 One approach reached 93%, but it is not based on the contour of the shapes.

http://www.ebi.ac.uk/clustalw2
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[

to deeper inspect the unsatisfactory results obtained in the retrieval

case.
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