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Abstract—Protein remote homology detection represents a crucial and

challenging task in bioinformatics: even if effective methods appeared in recent

years, in several cases a proper characterization of remote evolutionary

correlation can not be derived. In such situations, it may be possible that

information derived from other sources helps, provided that it is possible to

properly integrate such (even partial) information into existing models. In this

paper, we provide some evidence that this route is feasible: inspired by the

multimodal retrieval literature, we show how it is possible to exploit a simple

multimodal approach to improve a model learned from a set of sequences, by

using knowledge derived from a partial set of corresponding 3D structures. We

investigate (with the SCOP 1.53 benchmark) the suitability of the proposed

multimodal scheme, showing that a beneficial effect can be obtained even when a

very reduced amount of structures are available. A further detailed analysis on a

member of the GPCR superfamily confirms that this multimodal approach can

extract information that cannot be obtained from sequence-based techniques.

Index Terms—Multimodal approach, Ngrams, FragBag, topic models, GPCR
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1 INTRODUCTION

PROTEIN homology detection is a central task in computational biol-
ogy: it permits to identify functionally-related proteins, typically
by looking at amino acid sequence similarity. For some homologue
proteins this similarity may be low: in such cases, detecting the
homology becomes a very challenging problem, typically referred
to as remote homology detection. Many efficient approaches have
been presented in the literature to face this problem [1], [2], [3],
some of them based on discriminative methods such as Support
Vector Machines [4], [5], [6], [7], [8], [9].

Even if reaching satisfactory accuracies on several benchmark
datasets (e.g. the SCOP 1.53 dataset—[4]), there are still complex
cases where even these state-of-the-art approaches may perform
poorly. In such cases, it may be possible that information derived
from other sources helps, provided that it is possible to properly
integrate such (even partial) information into existing models. In
the context of protein remote homology detection, there is a source
of information which is typically disregarded by classical
approaches: the available experimentally-solved, possibly few, 3D
structures.1 Now the question is: Is it possible to improve sequence-
based methods by integrating information derived from such 3D struc-
tures? In this paper we provide some evidence that this is possible,
by deriving amultimodal approach2 for remote homology detection.
We took inspiration from the multimodal image and text retrieval
context [11], where images are equipped with loosely related

narrative text descriptions, and retrieved by using textual queries.
This scenario is particularly interesting with respect to our scopes,
because it shares many similarities with our context: i) the link
between the modalities is weak, partially hidden, and, in general,
difficult to infer; ii)most importantly, the context is asymmetric: one
of the two modalities is richer than the other, yet being more diffi-
cult or expensive to obtain—therefore fewer examples are typically
available. The goal is to develop an approach which works directly
on the weaker source of information (the text), being however built
taking into account the (possibly smaller) richer source (the image).

In this paper we show that such multimodal point of view can
be tailored to the protein remote homology detection case: in
particular, the richer modality is represented by a (possibly small)
subset of structures—retrieved from PDB—which are used to
derive a “structure-aware” model for sequences. Our multimodal
approach, based on the recent paper [12], starts by encoding
sequences and structures with a count representation, namely a
representation obtained by counting the number of occurrence of
some basic elements inside an object: sequences are described
using counts of Ngrams, as done in other effective protein remote
homology detection approaches [6], [7], [13], whereas structures
are described using counts of 3D fragments, as in [14]. Both repre-
sentations are then modeled using topic models, a class of probabi-
listic approaches for count data: in particular we investigate here
two models, the Latent Dirichlet Allocation (LDA) [15] and the
Componential Counting Grids (CCG) model [12]. The former is a
very famous topic model, recently employed also in this context
[13], whereas the latter represents a recent and advanced admix-
ture model which enriches topic models with topological con-
straints (its use in the protein remote homology detection context
has never been investigated).

For both models, we created an augmented model accounting for
structural information in two steps: i) a model (LDA or CCG) for
the available structures is learned, creating a latent space which
acts as a common, intermediate representation; ii) all the sequences
are embedded into this space derived from structures. Such
embedding is determined by exploiting the (partial) available cor-
respondences between sequences and structures.

The suitability of the proposed multimodal framework for pro-
tein remote homology detection has been evaluated in two ways:
on one hand, we performed various tests on the standard SCOP
1.53 benchmark [4], demonstrating that i) the proposed framework
permits drastic improvements in those scenarios where sequence
modality fails—even when only 10 percent of training sequences
have their corresponding structure; ii) on the whole benchmark
(54 families), it favorably compares with other recent approaches.
On the other hand, we performed a thorough analysis on a member
of the GPCR superfamily, suggesting that the proposed multi-
modal approach can extract information that cannot be derived by
employing only sequence-based approaches.

2 BACKGROUND

This section briefly summarizes the two probabilistic models
employed in our approach, which belong to the wide family of
“topic models” [16]. Topic models have been originally introduced
in the text analysis community, in order to describe and model a
set of documents. The basic idea underlying these methods is that
each document may be characterized by the presence of one or
more hidden topics (e.g. sports, finance, politics), inducing the
presence of some particular words. From a probabilistic point of
view, the document is then a mixture of topics, each one providing
a probability distribution over words.

To employ these models, documents should be represented
with an occurrence matrix (count matrix), where each entry ntðwiÞ
counts the number of times a given word wi occurs in a given
document (indexed by t). In our biological scenario documents

1. Some papers already show the potentialities of using structural information
(see for example [10]); however, they are all based on 3D predictions made from
sequences, therefore not using the true 3D structures found in PDB.

2. From a general point of view, a multimodal approach represents a tech-
nique aimed at solving a given task by integrating different sources of
information.
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correspond to proteins, while basic building blocks (such as
sequence Ngrams) are the observed words. Once learned, the topic
models permit to represent all proteins in the topic space: even if in
the protein case this space does not have a straightforward biologi-
cal meaning,3 it turned out to be really informative for comparing
proteins, as largely shown in [18]. In the following, we will present
the two topic models investigated, namely the Latent Dirichlet
Allocation (LDA, [15]—perhaps the most famous topic model) and
a recent extension called Componential Counting Grid (CCG, [12]).

2.1 Latent Dirichlet Allocation

Given a set of V different words, the LDAmediates the observation
of a particular word wi in a document t through a latent topic vari-
able z; z 2 Z ¼ fz1; . . . ; zZg, which is picked from a multinomial

distribution pðz j tÞ ¼ ut. The multinomial ut represents the topic
proportions, peculiar for every document t:

pðwt
iÞ ¼ pðut jaÞ

X

k

pðzkjutÞpðwt
ijzkÞ

¼ pðut jaÞ
X

k

utzk � bwi;zk
:

(1)

The topic zk represents a probabilistic co-occurrence of words

encoded by the distribution pðwijzkÞ ¼ bwi;zk
. Intuitively, ut meas-

ures the level of presence of each topic in the document t. On the
other hand, bwi;zk

expresses how much a word wi is related to the

topic zk. Finally, pðut jaÞ is a Dirichlet prior over the possible topics’
assignments.

As better detailed in [15], the various distributions of the model
are learned using a variational Expectation-Maximization (EM), a
technique that maximizes the log-likelihood (or its tractable lower
bound called Free Energy) by iterating between two steps: the
E-step, which computes the posterior over the topics (i.e., ut), given
the current estimate of the model; the M-step, where the parame-

ters of the models (a and b) are re-estimated, given the current ut.
Once the model has been trained, it is possible to use the learned
parameters a and b to perform inference, estimating topic propor-

tion utnew of an unseen document tnew.

2.2 Componential Counting Grid

The Componential Counting Grid (CCG—[12]), introduced in the
context of text mining, is a recent extension of LDA. The model
stems from the fact that for many text corpora, documents evolve
into one another in a smooth way, with some words dropping and
new ones being introduced. For example, news stories smoothly
change across the days, as certain evolving stories progressively fall
out of novelty and new events create new stories. CCG introduces
these topological constraints by arranging topics in a two-
dimensional grid; topics, represented as windows inside the grid,
may overlap in neighboring positions of the grid. More formally,
the componential counting grid is a grid of discrete locations px;y,
with fixed dimensions E ¼ E1 � E2. Each location is endowed with
a distribution over all V words, which acts exactly like the distribu-
tion b for LDA: given a location zk; k ¼ ðx; yÞ (i.e., a topic), pk repre-
sents a multinomial distribution describing the probability of each
word given that location (i.e., a topic). To model smooth transitions
between topics, CCG assume that a word is not generated from a
single distribution pk related to a single position of the grid k (as in
LDA), but also considering distributions in a neighborhood of k.
In particular, a word in a document t is generated by i) choosing a

location zk from a multinomial distribution pðz j tÞ ¼ ut (like topics
proportion of LDA); ii) sampling from the average of all the pk rela-
tive to awindow of fixed dimensionsW ¼ W1 �W2 centered at zk.

As detailed in [12], model parameters and hidden distributions
are learned using a variational EM algorithm. Similarly to LDA,
the model is completely specified given the parameters a (Dirichlet
prior over locations) and p. Again, given these quantities, inference

on an unknown object permits to recover the value of utnew .

3 THE PROPOSED APPROACH

In this section the multimodal approach used to integrate struc-
tural and sequential information is explained. From a very general
perspective, the main idea is the following (see Fig. 1): suppose we
have a set of sequences fseqig; for some of them we also know the
corresponding structures fstructig. Then, we determine, from the
set of structures fstructig, a function fðstructÞ, which is able to
project all structures in a feature space (Fig. 1a). The goal is to
determine a function gðseqÞ so that fðstructiÞ � gðseqiÞ for all avail-
able structures (i.e., corresponding sequences and structures
should share the same representation). The found function f can
now be used to project whatever sequence in the common space,
which is now built using structural information (Fig. 1b).

In order to realize this, we exploit an approach derived from the
multimodal image-text retrieval literature [12], which is based on
topic models described in the previous section. Even if different
alternatives exist [11], [19], in such retrieval context the approach
proposed in [12] appeared to be simpler and more effective.

3.1 Data Representation

Topicmodels assume that documents (proteins, in our case) are rep-
resented as counting vectors. Given a dictionary containing all possi-
ble words wi; i ¼ 1; . . . ; V , an entry in the count vector ntðwiÞ
represents the number of occurrences in the document t of the ith
word of the dictionary. In our case, we need a counting representa-
tion for both sequences and structures. For the sequence modality,
we use aswords the so calledNgrams (i.e., short sequences of conse-
cutive amino acids). Despite its simplicity, this representation has
been already successfully exploited by other protein remote homol-
ogy detection approaches [6], [7], [13]. In particular, in all our
experiments we used bigrams, i.e., fragments composed by two
consecutive amino acids. In the structural domain, we employed as
words structural fragments, as proposed in [14]: each fragment is a
list of 3D coordinates for consecutive Ca atoms in the backbone of
the protein—in their original work, the authors provide different
dictionaries of fragments. In our study, following other papers [14],

Fig. 1. The idea of the multimodal scheme.

3. In some other cases—like the gene expression context [17]—a biological
interpretation can be easily assigned.
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[18], we employed the 400_11 dictionary (composed by 400 struc-
tural fragments each of length 11).

At the end, we have two different dictionaries, one for each
modality: a dictionary DST ¼ fwST

1 ; . . . ; wST
VST

g for structures, and a

dictionary DSE ¼ fwSE
1 ; . . . ; wSE

VSE
g for sequences.

The input of our method is composed by:

� A set containing S pairs of corresponding sequence/
structure counts, for a subset of training proteins

fðSTt
Tr; SE

t
TrÞg; t ¼ 1; . . . ; S;

where

STt
Tr ¼ ntðwST

i Þ; i ¼ 1 . . . ; VST

SEt
Tr ¼ ntðwSE

i Þ; i ¼ 1; . . . ; VSE:

� A set of T � S sequence counts, representing sequences in
the training set without the corresponding 3D structure

fSESþ1
Tr ; . . . ; SET

Trg:

� A set of N testing sequences

fSE1
Te; . . .SE

N
Teg;

where SEt
Te ¼ ntðwSE

i Þ:

3.2 Multimodal Learning

The key idea of the proposed multimodal approach is that the
latent topic space learned by LDA (or CCG) establishes a common
representation where both sequences and structures can be embed-
ded. Since the two modalities are asymmetric (with the structural
being the richer one), we impose this latent space to be powered by
(possibly few) structures. The proposed approach articulates in
three major steps:

Topic model learning on structures. First of all, we learn a topic
model (LDA or CCG) using the available structure counts

fST 1
Tr . . .ST

S
Trg: acknowledged the superiority of the structural

modality, we emphasize the topic space to be “structure-driven”.
For what concerns the learning, it is known that choosing a good

initialization for parameters b (p for CCG) is crucial for a proper
learning. Typically, this is done at random, with the risk of solution
convergence to poor local minima. In order to overcome this issue,
in our approach we perform a careful initialization: in particular,
we cluster words into Z groups (where Z represents the number of
topics) using the complete link algorithm, which performs an
agglomerative clustering. Then, we initialize b (p) so that each topic
has high probability of generating the words inside its cluster, and
low probability of generating words outside the cluster.

At the end of this learning stage, each structure is characterized
in such space by its corresponding vector utST ; t ¼ 1; . . . ; S.

Multimodal projection. In this step, we exploit correspondences
between structures and sequences, projecting the sequences in the
latent space learnedwith structures in the previous step.We impose
that the topic proportions utSE for the S training sequences are equal

to the utST obtained from the corresponding structures. In this way

we are establishing a 1:1 mapping between the structural topics and
the sequential topics. In practice, this is achieved by learning

the LDA/CCGmodel on sequence counts keeping utSE fixed and set

to utST . As a result, the parameters bSE and aSE (pSE and aSE for

CCG) of the learnedmodel are completely specified in the sequence
domain. However, they have been learned taking into consideration
the topic proportions derived from themodel learned on structures.

Inference on the remaining training and testing sequences. For train-
ing proteins in the set fSESþ1

Tr ; . . . ; SET
Trg, where 3D structures are

unknown, an inference step with the learned enrichedmodel can be

performed to recover the topic proportions utSE; t ¼ S þ 1; . . . ; T .

The same inference is performed on testing sequences to derive utSE
for SEt

Te; t ¼ 1; . . . ; N . As explained in the background section,

inference is performed by keeping fixed a, b (a and p for CCG), and

estimating utSE for the new samples.

3.3 Classification Scheme

n order to perform classification, we employed a so-called genera-
tive embedding scheme [20], where the learned topic models are
exploited to map the objects to be classified into a feature space,
where a discriminative classifier can be used. Indeed, the topic
posterior ut is a feature vector—already proven to be effective in sev-
eral scientific fields [12], [21], [22], [23]—which can be used to train a
discriminative classifier such as an SVM. SVMs are therefore trained

using all utSE (t ¼ 1; . . . ; T Þ in the training set, whereas classification

is carried out on utSE (t ¼ 1; . . . ; N).

4 EXPERIMENTAL EVALUATION

In this section the proposed approach is evaluated with the stan-
dard and widely used SCOP 1.53 benchmark [4]. In particular, we
first perform a thorough analysis on two cases where it is evident
that the sole sequence modality fails, showing that drastic
improvements can be obtained by the multimodal approach, even
if using few structures; then we evaluate the proposed approach
on the whole benchmark, in order to have a clear comparison with
alternative approaches in the state of the art.

Both analyses are based on the SCOP 1.53 dataset [4], a famous
benchmark widely employed to assess the detection capabilities of
many PRHD systems. Such dataset, extracted from SCOP version
1.534 [24], contains 4,352 sequences from 54 different families. For
each family, class labels are very unbalanced, with a vast majority
of objects belonging to the negative class. Detection accuracies are
typically measured using the receiver operating characteristic
(ROC) score [25], which represents the area under the ROC curve
(the larger this value the better the detection).

4.1 First Analysis: Families 3.42.1.1 and 3.42.1.5

In this first part we performed a thorough analysis on two cases
where the sequencemodality fails (i.e., cases where a proper charac-
terization of the family cannot be determined). In particular, we con-
centrate on families 3.42.1.1 and 3.42.1.5, on which almost random
accuracies are obtained by using models based on the sole sequen-
ces.We applied the proposedmultimodal scheme on these two fam-
ilies, starting from the corresponding 3D structures downloaded
from PDB. In particular, once encoded the sequences and the struc-
tures as explained in previous sections, the models (LDA or CCG)
are learned from the training set, in order to get the us usable to train
the SVM. us for the testing set are then extracted via model infer-
ence.When using LDA (and in general topic models), the number of
topics should be set in advance, this representing a classic model
selection problem (different solutions exist, such as hold-out likeli-
hood, cross-validation, or, more in general, a priori knowledge). In
this first analysis, taking inspiration from [6], [18], we set it to 100.
For CCG, we exploited the concept of capacity [12], which measures
howmany non-overlapping windows can fit onto the grid. This can
be assimilated to the number of topics in a topic model: therefore we
set the CCG dimension as E ¼ ½20; 20� and W ¼ ½2; 2�, so that the
capacity equals to 100. After computing the us, the classification has
been carried out using the public libsvm implementation5 [26],
employing the RBF kernel. Parameter C of the SVM has been set as

10�3 for every experiment, whereas the RBF parameter s has been
found by exhaustive search, retaining for each family the one

performing better on average (reasonable values lie around 2�2).

4. http://noble.gs.washington.edu/proj/svm-pairwise/
5. http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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In order to get a complete understanding of the proposed
approach, we also assessed the performances when only a limited
number of structures are available for learning. In particular, we
used an increasing fraction of randomly chosen structures to build
the structure model. Since there is a very limited number of posi-
tive examples (29 for the first family, 26 for the second), we decided
to always consider all of them, sampling at random negative train-
ing examples. The structure model is then transferred to sequence
model; inference on the enriched sequence model finally permitted
to get descriptors for all training and testing sequences, to be used
by the SVM classifier. Detection results, for fractions ranging from
0.1 to 1 (i.e., all training structures), are averaged over 50 runs, and
reported in Fig. 2, for both the LDA and CCG models. We also
determined whether the improvement gained with the proposed
multimodal approach is statistically significant, using a standard
t-test with alternative hypothesis “multimodal results are greater
than the baseline”. In Fig. 2, filled markers indicate statistical sig-
nificance with p-value lower than a ¼ 0:05.

From these plots it seems evident that the use of structural
information permits to derive a better sequence model: in both
families, CCG achieves significant improvements when employing
only 10 percent of all training structures. For the second family,
even if multimodal LDA accuracies are higher than the baseline,
statistical significance is obtained only when 80 percent or more of
the structures are employed. When all training structures are con-
sidered, the improvement is rather high for both models.

When comparing the two probabilistic models, it appears evi-
dent that the Componential Counting Grid outperforms the LDA
model, both when used on the sequence modality alone and when
employed in a multi modal framework. Such a model, never used
in the context of protein remote homology detection, permits to
derive a better and more discriminant description of count data,
confirming the results outlined in [12] for other application fields.

4.2 Second Analysis: All Families

In this second analysis, the proposed approach has been tested on
all the families of the SCOP dataset, this being particularly impor-
tant to compare the proposed schemewith the state of the art. In this
case we slightly changed some details of our experimental pipeline;
in particular, since we are dealing with 54 different classification
problems (i.e., 54 families), we did not fix a single number of topics,
but we let it vary in a reasonable range, keeping the best value.
Moreover, in order to be fully comparable with many works in the
state of the art [6], [7], [8], [9], [27], [28], the classification is

performed using SVM via the public GIST implementation,6 setting
the kernel type to radial basis, and keeping the remaining parame-
ters to their default values.

Results are presented in Table 1, in comparison with the litera-
ture; in particular, the state of the art is split into methods which
employ Ngrams (Ngram-based Methods) and methods which do not
(Other Methods). From the table it can be observed that the frame-
work is rather accurate: when compared with other Ngram-based
methods, our best result outperforms almost all other approaches,
the only exception being the SVM-Top-Ngram-combine [7]
approach, for which an almost equivalent detection rate was
reported. In such approach, however, different Ngram representa-
tions are combined: in order to completely demonstrate the poten-
tialities of our proposed approach, we followed a similar idea, by
combining different representations extracted from the multimodal
CCG model. The result is presented in Table 1 as “Multimodal
Combined CCG”, and clearly confirms that margins of improve-
ments are still present. From the table, it is also interesting to con-
sider that the proposed multimodal technique compares
reasonably well also with other more complex approaches. Finally,
interestingly CCG outperforms LDA only when used in a multi
modal framework.

5 MULTIMODAL ANALYSIS OF BITTER TASTE
RECEPTOR TAS2R38

The main goal of this section is to qualitatively validate the pro-
posed multimodal scheme in a real scenario. In particular we focus
on a specific protein (the bitter taste receptor TAS2R38 [29], [30])
belonging to the G-protein coupled receptors (GPCRs) superfamily.
This large group (with over 900 members only in humans) of
cell signaling membrane proteins is of major importance for drug
development, as GPCRs are one of the primary targets currently
under investigation [31].

From our perspective, this context is very interesting for three
reasons: i) sequence identities between members of different GPCR
families are extremely low, making the detection of remote homo-
logues very challenging; ii) only 24 unique human GPCRs7

have their experimentally-determined structure as of January 2015
(i.e., very little structural information); iii) most importantly, it has
already been shown that the closest homologue of the TAS2R38

Fig. 2. Detection scores displayed as a function of the number of structures used in the multimodal approach. “mmLDA” (“mmCCG”) stands for the proposed multimodal
approach by using the LDA (CCG) model. Filled markers indicate statistically significant improvements over the baseline. Results are reported for (left) family 3.42.1.1
and (right) family 3.42.1.5.

6. Downloadable from http://www.chibi.ubc.ca/gist/ [4]
7. The list of such proteins is obtained from http://blanco.biomol.uci.edu/

mpstruc/
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receptor (as given by standard programs for sequence search, with-
out manual intervention) does not represent a good template usable
to unravel structural/functional elements (in particular, regarding
the active site and the specific residues involved in the ligand bind-
ing) [32]. We show here that our multimodal approach can be used
to suggest an alternative template.We sponsor this template by pro-
viding some elements supporting the capabilities of the obtained
multi modal model of capturing structural/functional elements. To
do that, a multimodal LDA (with three topics8) has been trained,
using all sequences and the known 24 structures (downloaded from
PDB): as a result, all GPCR sequences are embedded in the topic
probabilities u space. The query TAS2R38 sequence is embedded in
the same space via inference on the model: the nearest neighbor
with known structure represents the suggested template. In this
case we have the N/OFQ Opioid Receptor (PDB id: 4EA3). On the
contrary, if we perform the same analysis with the single modality
LDA, we obtain as nearest neighbor the CCR5 chemokine receptor
(PDB id: 4MBS); as described above, modeling TAS2R38 using this
template alone does not allow a correct characterization of the bind-
ing cavity of the receptor [32].

To validate the new template, we try to mine the obtained multi-
modal model, in order to see if the contained information exhibits
structure-driven importance. To do that, we analyze, for every
topic, the five most probable Ngrams (as given by b distribution),
trying to understand if they are related to positions in the two pro-
teins which are important from a structural point of view. Actually
we have found that some of these Ngrams (shown in the top part of
Fig. 3, together with the topic probabilities u of the query and the
corresponding nearest neighbor) represent words which are located
with primary importance in the binding cavity of both proteins—
these critical residues already shown to be involved in ligand recog-
nition on our query TAS2R38 [33]. If we repeat the same analysis
using a LDA model built using only sequences (central part of
Fig. 3), no evident structural or functional information can be
derived, this preliminary suggesting that the N/OFQ Opioid

Receptor, being obtained with a more “structure aware” model, can
represent a valid alternative to the CCR5 chemokine receptor.

A final experiment has been carried out in to investigate if it
may be possible, in cases like this when very few structures are
available, to enlarge the structural information of the training set
by also using predicted 3D structure models.9 To test this we

TABLE 1
Average ROC Scores for the 54 Families in the

SCOP 1.53 Superfamily Benchmark for Different Methods

Method ROC Reference

Monomodal LDA 0.921 This paper
Monomodal CCG 0.903 This paper
Multimodal LDA 0.925 This paper
Multimodal CCG 0.932 This paper
Multimodal Combined CCG 0.941 This paper

Ngram-based methods
SVM-Ngram 0.826 [6]
SVM-Ngram-LSA 0.878 [6]
SVM-Top-Ngram (n=1) 0.907 [7]
SVM-Top-Ngram (n=2) 0.923 [7]
SVM-Top-Ngram-combine 0.933 [7]
SVM-Ngram-p1 0.887 [9]
SVM-Ngram-KTA 0.892 [9]

Other methods
SVM-pairwise 0.896 [5]
SVM-LA 0.925 [5]
SVM-Pattern-LSA 0.879 [6]
SVM-Motif-LSA 0.860 [6]
PSI-BLAST 0.676 [6]
Profile (5,7.5) 0.980 [27]
SVM-Bprofile 0.921 [28]
SVM-PDT-profile (b=8,n=2) 0.950 [8]
HHSearch 0.915 [8]
SVM-LA-p1 0.958 [9]

Fig. 3. On the top part of the figure, the first five Ngrams (sorted in descending
order w.r.t their b probabilities) for each topic are listed. Ngrams highlighted are
known to occur in the binding site locations of either of the two proteins. Slightly to
the right, u distributions (with three topics) are displayed for the query TAS2R38
and its closest neighbor. In the central part of the figure, we visualize the same
information employing the LDA in a single-modal way. Finally, in the bottom part of
the figure, the same information has been extracted with the multimodal approach
employing both real and predicted structures. Interestingly, adding such predicted
structures deteriorates the qualitative results obtained by the multimodal scheme.

8. In this case we had to drastically reduce the number of topics since only
24 structures are available—the topic space is built by using the structural
information.

9. For example those obtained using http://zhanglab.ccmb.med.umich.edu/
GPCR-HGmod/
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applied our proposed multimodal approach by enlarging the
training set with the predicted structures of different proteins
belonging to the TAS2R group (24 GPCR models, downloaded
from http://zhanglab.ccmb.med.umich.edu/GPCR-HGmod/).
Results are displayed in the bottom part of Fig. 3: even if we obtain
the same suggested template (the N/OFQ Opioid Receptor—PDB
id: 4EA3), the quality of the multimodal space seems worst than
that of the true multimodal approach. It seems that adding pre-
dicted models does not help the proposed approach, but, on the
contrary, adds some noise. This was somehow expected, and con-
firms the intuition we got from the other quantitative experiments:
the fully exploitation of the proposed framework is based on the
use of a small piece of information, which should be however
extremely informative (as is for real structures compared to simu-
lated structures).

In conclusion, the availability of a method that, augmenting the
descriptive power of a sequence-based model, is able to predict rel-
evant structural positions, i.e., involved in ligand binding, is a fun-
damental step for setting up the modeling protocol when no 3D
experimental information is available. In the studied case, the
information obtained using our approach could be essential for
guiding the selection of better and biologically relevant target-
template alignments.

6 CONCLUSION

This paper investigated a multimodal approach for protein remote
homology detection. In particular we provided some evidence that
it is possible to improve sequence based models by exploiting the
available (even partial) 3D structures. The approach, based on topic
models, allowed the derivation of a common and intermediate fea-
ture space—the topic space—which embeds sequences being at the
same time “structure aware”. We experimentally demonstrated
that, in cases where the sequence modality alone fails, introducing
only 10 percent of the training structures resulted in significant
improvements on detection scores. Moreover, we applied the pro-
posed approach to model a GPCR protein, finding evidences of
structural correlations between sequence Ngrams: such correla-
tions can not be recovered employing a sequence-only technique.

As a final consideration, we would like to point out that this
multimodal scheme seems to be particularly suitable for those sit-
uations where the sequence modality fails (as shown in our quanti-
tative and qualitative experiments). When the sequence modality
is already performing adequately, the improvements are not so sig-
nificant: probably in such cases the simple scheme we investigated
in this preliminary work (which simply postulates the equivalence
of the structure and the sequence spaces) is not flexible enough to
significantly improve the results. We are currently studying more
robust multimodal approaches, which can for example learn how
to move from the structure space to the sequence space.
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