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Abstract. Showing the nearest neighbor is a useful explanation for the
result of an automatic classification. Given, expert defined, distance mea-
sures may be improved on the basis of a training set. We study several
proposals to optimize such measures for nearest neighbor classification,
explicitly including non-Euclidean measures. Some of them may directly
improve the distance measure, others may construct a dissimilarity space
for which the Euclidean distances show significantly better performances.
Results are application dependent and raise the question what charac-
teristics of the original distance measures influence the possibilities of
metric learning.

1 Introduction

The Nearest Neighbor (NN) rule is a classical and very natural classifier. It
does not need density estimation or function optimization as it entirely relies on
the user defined distance measure. An important advantage is that it gives an
intuitive motivation of the assigned class label by showing the nearest neighbor(s)
to the user. A second advantage is that the distance measure fully determines
the classification performance as there is no learning involved. All is based on
the collection of training examples.

The second advantage is also a disadvantage as it shows that there is room for
improvement by using a training set. In case the original objects are represented
in a vector space, e.g. by features, the performance may be improved by selecting
or rescaling features. Such methods can also be considered as procedures for
metric learning. In general, metric learning aims to find a better distance measure
between objects on the basis of a training set.
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Studies on metric learning either focus on adaptations of the vector space,
preserving the original Euclidean distance, or optimize the metric, preserving
the given vector representation, or combine a set of given distance measures.
Examples are the Large Margin NN Classifier [11] and the Direct Minimization
of the NN Error [3].

We will primarily deal with given, possible non-Euclidean, dissimilarities. New
dissimilarity measures defined on the given ones will be proposed and evaluated.
This may also yield a non-Euclidean result. We will use the word dissimilarity to
emphasize that we allow ill-defined measures that even may violate the triangle
inequality. This is in line with many applications based on images, shapes or
sequences. It will not harm the use of the NN rule as long as there is a monotonic
relation between measured dissimilarities and object differences.

An important possibility that we include in our considerations is that dissim-
ilarities may be used to define a dissimilarity space [4],[6] and that in this space
a distance measure is defined that combines the dissimilarities to the objects in
the representation set that constitutes the dissimilarity space.

The vector space defined by the dissimilarity representation differs from the
feature representation by the mentioned monotonic relation, as well as by the
natural correlations arising from using similar objects for representation. Three
proposals using these characteristics will be evaluated for some public domain
real-world datasets. For evaluation, the performance of the NN rule will be used.

In Section 2 the three proposals will be presented. They are evaluated with the
direct NN performance on the given distances as well as with the NN performance
in the dissimilarity space. In Section 3 the datasets and some of their properties
are reported. Results are presented in Section 4 and conclusions are summarized
in the final section.

2 Methods

Let X be a set of labeled training objects X = {xi, i = 1, ..., n} and let x be an
arbitrary object inside or outside X . The objects are initially only represented
by their dissimilarities d(x) = [d(x, xi), i = 1, ..., n]. These dissimilarities are
defined by some expert (e.g. as function of raw measurements on x and xi) in
such a way that if d(x, x1) < d(x, x2) it is more likely that x belongs to the same
class as x1 than that it belongs to the class of x2. For that reason the NN rule
using d(x) is an appropriate classifier.

We are searching for a modified dissimilarity measure dmod(x, xi) being a
function of all distances to the training set d(x) such that the performance of
the NN rule improves. Any such procedure can be used directly by classifying
new objects on the basis of their modified dissimilarities. Below we discuss one
existing and three new procedures that will be evaluated in Section 4.

The training set used for metric learning is a square dissimilarity matrix

D = [d(x1),d(x2), ...,d(xn)] (1)

It is not always symmetric and some procedures allow even non-zero diagonals.
When needed we make it symmetric by averaging and force a zero-diagonal.
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Such a matrix can be embedded in a (n−1)-dimensional pseudo-Euclidean space
(PE-Space) [6] that consists of two Euclidean subspaces. These are built by an
eigenvalue decomposition of a Gram matrix derived from (1). The eigenvectors
corresponding to the positive eigenvalues constitute the positive space, the other
ones constitute the negative space. For Euclidean dissimilarity matrices the di-
mensionality of the latter is zero as in that case all eigenvalues are positive. In
this paper the PE-Space will only be used to characterize the dissimilarities.

2.1 Dissimilarity Space, DS

A straightforward way to derive new dissimilarities to a given set of represen-
tative objects (the representation set) by combining the available ones is the
dissimilarity space, [6]. This is the vector space constructed by the vector of
distances as mentioned in the previous subsection: d(x) = [d(x, xi), i = 1, n].
Here we will use the training set for representation as well. If we use Euclidean
distances in the dissimilarity space the modified dissimilarity can be written as:

dDS(x, xi) = ‖d(x) − d(xi)‖
It has been found in the past [6] that the NN performance may improve as well
as deteriorate by this modification. It is still an open issue to find the conditions
when one or the other may happen.

2.2 Locally Adaptive Nearest Neighbor Distances, LANN

The locally adaptive distance measure was originally proposed by Wang et
al. [10], claiming that it significantly improves the performance of the kNN
rule when used with a metric distance measure. The rationale behind their lo-
cal adaptation approach is simple and elegant: dividing a conventional distance
measure —the authors restricted themselves to the Euclidean and Manhattan
metrics for five feature-based data sets— by the smallest distances from the cor-
responding training examples to training examples of different classes. We study
the application of the procedure, referred as LANN, to given and unconstrained
dissimilarity measures. More formally, LANN can be described as follows.

Let d be a dissimilarity measure and x and xi be a test object and a training
object, respectively. Let ri be the radius of the largest topological ball1 around
xi that excludes —in the corresponding PE-space— all training objects from
other classes. This radius is given by

ri = min
j:θj �=θi

d(xi, xj)

where θi is the class label associated to the i-th training object.
The locally adaptive dissimilarity measure dLANN(x, xi) is then defined as:

dLANN(x, xi) =
d(x, xi)

ri
(2)

1 Notice that depending on the dissimilarity measure, the neighborhoods defined by
objects with dissimilarity to xi less than ri may not be a proper ball.
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LANN can be understood as a columnwise scaling of the test dissimilarity matrix,
where the scaling factors correspond to the radii associated to the training ob-
jects. Dissimilarities to training objects with large radii are diminished/rewarded
since they are considered more trustable (a large neighborhood of the same class);
conversely, dissimilarities to objects with small radii are, comparatively, empha-
sized/penalized (less trustable due to a small neighborhood of the same class).
Two potential drawbacks associated to LANN are noise sensitivity and depen-
dency on the sample size: notice that (i) outliers, even though not trustable, are
associated to large radii and (ii) small training sample sizes will produce large
but empty neighborhoods where unseen objects of different classes might lie in.

2.3 Non-linear Scaling of Dissimilarities

Here we explore the possibility of transforming the input dissimilarities by em-
ploying a non linear function: in particular we explore the effect of applying the
power transformation to each pairwise dissimilarity:

dNLScale(x, xi) = d(x, xi)
ρ ρ > 0 (3)

Clearly, this operation does not have an impact on the NN rule based on the
original dissimilarities1, since a monotonic transformation does not change the
ordering of objects. On the contrary, this operation may change the behavior of
the NN rule in the dissimilarity space, as it represents a non-linear scaling of it.

In general, scaling feature spaces is often very useful, especially for classifiers
based on the Euclidean distance or inner products (like NN or SVM). The typ-
ical choice in this context is to perform a linear scaling, like the well known
z-score standardization (every feature is centered and divided by the standard
deviation). Nevertheless, there can be situations where the linearity assumption
is too restrictive, and a benefit may be obtained from a non-linear scaling, which
acts in different ways in different parts of the feature space. One clear example
of non-linear transformation, which has nevertheless scarcely applied in the clas-
sification context, is the well known Box-Cox transformation [1], [8], introduced
in the 60’s, representing a parametric way to non linearly transform a set of
points in order to make their distribution approximately Gaussian. More recent
approaches, explicitly devoted to the classification case, appeared in [2], where
kernels for HMM-based generative embeddings were successfully augmented via
a non-linear transformation of the space.

Here we propose to use this non-linear scaling to enhance the performances of
the NN rule in the dissimilarity space. Dissimilarities appear to be an optimal
context where to apply this non-linear mapping, for different reasons: i) the
power mapping does not change the rankings of the objects, so the original
information on which the space is built is preserved; ii) all the directions of the
dissimilarity space share the same nature (they are all dissimilarities), therefore

1 Even if useless in the NN case, this operation can be beneficial for other classification
techniques, especially if they rely on the Euclideaness of the space: actually for ρ < 1
the Euclideaness of the dissimilarity matrix is increased by this non linear mapping.
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Fig. 1. The NN error in
a set of 2-fold cross val-
idation experiments (re-
peated 10 times) averaged
over the 44 Chickenpieces
datasets

it may be simpler to find a common good parameter for all the directions; iii)
all directions are positives, avoiding strange effects for negative values.

In our implementation, the scaling factor ρ is optimized by a grid search
between 0.03 and 30 by a leave-one-out cross-validation. This is still fast up to
a few thousand objects (the dissimilarity matrix should fit in fast memory).

2.4 Distance in Eigenspace, ESL1.5

For various applications like histograms and images, other distance measures
may be more appropriate than the Euclidean distance based on bins or pixels.
In [5] it was suggested to use the L1 metric. As other metrics than the Euclidean
one (L2) are rotation sensitive, it was suggested in that study to perform an
eigenspace rotation first, thereby removing all correlation. (It is admitted that
this part of the procedure uses L2).

Dissimilarity spaces suffer, like pixel based representation, heavily from cor-
relations. We wondered whether other distance measures than L2 would make
sense in the dissimilarity space.

The distance transformation can thereby be written as follows. First the total
training set is considered in the dissimilarity space derived from the dissimilarity
matrix (1). It coincides with the training set represented in the dissimilarity
space. We compute the set of eigenvectors E, so ED = ΛD with Λ a diagonal
matrix. A vector d(x) in the dissimilarity space is transformed to the eigenspace
by

e(x) = Ed(x)

The Lp distance in this space of an object x and a training object xi is:

dESLp(x, xi) = (
∑

j

|ej(x) − ej(xi)|p)1/p (4)

in which ej(x) is the j-th component of e(x). Fig. 1 shows a preliminary ex-
periment based on the Chickenpieces dissimilarity dataset, see Section 3. The
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NN performances in a 2-fold cross validation experiment averaged of all Chick-
enpieces datasets are shown for Lp as a function of p. It shows that there is
a significant minimum between p = 1 and p = 2. This appeared to be true in
other experiments as well. In a more extensive study p might be optimized for
every application. Here we decided to use always p = 1.5, avoiding additional
cross-validation loops, and named the procedure ESL1.5.

3 Datasets

We use a set of public domain datasets, see Table 1. More information on the
datasets themselves can be found on the internet1. Most datasets are obtained
from real objects (images, text, protein sequences). PolyDisH57 and PolyDisM57
are the only two artificial datasets, obtained by the (modified) Hausdorff distance
on randomly generated pentagons and heptagons. The Chickenpieces dataset
consists out of 44 dissimilarity matrices. In the table, the average characteris-
tics are shown. The Pendigits dataset is much larger. To make our experiments
feasible we used a randomly selected subset of 4000 objects.

Here are short definitions of the properties used in Table 1, see also [4].

– size: the total number of objects in the dataset.
– class : the number of classes.
– ID : an estimate of the the intrinsic dimensionality.
– LOO : the leave-one-out NN error.
– NEF : the negative eigenfraction, a measure for the Euclideaness.
– NMF : the non-metricity fraction of triplets violating the triangle inequality.
– SignP : the number of positive eigenvalues in pseudo-Euclidean embedding2.
– SignN : the number of negative eigenvalues in pseudo-Euclidean embedding.
– Asym: the averaged deviation of symmetric dissimilarity measure.

4 Evaluation

The procedures described in Section 2 are applied to all datasets mentioned in
Section 3. A two-fold cross-validation is repeated 25 times. The errors found
by the NN rule are averaged. The mean errors and the standard deviation of
the means are listed in Table 2. Results that are significantly better than those
obtained for the original dissimilarities are printed in bold. (We judge a difference
in means as significant if the intervals defined by the two standard deviations do
not overlap). In order to save space, the errors over the Chickenpieces datasets
are averaged. Below they will be summarized in some figures.

Table 2 shows the results found by a direct use of the (modified) dissimilari-
ties in the left of every column and the results of the corresponding dissimilarity
space in the right. The two procedures LANN and ESL1.5 show many significant

1 http://37steps.com/prdisdata
2 The two numbers [SignP SignN] are called the signature of the embedding.

http://37steps.com/prdisdata
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Table 1. Dataset properties

Dataset size class ID LOO NEF NMF SignP SignN Asym

CatCortex 65 4 18 0.12 0.208 0.002 41 23 0.000
Chickenpieces 446 5 3 0.13 0.273 0.000 242 203 0.051
CoilDelftDiff 288 4 22 0.47 0.128 0.000 163 124 0.000
CoilDelftSame 288 4 13 0.65 0.027 0.000 249 38 0.000
CoilYork 288 4 4 0.23 0.258 0.000 169 118 0.009
DelftGestures 1500 20 6 0.04 0.308 0.000 765 734 0.000
FlowCyto 612 3 2 0.38 0.230 0.004 330 281 0.000
NewsGroups 600 4 83 0.25 0.202 0.000 153 387 0.000
Pendigits 4000 10 4 0.01 0.348 0.002 1944 2055 0.000
PolyDisH57 4000 2 9 0.03 0.415 0.000 2054 1945 0.000
PolyDisM57 4000 2 11 0.02 0.356 0.000 1819 2180 0.000
ProDom 2604 4 17 0.00 0.043 0.000 1502 680 0.000
Protein 213 4 14 0.02 0.001 0.000 205 4 0.000
WoodyPlants50 791 14 5 0.10 0.229 0.000 395 395 0.000
Zongker 2000 10 14 0.44 0.419 0.002 1038 961 0.000

improvements on the original dissimilarities. Note however that the ESL1.5 pro-
cedure itself already computes distances (using the L1.5 norm) in dissimilarity
space. NLScale transforms the given dissimilarities by a monotonic transforma-
tion, the same for all dissimilarities. This does not influence the NN assignments
as explained in Section 2.3. Its results on the given dissimilarities are thereby
identical to the original ones. The results for its dissimilarity space (right col-
umn) show many significant results. In general, it is shown that metric learning
may be useful for these datasets.

All Chickenpieces datasets refer to the same set of silhouettes. Bunke and
Spillmann [9] just used different parameters in the weighted edit distance mea-
sure. They constitute thereby an interesting set of slightly changing dissimilari-
ties. All results for these datasets are summarized in Fig. 2, clearly showing the
improvements that are obtained by the various methods.

Since the errors associated to the studied methods correspond to coordinates
in the vertical axis, dots below the line indicate that the modified dissimilarity
measures are better than their original counterparts (since the lower the error,
the better the performance). The further a dot is from the line, the greater the
margin of improvement.
Below the individual procedures proposed in Section 2 are discussed separately.

The dissimilarity space, Section 2.1 (the right part of each of the columns
in Table 2) is a general procedure to combine given dissimilarities into new
ones by treating them as vectors. It is not focussed on improvement, but it puts
pairwise dissimilarities in the context of all other objects. Sometimes the NN rule
on the distances obtained from the dissimilarity space shows an improvement,
sometimes it does not. It is an open issue to get a better understanding when
this happens.
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Table 2. Averaged two-fold cross validation results (error × 1000) for the NN-rule
based on 25 repetitions. In every column on the left the NN errors on the dissimilar-
ities, on the right the NN error in the corresponding dissimilarity space. In between
brackets the standard deviation of the estimated mean errors. In bold the results that
significantly improve the original dissimilarities.

Dataset Original LANN NLScale ESL1.5

CatCortex 138(10) 96( 7) 96(11) 126(11) 138(10) 95( 8) 88( 8) 106( 8)
Chickenpieces 161( 3) 150( 2) 123( 3) 156( 2) 161( 3) 122( 2) 144( 2) 216( 3)
CoilDelftDiff 513( 6) 464( 7) 465( 7) 464( 6) 513( 6) 456( 7) 450( 7) 531( 9)
CoilDelftSame 656( 6) 410( 8) 540( 8) 423( 8) 656( 6) 425( 9) 416( 8) 517(10)
CoilYork 319( 5) 396( 7) 333( 5) 411( 8) 319( 5) 331( 7) 392( 8) 546( 9)
DelftGestures 50( 1) 95( 1) 66( 2) 97( 1) 50( 1) 54( 2) 83( 2) 187( 2)
FlowCytoDis 403( 4) 408( 5) 338( 4) 417( 5) 403( 4) 404( 5) 403( 4) 426( 6)
NewsGroups 291( 5) 293( 6) 269( 4) 332( 6) 291( 5) 293( 5) 295( 6) 341( 7)
Pendigits 15( 1) 23( 1) 17( 1) 30( 1) 15( 1) 16( 1) 18( 1) 61( 1)
PolyDisH57 40( 1) 31( 1) 22( 1) 30( 1) 40( 1) 20( 1) 30( 1) 84( 1)
PolyDisM57 23( 1) 15( 1) 12( 0) 16( 0) 23( 1) 17( 1) 16( 1) 22( 1)
ProDom 9( 1) 19( 1) 5( 1) 20( 1) 9( 1) 8( 1) 13( 1) 143( 3)
Protein 37( 5) 6( 2) 14( 3) 4( 1) 37( 5) 8( 2) 5( 1) 17( 3)
WoodyPlants50 127( 3) 165( 3) 119( 3) 204( 3) 127( 3) 121( 3) 154( 3) 263( 3)
Zongker 358(25) 53( 1) 196(21) 130( 7) 358(25) 40( 2) 50( 1) 114( 2)

Metric learning based on the local adaptive NN procedure, LANN, Section 2.2
performs remarkably well. It always shows improvements except for the three
cases mentioned above. We were afraid that this procedure is very noise sensitive,
but apparently the noise introduced by the arbitrary distances to the nearest
neighbor does not harm. It is a simple, effective procedure that does not require
any optimization.

Let us try to understand the behavior of the non-linear scaling procedure,
NLScale, Section 2.3, concentrating on the case of ρ < 1 (for which we almost
always got the best results). When using ρ < 1 lower dissimilarities are raised,
whereas large ones are reduced. This operation has three effects:
– points tend to have the same distance from all the other points (since the

dissimilarities tend to be all equal): this potentially augments the intrinsic
dimensionality of the dataset (i.e. the dimensionality of the manifold where
the objects lie). The larger this dimensionality, the more Euclidean (flat)
the space: techniques relying on Euclidean assumptions (as the NN in the
dissimilarity space) can benefit from this. Clearly, such correction can also
destroy the information contained in the dissimilarities, as shown in [7].

– the contribution to the dissimilarity space of possible outliers is possibly
reduced, since high distances – namely distances from very far points, i.e.
outliers – are shrinked.

– the neighborhood of every point is enlarged: small distances, i.e. distances
between near points, are emphasized, therefore augmenting the importance
in the dissimilarity space of nearest points.
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Fig. 2. Results for the 44 Chickenpieces datasets

The eigenspace procedure, ESL1.5, Section 2.4, effectively operates in the orig-
inal dissimilarity space. For consistency we have printed in bold the signifi-
cant differences with the original dissimilarity results themselves. Improvements
in comparison with the dissimilarity space are less striking, but almost always
shown. We conclude from this that the idea of using a non-Euclidean measure in
the dissimilarity space (which is almost always used as an Euclidean space [6])
is effective.

5 Conclusion

This study is based on “given dissimilarities”: dissimilarity datasets arising from
applications, external to our study. In such applications the dissimilarity mea-
sure may have been optimized for the given objects. Thereby we might have
sometimes made a second attempt to improve this measure by learning from a
training set that has already been taken into account. We admit that thereby
overtraining may be introduced by squeezing the data further. Nevertheless it
is interesting that for 12 of the 15 datasets, one or even several significant im-
provements could be found. Systematic procedures for metric learning apparently
make sense for NN classification.



192 R.P.W. Duin et al.

The datasets have very diverse backgrounds and are based on entirely different
dissimilarity measures. One may wonder whether from the dataset characteristics
listed in Table 1 can be predicted which procedure for which dataset is promising
(meta-learning). At this moment we cannot answer this in a positive way. It is,
however, interesting that the datasets that could not be improved (CoilYork,
DelftGestures and Pendigits) belong to the most non-Euclidean ones according
to the NEF measure. PolyDisH57 and PolyDisM57 have a high NEF value as
well, but their distance measures have not been optimized for the application.
The ones that could not be improved are the result of studies in which the
researchers tried to obtain an optimal result. This might explain both, their
strong non-Euclidean behavior as well as the difficulty to improve the metric.

In conclusion, it has been shown that metric learning for a large variation
of given, non-Euclidean dissimilarities is well possible and may yield significant
improvements.
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