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a b s t r a c t

Classical approaches to classifier learning for structured objects (such as images or sequences) are based
on probabilistic generative models. On the other hand, state-of-the-art classifiers for vectorial data are
learned discriminatively. In recent years, these two dual paradigms have been combined via the use of
generative embeddings (of which the Fisher kernel is arguably the best known example); these
embeddings are mappings from the object space into a fixed dimensional score space, induced by a
generative model learned from data, on which a (maybe kernel-based) discriminative approach can then
be used.

This paper proposes a new semi-parametric approach to build generative embeddings for classifica-
tion of magnetic resonance images (MRI). Based on the fact that MRI data is well described by Rice
distributions, we propose to use Rician mixtures as the underlying generative model, based on which
several different generative embeddings are built. These embeddings yield vectorial representations on
which kernel-based support vector machines (SVM) can be trained for classification. Concerning the
choice of kernel, we adopt the recently proposed nonextensive information theoretic kernels.

The methodology proposed was tested on a challenging classification task, which consists in
classifying MRI images as belonging to schizophrenic or non-schizophrenic human subjects. The
classification is based on a set of regions of interest (ROIs) in each image, with the classifiers
corresponding to each ROI being combined via AdaBoost. The experimental results show that the
proposed methodology outperforms the previous state-of-the-art methods on the same dataset.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Classical approaches to learning classifiers follow one of two
paradigms: generative and discriminative [1,2]. Generative
approaches are based on probabilistic class models and a priori
class probabilities, learnt from training data and combined via
Bayes law to yield posterior probability estimates. Discriminative
methods learn class boundaries or posterior class probabilities
directly from data, without using generative class models.

In the past decade, several hybrid generative–discriminative
approaches have been proposed, aiming at taking advantage of the
best of both paradigms [3,4]. In this context, the so-called generative
score space methods (or generative embeddings) have sparked
significant interest. The idea is to exploit a generative model to map
ll rights reserved.
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the objects to be classified into a space where discriminative (e.g.,
kernel-based) techniques can be used. This scheme is particularly
suitable to deal with non-vectorial data (strings, trees, images), since it
maps objects (maybe of different dimensions) into a fixed dimension
space.

Prior knowledge about the underlying data generation
mechanism can be embedded in the kernel in different ways.
The Fisher kernel [3], arguably the seminal work on generative
embeddings, considers a fixed probability distribution and obtains
the features of a given object as the derivatives of the log-
likelihood with respect to the model parameters, computed at
that object. Marginalization kernels assume that there is some
hidden model that governs the data generation and marginalize
with respect to this model [5–7]. Kernels can also be devised
between probability measures [8–11], by mapping data to points
into a probability space; more generally, kernels may be defined
between unnormalized measures [12–14]. Some of these kernels
use classical information-theoretic quantities, e.g., the Jensen–
Shannon divergence. More recently, grounded on nonextensive
generalizations of Shannon's information theory [15], a new family
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of nonextensive information-theoretic kernels was proposed [14].
Those kernels are based on the Jensen–Tsallis q-difference,
a nonextensive generalization of the Jensen–Shannon divergence
obtained through the new concept of q-convexity and a related
q-Jensen inequality.

In this paper, we exploit generative embeddings to tackle a
challenging classification task: based on a set of regions of interest
(ROIs) of a magnetic resonance image (MRI), classify the patient as
suffering, or not, from schizophrenia [16].

We build on the well-known fact that MRI magnitude data (in
homogenous regions) follows a Rician distribution. Statistical char-
acteristics of MRI magnitude and phase values have been studied in
the literature and analytical expressions have been derived [17,18],
based on the noise response of the in-phase and quadrature
demodulators, previously analyzed in telecommunications [19,20].
If the acquired real (in-phase) and imaginary (quadrature) images are
corrupted by zero mean Gaussian stationary noise, the probability
density function of the magnitude follows a Rician distribution. Other
less accurate models have been shown to yield underestimation of
the true noise power [17]. If homogenous MRI data follows a Rician
distribution, an image composed of several regions naturally follows
a mixture of Rician distributions [21–23], and that is precisely the
model that we adopt in this paper. Based on this model, we propose
several generative embeddings, aiming at fully exploiting this known
statistical model of MRI data.

The proposed generative mappings referred in the previous
paragraph allow learning kernel-based classifiers. In this paper, we
propose learning a support vector machine (SVM) classifier for each
ROI. We adopt the nonextensive information-theoretic kernels,
recently proposed in [14], which are a good fit to the probabilistic
nature to the generative embeddings. Finally, an optimal combina-
tion of these SVM classifiers is sought via the AdaBoost algorithm
[24]. The experimental results show that the proposed methodology
outperforms the previous state-of-the-art on the same dataset.

The paper is organized as follows. Section 2 addresses the
problem of estimating Rician mixtures via the expectation–maximi-
zation (EM) algorithm. In Section 3, we propose several generative
embeddings using Rician mixture models. Section 4 briefly reviews
the information theoretic kernels proposed by [14], while Section 5
describes SVM combination by boosting. Finally, Section 6 reports
experimental results on the MRI categorization problem. Finally, we
should mention that a preliminary version of the work reported in
this paper appeared in our earlier conference publication [25].
2. Rician mixture fitting via the EM algorithm

This section presents the derivation of the EM algorithm for
estimating the parameters of a Rician mixture; the main novelty in
this derivation is that it yields closed-form parameter update
expressions [25], whereas in previous work the M-step is imple-
mented via numerical optimization (for example, a quasi-Newton
method [21]). Related work can be found in [26], where the problem
of estimating a mixture of one Rician and one uniform density is
addressed; also there, the M-step is solved numerically, via a New-
ton–Raphson algorithm. Finally, after our earlier work that contains a
similar derivation was published in [25] and this paper was sub-
mitted for publication, a related algorithm appeared in [27].

A Rician probability density function [19] has the form

f Rðy; n; sÞ ¼
y
s2

e−ðy
2þn2Þ=2s2 I0

yn
s2

� �
; ð1Þ

for y40, and zero for y≤0, where n is the magnitude parameter,
s is the noise parameter, and I0ðzÞ denotes the 0-th order modified
Bessel function of the first kind [28].
A mixture of g Rician densities has the form

f ðy;ΨÞ ¼ ∑
g

i ¼ 1
πif Rðy; νi; s2i Þ; ð2Þ

where πi≥0, for i¼ 1;…; g, are quantities that sum to one (the so-
called mixing weights), Ψ¼ ðπ1;…; πg−1; θ1;…; θgÞ is the vector of
all the parameters of the mixture, and θi ¼ ðνi; s2i Þ is the pair of
parameters of component i.

Let Y ¼ fy1;…; yng be a random sample of size n, assumed to
have been generated independently by a mixture of the form (2)
and consider the goal of obtaining a maximum likelihood estimate
(MLE) of Ψ, that is, bΨ ¼ arg maxΨ LðΨÞ, where

LðΨ;YÞ ¼ ∑
n

j ¼ 1
log f ðyj;ΨÞ ¼ ∑

n

j ¼ 1
log ∑

g

i ¼ 1
πif Rðyj; νi; s2i Þ: ð3Þ

The expectation–maximization (EM) algorithm is the most
common approach for computing the MLE of the parameters of a
finite mixture [29–33]. As is common in EM, let zj∈f0;1gg be a
g-dimensional hidden/missing binary label vector associated to
observation yj, such that zji ¼ 1 if and only if yj was generated by
the i-th mixture component. The so-called complete data is
fðy1; z1Þ;…; ðyn; znÞg and the corresponding complete loglikelihood
for Ψ, log LcðΨÞ, is given by

LcðΨ;Y ; ZÞ ¼ ∑
n

j ¼ 1
∑
g

i ¼ 1
zji log πi þ log f Rðyj; θiÞ
n o

ð4Þ

where Z ¼ fz1;…; zng.
The EM algorithm proceeds iteratively in two steps. The E-step

computes the conditional expectation (with respect to the missing
labels Z) of the complete loglikelihood given the observed data Y

and the current parameter estimate bΨðkÞ
,

Q ðΨ;ΨðkÞÞ≔EZ LcðΨ ;Y ; ZÞjY ; bΨðkÞ
� �

: ð5Þ

Since LcðΨ;Y ; ZÞ is linear in the missing data zji (see (4)), this
reduces to computing the conditional expectation of the zji and
plugging these into the complete loglikelihood. Each of these
conditional expectations (denoted wji) is equal to the posterior
probability that the j-th sample was generated by the i-th
component of the mixture,

wji ¼
πif Rðyj; θðkÞi Þ

∑g
h ¼ 1π

ðkÞ
h f Rðyj; θðkÞh Þ

; ð6Þ

for i¼ 1;…; g and j¼ 1;…;n. It follows that the conditional
expectation of the complete loglikelihood (5) becomes

Q ðΨ;ΨðkÞÞ ¼ ∑
g

i ¼ 1
∑
n

j ¼ 1
wji log πi þ log f Rðyj; θiÞ
n o

: ð7Þ

The M-step obtains an updated parameter estimate Ψðkþ1Þ by
maximizing Q ðΨ;ΨðkÞÞ with respect to Ψ. The updated estimates of
the mixing weights πðkþ1Þ

i are well-known to be

πðkþ1Þ
i ¼ 1

n
∑
n

j ¼ 1
wji: ð8Þ

2.1. Updating the parameters of the Rician components

Updating the estimate of θi ¼ ðνi; s2i Þ requires solving

∑
g

i ¼ 1
∑
n

j ¼ 1
wji∇θ log f Rðyj; θiÞ ¼ 0; ð9Þ
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where ∇θ denotes the gradient with respect to θ. In the following
proposition (proved in the Appendix), we provide a closed-form
solution of (9) for the Rician mixture.

Proposition 2.1. The updated estimate bθðkþ1Þ
i ¼ ðbnðkþ1Þ

i ; ðbs2
i Þðkþ1ÞÞ,

that is, the solution of (9), is

bnðkþ1Þ
i ¼

∑n
j ¼ 1wji yjϕ

yjn
ðkÞ
i

s2
ðkÞ

i

 !
∑n

j ¼ 1wji
ð10Þ

and

ðbs2
i Þðkþ1Þ ¼

∑n
j ¼ 1wji y2j þ nðkþ1Þ2

i −2yjn
ðkþ1Þ
i ϕ

yjn
ðkÞ
i

s2
ðkÞ

i

 ! !
2∑n

j ¼ 1wji
ð11Þ

where ϕðuÞ ¼ I1ðuÞ=I0ðuÞ.
Finally, we refer that in our experiments, we use the classical

random initialization of EM; since we are dealing with univariate
mixtures with a few components, initialization is not a critical issue.
3. Generative embeddings based on Rician mixtures

We now introduce several generative embeddings for MR
images, based on Rician mixture models. Let fX1;…;XSg be a set
of images or ROIs (each belonging to one or R classes, cs∈f1;…;Rg),
where each image Xs ¼ fys1;…; ysNs

g is simply modeled as a bag of Ns

strictly positive pixels ysj∈Rþþ, for j¼ 1;…;Ns. Let X denote the
input domain, that is, a set to which all these images belong.
We map objects in X into a finite-dimensional Hilbert space H
(the so-called generative embedding space) using the Rician mixture
generative model; formally,

e : X⟶H
Xs⟼eðXs;ΨÞ∈H: ð12Þ

The embedding eðXs;ΨÞ depends on the parameters Ψ of a K-
components Rician mixture, as explained next.

Based on a K-components Rician mixture with parameters Ψ,
the posterior probability that yjs (the j-th pixel of the s-th image)
belongs to the i-th component of the mixture is (see (6))

wiðysj ;ΨÞ ¼ πif ðysj ; θiÞ ∑
K

k ¼ 1
πkf ðysj ; θkÞ

 !−1

ð13Þ

Based on (13), six generative embeddings will now be defined.

Definition 3.1. With a single Rician mixture Ψ estimated for the S
images, the embedding of an image X ¼ fy1;…; yNg is a K-dimen-
sional vector given by

eesingleðX;ΨÞ ¼ 1
N

�
∑
N

j ¼ 1
w1ðyj;ΨÞ;…; ∑

N

j ¼ 1
wK ðyj;ΨÞ

�T
: ð14Þ

Notice that this embedding always yields a vector of non-negative
values that sum to one, thus it can be interpreted as a discrete
probability measure.

Definition 3.2. With R Rician mixtures (one per class) fΨ1;…;ΨRg,
each with K components, the embedding of an image X ¼ fy1;
…; yNg is a (KR)-dimensional vector:

eeðX;Ψ1;…;ΨRÞ ¼
1
N

��eesingleðX;Ψ1Þ
�T

;…;

�eesingleðX;ΨRÞ
�T�T

:

ð15Þ

Definition 3.3. We will also consider the two following K-dimen-
sional embeddings, defined for an arbitrary image X ¼ fy1;…; yNg
as

esingleðX;ΨÞ ¼ 1
N

∑
N

j ¼ 1

�
π1f ðyj; θ1Þ;…; πK f ðyj; θK Þ

�T
and

besingleðX;ΨÞ ¼ 1
N

∑
N

j ¼ 1

�
f ðyj; θ1Þ;…; f ðyj; θKÞ

�T
;

as well as their ðKRÞ-dimensional generalizations to the case in
which a Rician mixture is estimated for each of the R classes,

eðX;Ψ1;…;ΨRÞ ¼
��

esingleðX;Ψ1Þ
�T

;…;

�
esingleðX;ΨRÞ

�T�T

and

beðX;Ψ1;…;ΨRÞ ¼
��besingleðX;Ψ1Þ

�T

;…;

�besingleðX;ΨRÞ
�T�T

:

Notice that ee, esingle, besingle, e, and be yield vectors of non-negative
values, thus interpretable as discrete unnormalized measures.
4. Nonextensive information theoretic kernels

This section briefly reviews the nonextensive information theo-
retic kernels proposed in [14] and introduces relevant notation. These
kernels on measures are based on the Jensen–Tsallis q-difference, a
nonextensive generalization of the Jensen–Shannon divergence
obtained through the concept of q-convexity and a related q-Jensen
inequality [14]. The motivation for the use of these information-
theoretic kernels is the following: since the six proposed embeddings
can be naturally interpreted as discrete measures (one normalized
and five unnormalized), kernels between (possibly unnormalized)
measures are a natural choice to use these embeddings in kernel-
based learning algorithms.

4.1. Suyari's entropies

Both the Shannon–Boltzmann–Gibbs (SBG) and the Tsallis
entropies are particular cases of functions Sq;ϕ following Suyari's
axioms [34]. Let Δn−1 be the standard probability simplex and q≥0
be a fixed scalar (the entropic index). The function Sq;ϕ : Δn−1-R

has the form

Sq;ϕðp1;…; pnÞ ¼

k
ϕðqÞ 1− ∑

n

i ¼ 1
pqi

 !
if q≠1

−k ∑
n

i ¼ 1
pi ln pi if q¼ 1;

8>>>><>>>>: ð16Þ

where ϕ : Rþ-R is a continuous function with properties stated in
[34], and k40 an arbitrary constant, henceforth set to k¼1. As is
clear in (16), for q¼1, we recover the SBG entropy, while setting
ϕðqÞ ¼ q−1 yields the Tsallis entropy

Sqðp1;…; pnÞ ¼
1

q−1
1− ∑

n

i ¼ 1
pqi

 !
¼− ∑

n

i ¼ 1
pqi lnqpi;

where lnqðxÞ ¼ ðx1−q−1Þ=ð1−qÞ is the q-logarithm function.

4.2. Jensen–Shannon (JS) divergence

Consider two measure spaces ðX ;M; νÞ, and ðT ;J ; τÞ, where the
second is used to index the first. Let H denote the SBG entropy, and
consider the random variables T∈T and X∈X , with densities πðtÞ
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and pðxÞ≜RT pðxjtÞπðtÞ. The Jensen divergence [14] is defined as

JπðpÞ≜JπHðpÞ ¼HðE½p�Þ−E½HðpÞ�: ð17Þ
When X and T are finite with jT j ¼m, JπHðp1;…; pmÞ is called the
Jensen–Shannon (JS) divergence of p1;…; pm, with weights π1;…; πm
[35,36]. In particular, if jT j ¼ 2 and π ¼ ð1=2;1=2Þ, p may be seen as
a random distribution whose value on fp1; p2g is chosen tossing a
fair coin. In this case, Jð1=2;1=2Þ ¼ JSðp1; p2Þ, where

JSðp1; p2Þ≜H
p1 þ p2

2

� �
−
Hðp1Þ þ Hðp2Þ

2
;

which will be used in Section 4.4 to define JS kernels.

4.3. Jensen–Tsallis (JT) q-differences

Tsallis’ entropy can be written as SqðXÞ ¼−Eq½lnqpðXÞ�,
where Eq denotes the unnormalized q-expectation, which, for a
discrete random variable X∈X with probability mass function
p : X-R, is defined as

Eq½X�≜∑
x∈X

xpðxÞq;

(of course, E1½X� is the standard expectation).
As in Section 4.2, consider two random variables T∈T and X∈X ,

with densities πðtÞ and pðxÞ≜RT pðxjtÞπðtÞ. The Jensen q-difference is
the nonextensive analogue of (17) [14],

Tπ
qðpÞ ¼ SqðE½p�Þ−Eq½SqðpÞ�:

If X and T are finite with jT j ¼m, Tπ
qðp1;…; pmÞ is called the

Jensen–Tsallis (JT) q-difference of p1;…; pm, with weights π1;…; πm.
In particular, if jT j ¼ 2 and π ¼ ð1=2;1=2Þ, define Tq ¼ T1=2;1=2

q :

Tqðp1; p2Þ ¼ Sq
p1 þ p2

2

� �
−
Sqðp1Þ þ Sqðp2Þ

2
;

which will be used in Section 4.4 to define JT kernels. Naturally,
T1 coincides with the JS divergence.

4.4. Jensen–Shannon and Tsallis kernels

The JS and JT differences underlie the kernels proposed in [14],
which apply to normalized or unnormalized measures.

Definition 4.1 (Weighted Jensen–Tsallis kernels). Let μ1 and μ2 be
two (not necessarily probability) measures; the kernel ekq is
defined asekqðμ1; μ2Þ≜ðSqðπÞ−Tπ

qðp1; p2ÞÞðω1 þ ω2Þq

where p1 ¼ μ1=ω1 and p2 ¼ μ2=ω2 are the normalized counterparts
of μ1 and μ2 (which have total masses ω1 and ω2), and π ¼ ðω1þ
ω2Þ−1½ω1;ω2�. The kernel kq is defined as

kqðμ1; μ2Þ≜SqðπÞ−Tπ
qðp1; p2Þ:

Notice that if ω1 ¼ω2, ekq and kq coincide up to a scale factor.
For q¼1, kq is the so-called Jensen–Shannon kernel, kJSðp1; p2Þ ¼
ln 2−JSðp1; p2Þ.

The following proposition (proved in [14]) characterizes these
kernels in terms of positive definiteness, a crucial aspect for their
use in support vector machines (SVM) [14].

Proposition 4.1. The kernel ekq is positive definite (pd), for q∈½0;2�.
The kernel kq is pd, for q∈½0;1�. The kernel kJS is pd.

In our approach, the information theoretic kernels are applied
to the Rician generative embeddings eðX;ΨÞ proposed in Section 3.
This corresponds to an implicit mapping from the generative
embedding space H to a so-called feature space F , where the
kernel corresponds to an inner product [37,38], that is,

ϕ : H⟶F
e ðX;ΨÞ⟼ϕðeðX;ΨÞÞ∈F

where kðXi;XjÞ ¼ 〈ϕðeðXi;ΨÞÞ;ϕðeðXj;ΨÞÞ〉F .
5. Combining SVM classifiers via boosting

The final building block of our approach to MR image classifi-
cation is a way to combine the classifiers working on each of the
several regions of interest (ROI). For that end, we adopt the
AdaBoost algorithm [24], which we now briefly review. In the
description of AdaBoost in Algorithm 5.1, each (weak) classifier
Gm(x), m¼ 1;…;M, corresponds to one of the M regions.

Algorithm 5.1. AdaBoost [24]
1.
 Initialize weights pi ¼ 1=S, i¼ 1;…; S.

2.
 For m¼1 to M:

(a) Learn classifier Gm(x) with current weights.
(b) Compute weighted error rate:

errm ¼ ∑S
i ¼ 1pi1ðyi≠GmðxiÞÞ

∑S
i ¼ 1pi

:

(c) Compute γm ¼ logð1−errmÞ−logðerrmÞ.
(d) pi←pi � expðγm1ðy ≠Gmðx ÞÞÞ, i¼ 1;…; S.
i i
h i

3.
 Output GðxÞ ¼ sign ∑M

m ¼ 1γmGmðxÞ .
In the description of Algorithm 5.1, 1A is the usual indicator
function: 1A ¼ 1; if A is true, and zero otherwise. Each boosting
step requires learning a classifier by minimizing a weighted
criterion, with weights p1;…; pS corresponding to each training
observation ðys;XsÞ, s¼ 1;…; S. In our case, the classifier Gm is a
weighted version of the SVM classifier corresponding to the m-th
ROI, i.e., the SVM classifier whose kernel function is built on the
Rician mixture estimated for that ROI. To take into account these
weights, the optimization problem solved by the SVM learning
algorithm requires a modification: the penalty on the slack
variable ξi corresponding to the example Xi is set to be propor-
tional to the weight pi. The corresponding modified 1-norm SVM
optimization problem (see [37,38] for details) is

min
ξ;β;β0

〈β; β〉þ C ∑
S

i ¼ 1
pi ξi

s:t: yið〈β;ϕðXiÞ〉þ β0Þ≥1−ξi; i¼ 1;…; S
ξi≥0; i¼ 1;…; S: ð18Þ

The Lagrangian for problem (18) is

Lpðβ; β0; ξ;α; μÞ ¼
1
2
∥β∥2 þ C ∑

S

i ¼ 1
piξi

− ∑
S

i ¼ 1
αi yið〈ϕðXiÞ; β〉þ β0Þ−ð1−ξiÞ
� 	

− ∑
S

i ¼ 1
μiξi ð19Þ

with αi≥0 and μi≥0. By minimizing Lp with respect to β, β0, ξi and
μi, i¼ 1;…; S, the Lagrange dual problem results

max
α

∑
S

i ¼ 1
αi−

1
2

∑
S

i;j ¼ 1
αiαjyiyjkðXi;XjÞ

s:t: 0≤αi≤piC

∑
S

i ¼ 1
αiyi ¼ 0: ð20Þ

Notice that each αi is constrained to be less or equal to piC (rather
than simply C in the unweighted SVM) while the objective
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function in (20) remains unchanged [37,38]. Consequently, if pi is
small, so is αi, thus contributing very weakly to the definition of
the optimal hyperplane, which is still given by

f ðX;αn; βn

0Þ ¼ ∑
S

i ¼ 1
yiα

n

i kðXi;XÞ þ βn

0: ð21Þ

6. Experiments

We begin this section by summarizing the proposed approach.
The training data consists of set of images, each labeled as
belonging to a schizophrenic or non-schizophrenic subject, and
containing a set of M regions of interest (ROI). For each ROI in the
training set, either a single Rician mixture or two Rician mixtures
(one per class) are estimated and used to embed the data on a
0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

k=5

0

0

0

0

10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

k=5

0

0

0

0

0

0

0

0

0

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

k=6

0

0

0

0

Fig. 1. Rician mixture fitting (one per class—schizophrenic on the left and non-schizophr
the number of components in the mixture.
Hilbert space, as described in Section 3. On the Hilbert space for
each ROI, one of the information theoretic kernels described in
Section 4 is used. Finally, a set of M (one per ROI) SVM classifiers
is obtained by the AdaBoost algorithm described in Section 5; the
final classifier is the one resulting at the last step of Algorithm
5.1.

The baselines against which we compare the proposed approach
are SVM classifiers with linear kernels (LK) and Gaussian radial basis
function kernels (GRBFK), on the same generative embeddings. SVM
training is carried out using the LIBSVM package (http://www.csie.
ntu.edu.tw/�cjlin/libsvm). The underlying Rician mixtures are
estimated using the EM algorithm described in Section 2, with K
(the number of components) selected by the criterion proposed in
[39], which leads to numbers in the [4,6] range. Fig. 1 shows
examples of fitted Rician mixtures for different ROIs, in the case
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Table 1
Mean accuracy for the best values of q and C for the SVM classifiers learnt on ROI 2, 4, 6, 8, 12, 14 respectively, using one Rician mixture per class with K ¼ 4;5;6 components
and embeddings ee , e and be .

Embedding ee e be
Number of components 4 5 6 4 5 6 4 5 6

ROI 2

Linear 54.03 53.71 54.35 52.58 52.1 52.42 52.74 53.39 55.32
RBF 60.97 63.55 65.32 62.74 62.58 64.19 63.55 63.39 64.52
JS 58.87 61.29 62.74 61.61 62.42 62.42 60.81 61.61 62.26
JT 59.52 61.94 64.19 62.1 63.55 63.87 63.06 62.58 63.06

WJT ekq
59.84 61.77 63.71 64.68 65 64.52 64.52 64.68 64.52

WJT kq 59.52 61.29 62.74 65 64.52 64.35 64.52 64.35 64.35

ROI 4

Linear 60.81 60.48 59.52 57.9 58.87 57.9 58.39 59.03 58.23
RBF 61.13 60.81 61.13 58.39 59.52 58.55 58.87 59.35 59.19
JS 58.87 59.68 61.77 58.71 58.71 58.06 59.35 59.03 58.06
JT 61.13 60.65 62.26 59.03 59.68 59.84 60.65 60.48 59.19

WJT ekq
61.65 61.94 61.94 58.87 59.19 58.71 59.68 59.19 59.03

WJT kq 59.52 60.16 61.94 58.55 59.03 58.23 59.03 59.03 59.84

ROI 6

Linear 57.1 58.23 59.19 56.45 57.1 58.23 58.23 58.55 58.87
RBF 62.74 63.71 63.71 62.58 62.42 61.45 62.58 63.23 63.23
JS 63.71 64.03 63.55 66.42 63.87 64.03 63.71 64.52 64.68
JT 64.19 64.68 65.48 66.61 65.32 65.32 65.32 65.16 65.81

WJT ekq
64.84 65 65.16 62.42 63.22 64.03 62.26 63.06 63.71

WJT kq 64.19 64.68 65.48 63.06 62.74 64.03 62.26 64.03 64.03

ROI 8

Linear 60.16 60.32 60.32 59.68 59.52 59.35 60.16 61.45 60.16
RBF 67.26 66.13 65 63.88 64.19 63.55 64.52 64.52 64.03
JS 65.81 65.16 64.52 63.06 62.9 61.61 62.74 63.06 61.29
JT 66.29 65.65 65 63.39 63.87 62.58 63.39 63.87 62.1

WJT ekq
66.13 65.65 64.84 64.84 65 64.68 65.16 65 64.35

WJT kq 66.29 65.32 65 65 65.16 64.52 65.32 65.16 64.35

ROI 12

Linear 59.03 59.35 59.35 57.9 58.39 58.55 58.71 58.55 57.9
RBF 65.97 65.65 65.32 62.26 62.1 61.45 65.16 63.39 63.23
JS 65.97 65.48 64.84 62.74 61.94 64.68 61.94 61.94 65
JT 65.97 65.48 66.45 62.74 62.42 64.68 62.9 62.74 65.32

WJT ekq
66.13 65.48 66.45 65.32 63.06 65.48 65.48 63.23 64.68

WJT kq 65.97 65.48 66.45 65.97 64.84 65.32 65.97 65 65.16

ROI 14

Linear 55.32 55 55.48 55 54.84 54.84 55.65 55.65 56.13
RBF 61.94 62.74 61.13 62.1 63.55 63.06 63.23 63.55 63.06
JS 62.42 61.45 60.16 66.61 65.98 65.32 66.61 66.13 64.35
JT 62.58 62.1 61.45 67.9 66.61 66.29 68.06 67.1 65.48

WJT ekq
62.74 61.94 61.45 65.48 64.84 63.87 65.48 65 63.87

WJT kq 62.58 62.1 61.45 65 64.19 63.71 64.68 64.68 63.23

Table 2
Mean accuracy for the best values of q and C for the SVM classifier learnt on ROI 10 using one Rician mixture per class with K ¼ 4;5;6 components and embeddingsee , e and be .

Embedding ee e be
Number of components 4 5 6 4 5 6 4 5 6

ROI 10

Linear 55.97 56.29 56.45 56.29 56.94 54.84 55.81 56.61 56.29
RBF 64.84 67.58 67.1 64.84 67.9 68.39 66.13 68.55 69.03
JS 65.97 69.03 69.84 66.45 70 70.81 66.61 69.84 70.81
JT 68.71 71.77 69.84 67.42 70.65 71.13 67.74 70 71.61

WJT ekq
68.55 71.29 70 65.81 69.19 71.13 65.81 70 70.48

WJT kq 68.71 71.77 69.84 65.65 68.71 70.48 65.65 70.16 70.65
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of one mixture per class (schizophrenic and non-schizophrenic).
We tested the generative embeddings ee, e and be proposed in
Section 3, both in the single-mixture and R-mixtures versions.

The dataset contains 124 images (64 patients and 60 controls),
each with the following 14 ROIs (7 pairs): Amygdala (1-Left,
2-Right), Dorso-lateral PreFrontal Cortex (3-Left, 4-Right), Entorh-
inal Cortex (5-Left, 6-Right), Heschl's Gyrus (7-Left, 8-Right),
Hippocampus (9-Left, 10-Right), Superior Temporal Gyrus (11-Left,
12-Right), Thalamus (13-Left, 14-Right). To evaluate the classifiers,
the dataset was split 50–50% into training and test subsets and 10
runs were performed.

SVM classifiers were trained for each individual ROI (without
the boosting-based combination), and the conclusion was that ROI
10 leads to the best accuracy (see Tables 1 and 2—for each
embedding, the best result is shown in boldface). The accuracy is
robust to the number of components of the mixture. The best
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Fig. 2. Mean accuracy on 10 runs as a function of q (best C) and as a function of C (best q) for the SVM classifier learnt on ROI 10 using one Rician mixture per class with K¼5
components and embeddings ee ((a), (b)), e ((c), (d)) and be ((e), (f)).
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performances over q and C are reported. For the GRBFK, the best
performance over the width parameter and over C is reported.
Mean accuracies are plotted in Fig. 2 as a function of q for the best
value of C and as a function of C for the best value of q, for the
generative embeddings ee, e and be, with 2 (one per class) Rician
mixtures each with 5 components. For q41, the results shown for
the weighted JT kernel (which is positive definite only for q∈½0;1�)
correspond to q¼1. These results show that the proposed gen-
erative embeddings lead to comparable performances. The infor-
mation theoretic kernels outperform the LK and GRBFK. Namely,
the best performances are obtained with the JT and weighted JT
kernels, for all ROIs. The standard error of the mean is less
than 0.006.

Results obtained by combining the SVM classifiers with the
AdaBoost algorithm are shown in Table 3 for the generative
embeddings ee, e and be (for each embedding, the best result is
shown in boldface). These results show that the proposed
approach outperforms state-of-the-art methods for ROIs intensity
histograms for this dataset, see [16,40–42].

Results with a single estimated mixture for the entire dataset are
similar. For both individual ROI and boosting experiments, the same
considerations on embeddings and kernels performances as for the



Table 3
Mean accuracy for the best values of q and C for the set of SVM classifiers obtained by the boosting algorithm, using one Rician mixture per class with K ¼ 4;5;6 components
and embeddings ee , e and be . Results with state-of-the-art methods for ROIs intensity histograms using leave-one-out are also reported.

Embedding ee e be
Number of components 4 5 6 4 5 6 4 5 6

Boosting

JS 78.55 78.23 77.74 75 75.97 77.42 77.9 76.94 76.61
JT 79.68 80.16 79.03 78.71 78.06 79.84 79.35 78.39 78.39

WJT ekq
80 79.03 78.39 78.23 78.06 77.58 81.77 78.39 78.06

WJT kq 79.68 80.16 79.03 78.71 78.39 78.55 80.48 77.9 78.39

State-of-the-art methods

SVM best single ROI SVM multiple ROIs

Methodology Accuracy Methodology Accuracy
Constellation probab.model + Fisher kernel

[16] 73.4 [40] 80.65
Dissimilarity representations Combined dissimilarity representations

[42] 78.07 [41] 79
Dissimilarity representations

[42] 76.32

Table 4
Mean accuracy for the best values of q and C for the SVM classifier learnt on ROI 10 using a single Rician mixture for the entire dataset with K¼4, 5, 6 components and
embeddings ee, e and be .

Embedding ee e be
Number of components 4 5 6 4 5 6 4 5 6

ROI 10

Linear 55.81 56.13 56.64 56.77 55.32 54.84 56.29 56.77 55.81
RBF 65 67.42 66.45 64.19 68.22 68.22 66.77 68.06 68.06
JS 67.1 69.03 69.84 66.29 70.16 70.81 66.45 70.16 70.81
JT 68.39 70.48 69.84 67.74 70.65 71.45 68.55 70.48 71.29

WJT ekq
68.23 70.48 69.84 65.97 69.68 70.16 66.13 69.68 69.84

WJT kq 68.39 70.48 69.84 65.48 70 70.97 66.13 70 70.48

Table 5
Mean accuracy for the best values of q and C for the set of SVM classifiers obtained by the boosting algorithm, using a single Rician mixture for the entire dataset with
K ¼ 4;5;6 components and embeddings ee , e and be .

Embedding ee e be
Number of components 4 5 6 4 5 6 4 5 6

Boosting

JS 78.39 78.55 77.26 75.32 77.58 76.45 77.74 77.26 75.32
JT 79.19 79.84 79.35 77.10 77.9 78.06 79.19 78.55 77.58

WJT ekq
80.16 80.48 79.03 78.55 78.23 78.87 79.03 79.35 78.55

WJT kq 79.19 79.84 79.35 79.19 79.35 79.52 80.16 79.35 78.87

Table 6
Mean accuracy for the SVM classifier learnt on ROI 10 using one Rician mixture per class with K ¼ 4;5;6 components and embeddings ee , e and be. The SVM C parameter is
tuned by cross-validation over the training set. Results for the best value of q (best q) and for q tuned by cross-validation (q cv) are reported.

Embedding ee e be
Number of components 4 5 6 4 5 6 4 5 6

ROI 10

Linear 53.23 53.55 54.19 52.74 53.39 52.58 53.55 54.84 54.84
RBF 58.55 61.61 63.39 60.32 61.77 65 61.29 64.84 62.9
JS 65.16 67.26 65.48 63.06 67.58 70.32 64.52 66.13 67.9
JT (q cv) 65.48 66.94 61.94 66.45 66.77 67.1 62.9 67.42 66.29
WJT kq (q cv) 65.81 66.13 62.58 58.39 65 66.94 62.42 65.16 67.58

WJT ekq (q cv) 64.35 66.13 62.9 64.52 65.16 66.45 64.03 65.32 67.9

JT (best q) 65.81 68.23 65.48 66.29 68.55 70.48 67.26 67.42 69.68

WJT ekq (best q) 66.61 67.58 65.81 63.71 66.61 69.03 64.35 66.29 68.71

WJT kq (best q) 67.42 68.39 64.35 63.23 65.65 69.19 63.23 66.45 68.23
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Table 7
Mean accuracy for the set of SVM classifiers obtained by the boosting algorithm, using one Rician mixture per class with K ¼ 4;5;6 components and embeddings ee , e and be .
The SVM C parameter is tuned by cross-validation over the training set. Results for the best value of q (best q) and for q tuned by cross-validation (q cv) are reported.

Embedding ee e be
Number of components 4 5 6 4 5 6 4 5 6

JS 76.13 75 76.77 70.97 74.68 76.45 74.68 71.45 70.97
JT (q cv) 75.81 77.26 76.77 75.81 74.68 77.9 76.61 74.68 76.94

WJT ekq (q cv) 74.19 79.19 78.87 76.61 74.19 75.65 75.65 71.77 72.58

Boosting WJT kq (q cv) 76.45 76.61 76.77 76.13 78.23 76.61 78.06 77.1 74.35

JT (best q) 77.74 77.42 76.45 74.84 76.61 80.48 75.97 76.13 76.45

WJT ekq (best q) 76.45 78.23 77.1 75.32 76.61 77.1 76.94 75.65 76.13

WJT kq (best q) 77.74 77.26 75 79.84 77.42 75.97 76.94 77.58 76.13
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case of 2 mixtures hold. For a single mixture, performances are
lower, leading to a 71.45% accuracy as the best result in the case of
ROI 10 and to a 80.48% accuracy as the best result in the case of
boosting. Results for a single estimated mixture are reported in
Tables 4 and 5 (for each embedding, the best result is shown in
boldface).
6.1. Cross-validation results

Experiments were also performed with the parameters
tuned by cross-validation over the training set. Performances
of the kernels were computed as a function of the entropic index
q, with the SVM C parameter tuned by cross-validation over the
training set, leading to a 70.48% accuracy as the best result for ROI
10 and to a 80.48% accuracy as the best result for boosting.
Cross-validation results are reported in Tables 6 and 7 (for
each embedding, the best result is shown in boldface).
7. Conclusions

In this paper, we have proposed a new approach for building
generative embeddings for kernel-based classification of mag-
netic resonance images (MRI) by exploiting the Rician distribu-
tion that characterizes MR images. Using generative
embeddings, the images to be classified are mapped onto a
Hilbert space, where kernel-based techniques can be used.
Concerning the choice of kernel, we have adopted the recently
proposed nonextensive information theoretic kernels. The
proposed approach was tested on a challenging classification
task: classifying subjects as suffering, or not, from schizophre-
nia on the basis of a set of regions of interest (ROIs) in each
image. For this purpose, an SVM classifier for each ROI is learnt.
Finally, we propose to combine the SVM classifiers via a
boosting algorithm. The experimental results show that the
proposed methodology outperforms the previous state-of-the-
art methods on the same dataset. At a more general level, we
may claim that our results contribute to the conclusion that the
combination of generative embeddings with information the-
oretic kernels is a competitive approach for challenging classi-
fication problems.
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Appendix A. Proof of Proposition 2.1
Proof. First of all, let us note that f ðyj; θiÞ can be written in
factorized form as

f iðyj; θiÞ ¼ Aðyj; θiÞ � Bðyj; θiÞ; ðA:1Þ
where

Aðyj; θiÞ ¼
yj
s2i

e−ðy
2
j þn2i Þ=2s2i ðA:2Þ

and

Bðyj; θiÞ ¼ I0
yjni
s2i

 !
: ðA:3Þ

It follows that the partial derivatives of the log-likelihood with
respect to ni and s2i result

∂ log f ðyj; θiÞ
∂ni

¼ 1
A � B � ∂A

∂ni
� Bþ A � ∂B

∂ni

� �
¼ 1

A
� ∂A
∂ni

þ 1
B
� ∂B
∂ni

ðA:4Þ

∂ log f ðyj; θiÞ
s2i

¼ 1
A
� ∂A
∂s2i

þ 1
B
� ∂B
∂s2i

: ðA:5Þ

The partial derivative of Aðyj; θiÞ with respect to ni is

∂Aðyj; θiÞ
∂ni

¼ yj
s2i

e−ðy
2
j þn2i Þ=2s2i � −

1
2s2i

� 2ni
 !

: ðA:6Þ

Moreover, recalling that the higher order modified Bessel func-
tions In(z), defined by the contour integral

InðzÞ ¼
1
2πi

∮ eðz=2Þððtþ1Þ=tÞt−n−1 dt; ðA:7Þ

where the contour encloses the origin and is traversed in a
counterclockwise direction, can be expressed in terms of I0ðzÞ
through the following derivative identity [28]:

InðzÞ ¼ Tn
d
dz

� �
I0ðzÞ ðA:8Þ

where Tn(z) is a Chebyshev polynomial of the first kind [28]

TnðzÞ ¼ 1
4πi

∮
ð1−t2Þt−n−1
ð1−2tz þ t2Þ dt; ðA:9Þ

with the contour enclosing the origin and traversed in a counter-
clockwise direction, and in particular that T1ðzÞ ¼ z, then the
partial derivative of B results

∂Bðyj; θiÞ
∂ni

¼
∂I0

yjni
s2i

 !
∂ni

¼ I1
yjni
s2i

 !
� yj
s2i

: ðA:10Þ
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Substituting (A.6) and (A.10) in (A.4) we get

∂ log f ðyj; θiÞ
∂ni

¼ −
ni
s2i

þ
I1

yjni
s2i

 !

I0
yjni
s2i

 ! � yj
s2i

ðA:11Þ

which, substituted in (9) yields (10).
The same considerations hold for the partial derivatives with

respect to s2i , yielding to the following expressions for the partial
derivative of A and B (with respect to s2i )

∂Aðyj; θiÞ
∂s2i

¼−
yj
s4i

e−ðy
2
j þn2i Þ=2s2i þ yj

s2i
e−ðy

2
j þn2i Þ=2s2i

y2j þ n2i
2s4i

ðA:12Þ

∂Bðyj; θiÞ
∂s2i

¼ I1
yjni
s2i

 !
� yjni
s4i

ðA:13Þ

Substituting (A.12) and (A.13) in (A.5), the partial derivative of
log f ðyj; θiÞ with respect to s2i results

∂ log f ðyj; θiÞ
∂s2i

¼ −
1
s2i

1−
y2j þ n2i
2s2i

 !
−

I1
yjni
s2i

 !

I0
yjni
s2i

 ! � yjni
s4i

which, plugged in (9) yields (11). □
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