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Abstract—Hybrid generative-discriminative models are useful
in biomedical applications– generative modeling extracts inter-
pretable features from raw data, highlighting its properties and
increasing classification accuracy when used as input for a dis-
criminative classifier. This raises the question: which generative
model should be used for a particular application? In this
paper we apply a recently proposed generative model called the
Counting Grid to expression microarray data and derive the
corresponding Fisher kernel. We justify why this model is par-
ticularly well-suited for this application and evaluate classification
accuracy on four gene expression data sets, including three tumor
data sets and a blood sample data set from schizophrenic patients
and healthy controls. We report state of the art results on three
of the analyzed data sets and closely match the accuracy from
previous work on the other.

I. INTRODUCTION

Microarrays are a widely employed tool in molecular biol-
ogy and genetics, used to infer expression levels of thousands
of genes in different experimental conditions. Among the
different computational analyses that can be carried out, an
important class is focused on the classification of experiments,
namely the discrimination among different samples on the
basis of gene expressions. In this context, a class of recent
and promising approaches [1], [2], [3], [4] were based on tools
typically employed to model documents, called topic models
[5], [6]. Such approaches start from the parallelism that can be
set between the pair word-document and the pair gene-sample.
Expression levels are modeled as counts and are used as raw
inputs for learning generative models such as topic models,
that describe how this “bag-of-features” (simply a collection
of counts without specifications of their relationships) arose.

In the context of modeling of general count data, a novel
promising approach, called the Counting Grid model, has been
recently proposed in [7]. This model starts with a spatial
metaphor. The observed expression values in a sample are
assumed to be generated independently from probability dis-
tributions that differ across samples. To model the generative
process, we first create a grid that wraps around itself and
connects at the boundaries to form a torus. Every discrete
point on this grid is associated with a distribution over genes.
To generate the gene expression profile of the sample we
move along the grid with a window of fixed size. At a
particular position, we average the distributions in the window
and generate the gene expression values from that average
distribution. The distributions on the grid can be inferred
from data using the Expectation Maximization (EM) algorithm.
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Fig. 1. A) Clustering of the samples of the Lung dataset on the counting
grid. In this model samples are mapped in window and here we indicate
each sample with a marker placed in correspondence of the upper left corner
of its window. Different markers correspond to different types of tumor
(Lung Adenocarinoma, Squamous Cell Lung Carcinomas, Small Cell Lung
Carcinoma (SCLC), Pulmonary Carninoid and Normal Lung). B) Expression
Count for the gene TGF-β Receptor II (e.g., πk,z=“TGF−βReceptorI′′ , see
Sec. II ). C) Variation of the amount of expression of TGF-β Receptor II,
while shifting of 1 location, from Window 1 to Window 3. Bars correspond
on the sum in of the expression in a window of size W = 4 × 4 (e.g.,
hk,z=“TGF−βReceptorI′′ , see Sec. II )
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The position of a sample in the grid (the upper-left corner
of the window) assumes the role of a latent variable. The
mathematical details are presented in the Section II. This
model is particularly well suited for data that exhibits smooth
variation between samples. Expression values are biologically
constrained to lie within certain bounds by purifying selection
[8] and variation in only a few expression values can cause a
pathology. This specific property of the data is captured well
by the counting grid model. This is illustrated in Fig. 1 where
we embedded tumour samples [9] on a counting grid. It is
apparent that samples with different labels cluster and small
shifts on the grid can cause a change in class. In the same figure
(panel B), we show the level of expression in each location
of the grid for the “TGF-β Receptor II” gene which is known
to be related to lung tumors [9]. Samples are generated taking
a window and starting from “Window 1” and shifting to the
right. The overall expression in a window rises to reach a
peak in “Window 2”,then smoothly decreases and finally rises
again in “Window 3”. The smooth variation of the expression
is illustrated in the panel C. The grid also shows that small-cell
lung carcinomas cluster in a region, where ‘TGF-β Receptor
II” expression is very low. Loss of expression of this gene is
a well-known characteristic of the disease [10].

In previous works, counting grids have been employed
for gene selection [11] and classification [12], by explpoiting
the mapping of each sample on the grid. However, there are
still margins for improvements, particularly in classification. In
this paper we propose and investigate the effect of a sophis-
ticated generative kernel over the counting grid. Generative
kernels represent the most striking example of the hybrid
generative-discriminative approaches, a recent trend in pattern
recognition aimed at combining the best of both generative
and discriminative paradigms [13], [14], [6]. When using a
generative kernel, the generative model is learned from the
data and used to derive a kernel between objects, to be used
with a discriminative classifier (e.g. SVM). The use of these
kernels for microarray data has proven to drastically improve
the performances of classification techniques based on topic
models [3], in comparison to standard classification rules. The
main goal of this paper is to investigate if such kernels can be
beneficial also when derived for richer generative models, like
the counting grid. In particular here we derive and employ
the Fisher Kernel [13], which represents the first and the
most employed generative kernel and turned out to be very
robust in [3]. The Fisher Kernel between two samples can
be computed as the inner product between the so called Fisher
Scores, which are the first derivatives of the log-likelihood with
respect to the parameters of the generative model, evaluated
in the two given samples. In the case of the counting grid,
the Fisher kernel is intractable, because its log likelihood is
intractable. However, following the same trick used for the
latent Dirichlet allocation [15], we are able to extract the Fisher
scores from the free energy (its derivatives with respect to the
parameters are functions of the variational parameters). This
is a contribution of this paper, since the Fisher Kernel for the
counting grid has never been computed or tested.

The rest of the paper is organized as follows: Section II
reviews the basic mathematics of the counting grid Model,
used to derive the formulation of the Fisher Kernel, presented
in Section III. Such section also contains a critical comparison
with the kernel proposed in [12]. Section IV discusses our
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Fig. 2. An example of counting grid geometry.

empirical evaluation of the method and Section V concludes
the paper.

II. THE COUNTING GRID MODEL

In Pattern Recognition, data samples are often represented
as bags of features without particular order; each t-th obser-
vation is characterized by a vector – often called count vector
{ctz} – containing the number of occurrences of each feature
z [16]. For example, a text document may be described by
the number of occurrences of the different words it contains
(or an image with the number of occurrences of different
visual features it contains). This choice is often motivated by
the difficulty of and computational problems associated with
modeling the full structure of the data. It has been shown
in [1], [2], [3], [4] that the bag-of-features representation is
well-suited also for microarray data, providing interpretable
and descriptive signatures. Each sample can be seen as an
independent observation; the gene expression value is then
interpreted as the “count” of that gene in the sample: the higher
the expression level, the “more present” the gene is in such
experiment.

The counting grid model, recently introduced in [7], is a
generative model for such representations. Formally, the basic
counting grid πk,z is a set of normalized counts of features
indexed by z on the 2-dimensional1 discrete grid indexed by
k = (x, y) where x ∈ [1 . . . Ex], y ∈ [1 . . . Ey] and E =
Ex ×Ey describes the extent of the counting grid. Since π is
a grid of distributions,

∑
z πk,z = 1 everywhere on the grid

(see Fig. 2 for an illustration of the geometry and Fig. 1B for
where we show π for a particular feature z.).

A given bag-of-features, represented by counts (expression
levels) {cz} is assumed to follow a count distribution found in
a window of the counting grid. In particular, using a window
of dimensions W = Wx×Wy , each bag can be generated by
first selecting a position k on the grid and then by placing the
window in the grid such that k is its upper left corner. Then,
all counts in this window are averaged to form the histogram
hk,z = 1

Wx·Wy

∑
�∈Wk

π�,z , and finally a set of features in the

1N-dimensional in general, here we focus on 2 dimensions.
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bag is generated. In other words, the position of the window
k in the grid is a latent variable given which the probability
of the bag of features {cz} is

p({cz}|k) =
∏
z

hcz
k,z =

∏
z

(
1

Wx ·Wy
·
∑
�∈Wk

π�,z)
cz (1)

where with Wk we indicate the particular window placed
at location k (see Fig. 2). We will also often refer to the
ratio between the counting grid area and the window area
κ =

Ex·Ey

Wx·Wy
, as the capacity of the model.

To learn a counting grid, we need to maximize the log
likelihood of the data:

logP =
∑
t

log
(∑

k

·
∏
z

h
ctz
k,z

)
(2)

The sum over the latent variables k makes it difficult to per-
form assignment to the latent variables while also estimating
the model parameters. The problem is solved by employing
a variational EM procedure [17], which iteratively learns the
model, by minimizing a bound B on logP by alternating the
E and M-step. B is often referred to as the free energy of the
model and it is equal to

logP ≥ B = −
∑
t

∑
k

qtk · log q
t
k + (3)

+
∑
t

∑
k

qtk ·
∑
z

ctz · log
∑

�∈W
kt

π�,z

where qkt = P (k|t) is the variational distribution over the
latent mapping onto the counting grid of the t-th sample. Each
of these variational distributions can be varied to maximize the
bound: the E step aligns all bags of features to grid windows, to
match the bags’ histograms. In the M-step we re-estimate the
counting grid π so that the histogram matches are even better.
To avoid severe local minima it is important to consider the
counting grid as a torus, and perform all windowing operation
accordingly. For details on the learning algorithm and on its
efficiency see [7].

III. FISHER KERNEL FROM COUNTING GRIDS

In the last years, hybrid generative discriminative
paradigms, and in particular generative score spaces, have been
proposed for classification. They consist of two steps: first, one
or a set of generative models are learned from the data; then
a score (namely a vector of features) is extracted for every
object through the learned model(s), to be used as features
for a discriminative classifier. The idea is to extract fixed
dimensions feature vectors from observations by subsuming
the process of data generation, projecting them in highly
informative spaces called score spaces. In this way, standard
discriminative classifiers such as support vector machines, or
logistic regressors are proved to achieve higher performances
than a solely generative or discriminative approach. Among
the score spaces the most famous is the Fisher kernel [13].

The Fisher kernel makes use of the the first derivative
of the log-likelihood with respect to its parameters Ut =
�θ logP (xt|θ). In our case the samples are gene expressions
xt = ctz and the parameter is the counting grid θ = {π}. Ut

is called the Fisher score and it evaluates the effect of the

...
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Fig. 3. A) The variational posterior qt
k

that defines the mapping on the
counting grid. qk’s are generally peaky (either 0 or 1) by construction as they
are discrete variables. B) The score used in [12]. As in the experiments we
considered a window of size W = 3× 3. C) Fisher score illustration. In A,B
and C we highlighted the mapping position of the window using a “pin”.

sample on the model parameters. The Fisher kernel between
the t-th and the s-th sample is then defined as the inner product
between their corresponding Fisher scores, K(t, s) = UT

t ·Us.

In the case of counting grid, the Fisher kernel is intractable
to compute for the very same reason its log likelihood (Eq.
4) is. However, as for latent Dirichlet allocation [15], we
can extract the Fisher scores from the free energy B and its
derivatives with respect to the parameters πk,z are functions
of the variational distributions q�. In formulae:

Ut = [. . . ,
∂B

∂πk,z
, . . .] ∀ k, z (4)

= [. . . ,
∂

∂πk,z

(∑
�

qt� ·
∑
z

ctz · log
( ∑
i∈W�

πi,z

))
, . . .]

where we ignored the first term of Eq. 4 as it does not depend
on π. Since most of the terms in the partial derivative do not
depend on the current choice for k or z, Eq. 4 simplifies as
follows

∂B

∂πk,z
=

∂

∂πk,z

(∑
�

qt� ·
∑
z

ctz · log
( ∑
i∈W�

πi,z

))

=
∂

∂πk,z

( ∑
�|k∈W�

qt� · c
t
z · log

( ∑
i∈W�

πi,z

))

=
∑

�|k∈W�

qt� · c
t
z ·

1∑
i∈W�

πi,z
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= ctz ·
∑

�|k∈W�

qt�
h�,z

= F t
k,z (5)

The concatenation of all the partial derivatives of Eq. 5
comprises the Fisher score for of sample ctz from which we
can compute the Fisher kernel that measures the similarity
between two microarray experiments. The Fisher score F t

k,z
has dimensionality Z × Ex × Ey as it depends on the grid
locations k and on the genes z.

Relationship with other methodologies

In this section we highlight differences and relationships
with [12], where the authors exploited the geometric reasoning
of the counting grid to define a generative kernel. Without loss
of generality we will assume a peaky variational posterior qk
equal to either 0 or 1 as shown in Fig. 3A. By construction,
each point in the grid depends by its neighborhood, defined
by W and in [12] each sample is described by its mapping
window St

k
as illustrated in Fig. 3B. The intuition is that

samples whose windows intersect have similar overall genes
expression and therefore may be similar. One of the biggest
problem of this approach is that if two samples are mapped
in the same point, they will have identical signature and
when they belong to different classes it is impossible to
disambiguate.

The Fisher kernel proposed here builds upon similar ge-
ometric reasoning and it is illustrated in Fig. 3C. Its only
non-zero dimensions F t

k,z �= 0 are the ones whose window
W� contains the mapping position k of the t-th sample
(“�|k ∈W�” in Eq. 5) therefore, again, only samples mapped
close on the grid may have non-zero similarity. The influence
window is shifted by −W wrt [12] (see Fig. 3B and C),
however this does not affect the similarity relation as the grid
is a torus (i.e. it has wraparound). The second difference with
[12] is that the Fisher kernel also explicitly takes into account
the gene expression level ctz while the dependence of [12]
on the expression is only implicit: gene expressions are used
to compute the mapping, but not in the kernel. Finally, the
counting grid is a well defined generative model and its Fisher
kernel is theoretically better than the maximum likelihood
classification based on the same model [13]. This nice property
clearly does not hold for [12].

Relationship with raw expression classification

It is also easy to prove that the raw gene expression
classification is a special case of our kernel. In fact when
E = W, we have that

∑
k
F t
k,z = αz · c

t
z , where αz is a

constant that only depends on the particular gene z. This is a
nice property means that model selection strategies can take
into account the raw data classification.

IV. EXPERIMENTAL RESULTS

We tested our approach using four different well-known
datasets, briefly summarized in Tab. I: in particular we em-
ployed three tumor data sets and a blood sample data set
from schizophrenic patients and healthy controls. The whole
description of each dataset may be fo und in the reported
reference.

TABLE I. DATASETS CONSIDERED IN OUR STUDY

Dataset Name Protocol # classes # samples Citation
Lung 5-Folds 5 203 [9]

Prostate LOO 2 102 [18]
Brain 4-Folds 5 90 [19]

Schizophrenia 3-Folds 2 202 [20]

TABLE II. COMPARISON BETWEEN SCORE SPACES

Method Score Space Dimensionality Kernel considered
CG Fisher �θ logP (ctz|θCG) |E| × Z linear

[12] Map. Window (Fig. 3B) |E| linear / HI
[2] p(topic|ctz) |E|/|W| linear
[3] �θ logP (ctz|θPLSA) |E|/|W| × Z linear

As in [1], [3] we filtered the genes by variance and retained
the top 500 genes, using a prior belief that genes varying little
across samples are less likely to be interesting. We compared
our method with previous work on topic models [2], [3], on
counting grids [12] and with the same baseline. In [2] a pLSA
model [16] is learnt from the data and each sample is described
by its topic proportions. In [3] the kernel is derived from the
pLSA model [16] yielding a significant improvement upon [2].
Finally, in [12], the gene expressions are mapped on a counting
grid and their mapping window is used as a signature. All
these methods belong to the family of generative score spaces
and they are summarized in Tab. II in terms of score space,
dimensionality and kernel employed. We considered counting
grids of various sizes E = [6 × 6, 9 × 9, . . . , 30 × 30] and
we set the window size as W = 3 × 3. As in previous
CG literature [7], [12], we acknowledge that the capacity
of the model κ = |E|/|W|, which measures how many
independent windows can fit into the grid, is roughly equivalent
to the number of pLSA topics and we used this parallelism to
compare the accuracies.

Our subdivision in training and testing set is carried out
using the dataset author’s protocol which is reported in Tab.
I. As in [3], [12] we firstly learned the generative models
(pLSA or counting grid) using all the data (not using the
labels, therefore following a transductive learning approach
[21]) and we described each sample with the appropriate
score. Then we learned a support vector machine (SVM)
using the training data and we classified the test data. To
highlight the contribution of the modeling, we considered
the simple linear kernel which defines the similarity between
two data points as the inner product of their scores. For [12]
we also considered the histogram intersection which directly
measures the extent of window shared between samples. We
considered values for SVM’s cost parameter C values among
2−1.1, 2−0.2, . . . , 25.1 and (for each svm classification) we
reported the best accuracy. The mean accuracies are shown
in Fig. 4: the Fisher kernel extracted from counting grids
outperforms [3], [2], [12] the other tested approaches on
all the datasets and provides the most consistent results.
Interestingly, it was also found to be less sensitive to the
model complexity and the value of the cost parameter of
the SVM did not affect the result. These two properties are
very important in this context, as microarray datasets are
usually small and cross-evaluation strategies to pick a optimal
parameter generally work poorly. In Tab. III we report the
mean, across all the complexities, variance aross the choices
for C for each dataset and for each method: [2], [12], [3]
reported higher variances, making their accuracies in Fig. 4
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Fig. 4. Classification Results (Mean accuracy over 3 repetitions)

TABLE III. MEAN VARIANCE σ̂

Lung [9] Prostate [18] Brain [19] Schizoph. [22]
[2] 4.9 1.3 3.7 1.2

[12] 0.4 0.1 0.5 0.6
[3] 1.5 1.3 3.5 0.7

CG Fisher 0 0 0 0

TABLE IV. COMPARISON THE STATE OF THE ART

Lung [9] Prostate [18] Brain [19] Schizoph. [22]
CG Fisher 95,1% 96,3% 90,0% 88,1 %
Raw Data 94,1% 92,1% 86,5% 82,7%

SoA 93,8% 98,2% 86,5% 87,6%

somewhat optimistic.

To highlight the benefit of generative modeling, we com-
pared in Tab. IV with the linear kernel on the raw expressions
(“Raw Data” row) and with the state-of-the-art (results are
taken from [2]). Despite the fact that we did not use any
discriminative gene selection strategy (as done in [2]), our best
results are very close to the state of the art on prostate dataset,
and we set it on schizophrenia, brain and lung datasets.

As final test, we evaluated the effect of W on the Fisher
kernel. It is known that CGs are not sensitive to the window
size, however this holds for the generative model (maximum
likelihood classification) and not necessarily for a kernel ex-
tracted from it. In this last experiment we considered windows
W = 2 × 2, 4 × 4, 6 × 6, 5 × 2. For every window choice,
we varied the grid size E roughly keeping the same model
capacity considered in the previous test2. We performed the
classification experiment using the usual procedure. In Fig.
5A we show the effect of the W = 5×2 on the schizophrenia
dataset [22]. By using a rectangular window, a shift of the
window in one dimension, in this case x, provides a different
degree of variation in the gene expression, in fact 50% of the
window’s content changes. This did not influence the results,
especially for larger grids where the algorithm has more space
to lay down the samples. In Fig. 5B we compared the other
windows choices: despite W = 3 × 3 is clearly the best
choice, all the results are satisfactory and all ouperform [3],
[2], [12]. The lower performances of W = 2 × 2 can be

2A CG of complexity W = 3× 3 − E = 6× 6 has the same capacity
of a CG W = 4× 4 − E = 8× 8
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Fig. 5. Classification Results (Mean accuracy over 3 repetitions)

explained by a lack of (overlapping) modeling power while
for the larger windows the reason is clearly over-training. To
keep the capacity κ fixed, larger windows require larger grids
and thus the Fisher score (Eq. 5) has higher dimensionality.
Tests on the other dataset yielded to similar results.

V. DISCUSSION

The paper discusses the use of counting grids to model
microarray expression data and derives the Fisher kernel,
building a successful classification framework. As the kernel
proposed in [12], the Fisher kernel exploits the clustering of
the samples on the counting grid but it also 1) takes explicitly
into account the individual expressions of each gene and 2)
inherits theoretical properties of [13]. We have also shown
that raw expression classification is a special case of our
framework. Our results indicate that the CG is a better fit
than topic models for this type of data. Our method compares
favorably with the state-of-the art on several datasets and very
importantly it proved to be insensitive to SVM parameters
and to counting grid complexity. We have also investigated
the use of higher dimensional grids and more complex kernels
like rbf, polynomial, histogram intersection and χ2 but they
did not provide enough improvement to justify the additional
parameters to set (e.g., SVM’s γ). This is explainable as the
Fisher kernel is defined as the dot product of the scores.

Finally, while this paper only focuses on classification,
future work will be devoted to exploiting the expressive
power of counting grids to understand the variation of gene
expression values in health and disease. Regions of gene
expression profiles that characterize a disease can, in fact, be
highlighted on the grid. For example, in Fig. 1B the small-cell
lung carcinomas (see the red crosses) are mapped in an area
where the gene is not expressed. This confirms the findings by
[9], [10]. By focusing on the border regions between different
classes, we can compute which genes vary most in the direction
of the transitions and obtain biomarkers for diseases.
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