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Abstract. In this paper we exploit the effectiveness of bioinformatics
tools to deal with 3D shape matching. The key idea is to transform the
shape into a biological sequence and take advantage of bioinformatics
tools for sequence alignment to improve shape matching. In order to
extract a reliable ordering of mesh vertices we employ the spectral-based
sequencing method derived from the well known Fiedler Vector. Local
geometric features are then collected and quantized into a finite set of
discrete values in analogy with nucleotide or aminoacid sequence. Two
standard biological sequence matching strategies are employed aiming at
evaluating both local and global alignment methods. Preliminary exper-
iments are performed on standard non-rigid shape datasets by showing
promising results in comparison with other methods.
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1 Introduction

The research in Computational Biology and Bioinformatics experienced an
unprecedented growth in recent years, tying together many disciplines and fields
of computer science. In particular, very often Pattern Recognition/Machine
Learning techniques are used to solve problems and extract knowledge from bio-
logical data [2]. There are lots of motivations for exploiting these disciplines: it is
possible to “learn from examples”, derive quantitative models, handle non vec-
torial data, and deal with many classification, clustering and detection problems
commonly encountered in the life sciences. In many cases, Pattern Recognition
techniques can not be applied “as they are”; researchers spent large efforts to
tailor and adapt techniques, so that biological constraints and needs are taken
into account. Sometimes, this led very far away from the original methodology,
with a clear example in the profile-HMMs [10].

Provocatively speaking, this tight interaction is mainly unidirectional, with
the biology/life science side earning the largest benefit. Very recently, an alter-
native way of interaction has started to be investigated [3,6,21,22]: translate
advanced bioinformatics solutions into ideas and methodologies useful to solve
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a pattern recognition problem. The main goal in such contexts is to answer to
the following intriguing question: can we reverse the way of interaction?, or,
in other words, can we exploit advanced bioinformatics models and solutions to
solve pattern recognition tasks? This perspective is rather new in the literature,
with only few relevant examples [3,6,21,22]: in particular, in the video genome
project1 [6], aimed at analysing video sequences, authors established an anal-
ogy between biological sequences and videos: in particular, the authors defined
the so called “video-DNA”, a way to map features extracted from video frames
into nucleotidic biological sequences: given the analogy, many different video
analysis problems can be faced using the huge range of effective, optimised, and
interpretable bioinformatics tools derived from more than 40 years of research.
For example authors were able to search for videos using the famous BLAST
[1] – a surprisingly fast and effective heuristic-driven algorithm for biological
sequence retrieval. In [3,21,22], authors exploited the analogies which can be
established between the contour of a 2D shape and a biological sequence to face
the 2D shape classification problem with biological sequence alignment tools.
They show in [3,22] that, even if employing very basic matching techniques,
really promising results can be obtained on different datasets. Moreover, in [21]
authors demonstrated that a careful and context-aware setting of the parame-
ters of the biological sequence alignment tools permit to improve even more the
obtained accuracies.

This paper is inserted in the above-described context, and explores the possi-
bility of exploiting bioinformatics solutions to face the 3D shape matching prob-
lem. Matching of 3D shapes represents an important field in Pattern Recognition
and Computer vision research, with various efficient approaches (see [7,14,17,20]
for recent surveyes). In general ideal shape matching methods should be highly
discriminative and invariant to pose and shape deformations [27]. The majority
of methods are focused on effective shape representation aiming at compactly
characterizing the shape by a signature (or shape descriptor [12,20,30]). A large
class of methods are based on the matching between the whole shapes by defining
a global shape descriptor [12,27,30]. Conversely, many approaches are exploiting
local signatures by leading to a point-to-point matching [8,28]. Recently a lot of
work has been proposed to combine local and global methods by extending the
so called Bag of Words paradigm to 3D shapes [5,31].

In this paper rather than focusing on the kind of descriptor we propose to
pay more attention on the matching phase by facing the 3D shape matching
problem with biological sequence analysis tools. The key idea consists of encod-
ing the 3D shape as a biological sequence and employing tailored bioinformatics
tools to perform the matching. In order to extract the biological sequence from a
3D shape we exploit spectral-based mesh sequencing methods. As proposed for
streaming mesh [13] or mesh partitioning [18] we used the order provided by the
second eigenvector of the Laplace operator, usually referred to as Fiedler Vector.
Then, we collect the shape index [16] at each vertex of the shape as local geo-
metric feature. The ordered sequence of local geometry features is then mapped
1 See http://v-nome.org/about.html

http://v-nome.org/about.html
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Sequence 2

Aligned Sequence 1
Aligned Sequence 2

Sequence 1 TACTAGGCATGAC
ACAGGTCAGTC

TACTAGG−CATGAC
−AC−AGGTCA−GTC

Match Mismatch

Gap

Fig. 1. Alignment of two sequences

into a biological sequence with two simple mappings, one leading to a nucleotide
sequence, the other leading to an aminoacid sequence. Once encoded 3D shapes
in biological sequences, we employed standard sequence alignment tools (like
the Smith-Waterman [29] and the Needleman-Wunch [24] algorithms) to devise
a sequence similarity measure. Such similarity is finally used in a standard near-
est neighbour classification scenario. Moreover, the alignment procedure provides
us a robust estimation of corresponding points among shape pairs.

We tested our approach in matching non-rigid shapes with strong pose vari-
ations from two standard datasets: Tosca [4] and Shape Google [5]. Even if we
applied a very simple mapping as well as the basic standard bioinformatics solu-
tions to this problem, we obtained very promising results, also in comparison
with the state of the art.

2 Background: Biological Sequence Alignment

Analysis of biological sequences is of paramount importance in biology and medi-
cine, very often representing the basic operation in many computational biology
and bioinformatics analyses. Broadly speaking, biological sequences are of two
types: nucleotide sequences – i.e. strings made with the 4 symbols of DNA,
namely ATCG – and aminoacid sequences – i.e. strings with symbols com-
ing from a 20 letters alphabet. Intuitively, the alignment of two sequences is
aimed at finding the best registration between them (namely the best way of
superimposing one sequence on the other). From a practical point of view, align-
ment is obtained by inserting spaces inside the sequences (the so called gaps)
in order to maximize the point to point similarity between them – see Fig. 1.
A huge amount of approaches have been proposed in the past to face this prob-
lem (see [15,19] for recent reviews and perspectives on the topic), with already
effective methods aged in the seventies or early eighties [24,29]. Broadly, we
can classify them into pairwise and multiple alignment approaches, with the
former devoted at finding the best registration of two sequences and the latter
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aimed ad finding a simultaneous alignment of more than two sequences. Another
interesting classification is among global or local alignment approaches: global
methods try to find the best overall alignment between sequences, whereas the
local alignment aims at finding short regions of highly similar sequences. A
thorough treatment of this topic is of course out of the scope of this paper. Here,
since we are interested in investigating the basic potentialities of our ideas, we
chose two very basic pairwise alignment tools (namely the Needleman-Wunsch
[24] and the Smith-Waterman [29] algorithms), representing the reference in this
field – being extensively employed since their proposal in the seventies/eighties.

In particular, the NeedlemanWunsch algorithm [24] is a dynamic program-
ming method for finding the best global alignment between two sequences – it
represents the first application of dynamic programming to biological sequence
comparison. The basic idea is to maximize the similarity between two sequences
by i) making use of a similarity matrix (also called Scoring Matrix) which defines
the similarity between every pair of symbols in the alphabet and ii) by taking into
account penalty values for gap opening and extension. There are many possible
scoring matrices, which are typically built on the basis of biological knowledge2.

On the other side, the Smith-Waterman algorithm [29] is a dynamic pro-
gramming method for local alignment, which identifies homologous regions (i.e.,
roughly speaking, similar regions) between sequences by searching for optimal
local alignments. Instead of looking at an entire sequence at once, the S-W algo-
rithm compares multi-lengthed segments, looking for whichever segment max-
imizes the scoring measure. A scoring system is used, which includes a set of
specified gap penalties.

3 The Proposed Method

The main steps of our proposed pipeline are i) spectral-based shape sequencing,
ii) local feature extraction, iii) mapping into biological sequences, and iv) shape
matching by sequence alignment. Figure 2 shows the scheme of proposed method.
In order to highlight the effectiveness of proposed pipeline we show in Figure 3
the geometric processing of two shapes of the same class in two different poses
(i.e., strong isometric transformation). It is interesting to observe that Fiedler
vector defines a vertex ordering that goes from the tip of the tail to the head
of the cat for both the shapes. Moreover, the extracted local geometric features,
namely the Shape index, highlights coherently the semantic components of the
cat (see for example the eyes, the ears, and the paws). In the following we
introduce more theoretical details of the proposed approach.

3.1 Spectral-Based Shape Sequencing

Let M be a mesh with N -vertices. A function on M has a discrete representation
specified by a vector with N components. A Mesh Laplacian is a linear operator
2 For example, in the nucleotide case, it is known from the chemical composition of

DNA basis that it is more difficult to have a change from an Adedine to a Thymine
rather than to a Guanine.
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Fig. 2. Scheme of proposed method

L defined by a N × N matrix [32]:

(Lf)i = b−1
i

∑

j∈N(i)

wij(fi − fj), (1)

and it can be factored into the product of a diagonal and a symmetric matrix

L = B−1S, (2)

where B−1 is a diagonal matrix whose diagonal entries are b−1
i and S is a sym-

metric matrix whose diagonal entries are given by sii =
∑

j∈N(i) wij and whose
off diagonal entries are − wij . A particular class of mesh Laplacians is defined
by the discrete Laplace-Beltrami operator for Riemannian manifold. Here, we
use the so called cotangent weighting scheme [23,26]. It is well known that from
the Laplace Beltrami mesh operator it is possible to obtain an ordering of its
vertices. Consider the problem of embedding vertices in the line. This problem is
mathematically equivalent to seek a permutation π : V −→ {1, 2, ..., n} of the
vertices of a mesh M = (V,E). A solution to this problem can be given by the
so called Fiedler Vector [11], i.e., the eigenvector associated with the smallest
non-zero eigenvalue of L. In other words, the Fiedler vector provides a way to
order the vertices of the mesh: by following this order we can derive a sequence
of vertices, to be characterized via local geometric properties (i.e., shape index)
and translated into biological symbols.
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Fig. 3. Geometric processing of two isometric shapes. From left to right: original
shapes, Fiedler vector, Shape Index, and shape quantization.

3.2 Local Feature Extraction

We encode local geometric properties of the surface using the Shape Index [16],
which is defined as:

si = − 2
π

arctan
(

k1 + k2
k1 − k2

)
k1 > k2,

where k1, k2 are the principal curvatures of a generic vertex. The Shape Index
varies in [−1, 1] and provides a local categorization of the shape into primitive
forms such as spherical cap and cup, rut, ridge, trough, or saddle [16]. Shape
index is scale invariant [16] and it has already been successfully employed for
surface matching [8].

3.3 Mapping Into Biological Sequences

Once obtained from the mesh, the ordered sequence of shape indeces should
be converted into a biological sequence, in order to permit the mapping. It is
interesting to note that there is a strict parallelism between this sequence-based
encoding of 3D surfaces and the protein: in both cases the matching is based on
the sequences, which are determining the 3D shape (proteins are sequences of
aminoacids folded in 3D).

Even if different schemes for mapping shape indeces to aminoacids can be
adopted, here we investigated two very simple schemes, both having pros and
cons:
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– DNA-mapping: in this case the shape index is directly mapped to the ATCG
alphabet of DNA sequences. We divided the [-1:1] interval into 3 zones
([-1:-0.3], (-0.3:0.3), [0.3 1]), which roughly correspond to values indicating
concavity, convexity and saddle characteristics of the surface. Then, each
zone is mapped to a different nucleotide (with one character left out), thus
transforming the 3D shape into a sequence of highly identifiable geometric
characteristics, which are directly mapped into nucleotides. The disadvan-
tage of this encoding scheme is that the quantization is rather heavy (only
three symbols), this possibly leading to a loss of details.

– Protein-mapping: this method tries to overcome the problems of the pre-
vious scheme by exploiting the aminoacid alphabet, which is composed by
20 symbols. Againg we split the shape index range into 20 equally spaced
intervals, each one corresponding to an aminoacid. In this way the loss of
details derived from the quantization may be less crucial; on the other side,
the geometric interpretation can be partially lost.

3.4 Shape Matching by Sequence Alignment

Given the encoding, the alignment of the two obtained biological sequences
straightforwardly permits to define a classification strategy based on standard
Nearest Neighbour (NN) classifier [9]. We are aware that, given a similarity
matrix, interesting alternatives to NN exist (e.g. the dissimilarity-based rep-
resentation paradigm [25]). However, NN remains rather accurate, still being
enough simple to demonstrate the suitability of our proposed approach. Note
that in this paper we are more interested in showing the feasibility of our per-
spective, rather than reaching state of the art results. Moreover, this technique
is really interpretable, since it gives an intuitive motivation of the assigned class
label by showing the nearest neighbour to the user. In more detail, NN classifier,
given an unknown object X and a distance, finds the point in the training set
which is nearest to X, assigning X to the class of that point. This is a nat-
ural choice, since given our framework it is straightforward to define a distance
between 2D shapes: after encoding the two 3D shapes into biological sequences,
we can align them and use the alignment error as a measure of distance.

In our experiments we used both local and global alignment tools: in par-
ticular, again for being as basic as possible, we employed the two historical
approaches described in previous section, namely the Needleman-Wunsch [24]
and the Smith-Waterman [29] algorithms. Moreover, we normalize the alignment
score by the averaged length of the two involved sequences.

4 Experiments

We evaluated the proposed approach on two 3D shape matching scenarios. We
exploited the following variants of the matching algorithm:

– SW / NW: the two alignment algorithms used: SW stands for Smith-
Waterman, NW for Needleman-Wunch
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– AA / NT: the two coding strategies employed: AA represents the protein
coding (i.e. using 20 aminoacids), NT represents the DNA coding (i.e. using
the four nucleotides)

– Basic / Advanced: this option refers to the alignment parameters. Actually
two are the parameters that should be defined when aligning two biologi-
cal sequences: the scoring matrix and the gap opening/extending penalty.
As explained in the previous Sections, the former defines the price of every
substitution in the matrix, whereas the latter defines the penalty in the sim-
ilarity got while opening (or extending) a gap region. These two parameters
typically have a clear biological meaning, and can change drastically the
final result. In this preliminary evaluation, we performed two sets of exper-
iments: in the former (referred to as “Basic”) we tried to keep as easiest as
possible the scheme, leaving such parameters as set by default in the Matlab
implementation (Matlab bioinformatics toolbox); in the latter (referred to
as “Advanced”) we relaxed one biological assumption which does not hold in
the shape classification case – this being of course only the first step through
the tailoring of the sequence alignment tools to our problem. In particular
we observe that in biology the gap penalty is typically high: it is not really
desirable to break a biological sequence. In the shape case, nevertheless, such
a strong constraint does not hold: actually, gaps can really help in dealing
with occlusions and – mainly – scale changes.

We compared the best results of our approach with the following methods:

– Shape DNA method [27] as gold standard for non-rigid shape matching.
– DTW: Dynamic Time warping distance between the Shape Index sequences

ordered with the Fiedler Vector. We used a 10% warping window constraint,
which is the customary setting in the speech recognition community.

– Histogram of Shape Index as basic shape descriptor. We considered 20, 50,
100, 150, 200, 300 bins, reporting in the table only the best result.

In our first experiment we employed the Tosca non-rigid world dataset [4]
composed of 10 classes of non-rigid objects: cat, centaur, man1, dog, gorilla,
man2, horse, lioness, seahorse, and woman (see Figure 4). For each class there
are different number of samples by leading to a total of 143 models. Table 1
reports classification errors obtained using the Leave One Out (LOO) protocol.
Our approach reaches the best classification score with several sequence matching
approaches by outperforming in particular Shape DNA method. DTW performed
better than simple Shape Index histogram by confirming the reliability of the
ordering extracted from the Fiedler vector.

As mentioned before, the advantage of the proposed biologically inspired
method consists of performing a robust alignment of the input sequences that
leads in our case to the estimation of an (incomplete) point-to-point matching.
In order to visually evaluate this procedure we plotted the estimated matching
among some pairs of shapes from Tosca dataset. Figure 5 shows the estimated
correspondences where only fully matched pairs of points are highlighted. It is
interesting to observe that correspondences are quite convincing. For instance
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Fig. 4. Tosca non-rigid objects: cat, centaur, man1, dog, gorilla, man2, horse, lioness,
seahorse, and woman

Table 1. Results with Tosca dataset

Method AA NT

NW (Basic) 0.0000 0.0350
SW (Basic) 0.0629 0.1189
NW (Advanced) 0.0000 0.1888
SW (Advanced) 0.0629 0.2308

Method Error LOO

Shape DNA 0.0070
Shape Index Hist (100 bin) 0.0839
DTW 0.0420
Proposed approach (best) 0.0000

the paws of the cats or the heads of the horses are correctly matching. Note that
due to the symmetry of the shapes some correspondences are switched from left
to right side (see for example the fingers or right and left hands of man pair).
Finally, it is worth noting that the alignment fails in presence of strong shape
partiality like in the case of matching between man and centaur (see Figure 5
bottom right). Clearly this aspect has to be investigated more thoroughly in our
future research, as done for example in the 2D shape classification case in [21].

The second experiment is evaluated on a subset of the Shape Google data-
set [5]. The dataset is composed of 10 classes of non-rigid objects: dog, cat1, cat2,
woman, man, dromedary, elephant, flamingo, horse, cougar. Each object app-
eared with multiple modifications and transformations of the original shape.
Here we evaluated isometry and isometry-topology transformations with five
different strength levels (see isometry-topology transformations in Figure 6).

Tables 2 and 3 show classification results. Our approach showed the best
results also in this case by confirming the robustness of the proposed methods
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Fig. 5. Point to point matching

Fig. 6. ShapeGoogle dataset: null shape (left) and five different strength levels of topo-
logical and isometric transformation

against strong shape deformations. In particular, zero error is observed for sev-
eral configurations. Here, it seems evident that errors introduced by topological
noise are compensated by the robustness of the biological sequence matching
algorithms.

As a final observation, let us try to understand the behaviour of the differ-
ent variants of the proposed approach. Concerning the alignment algorithm, it
seems that the global method (NW) performs better than the local one (SW):
actually local methods can be more useful when trying to match objects with
occlusions, not present in the analysed dataset. Concerning the encoding meth-
ods, the AA version seems to be more adequate, especially in the ShapeGoogle
dataset: probably the quantization derived from the NT scheme is too strong in
this case, destroying information which is useful for matching.
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Table 2. Results with ShapeGoogle-isometry dataset

Method AA NT

NW (Basic) 0.0408 0.1224
SW (Basic) 0.0612 0.1429
NW (Advanced) 0.0000 0.1020
SW (Advanced) 0.0000 0.1020

Method Error LOO

Shape DNA 0.1020
Shape Index Hist (20 bin) 0.1837
DTW 0.0408
Proposed approach (best) 0.0000

Table 3. Results with ShapeGoogle-isometry-topology dataset

Method AA NT

NW (Basic) 0.0000 0.1837
SW (Basic) 0.0000 0.2245
NW (Advanced) 0.0000 0.1224
SW (Advanced) 0.0000 0.1224

Method Error LOO

Shape DNA 0.3469
Shape Index Hist (20 bin) 0.2041
DTW 0.1224
Proposed approach (best) 0.0000

5 Conclusions

In this paper we focus on the matching phase in non-rigid 3D shape comparison
problems. We show how bioinformatics methods can be useful to cope with shape
alignment by encoding a 3D mesh as a discrete biological sequence. A well defined
pipeline is introduced to address the problems of vertex sequences, local shape
description and quantization, and shape classification by sequence alignment.
Despite the fact that each single step is simple and well known, the overall
method has shown promising results and encourages us to further exploit the
idea of 3D matching approaches with established bioinformatics tools. Once a
correspondence between 3D shapes and biological sequences is defined, many
other interesting information can be extracted (to detect interesting parts, or to
do mesh segmentation), by exploiting the huge amount of bioinformatics tools
developed in more than 40 years of research.
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