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Abstract. In this paper we exploit the use of known information about
the geometry structure of a recently proposed generative model, namely
Counting Grid (CG) [1] to improve the performance of classification accu-
racy. Once the generative model is trained, the geometric structure of the
model introduces a natural spatial relations among the estimated latent
variables. Such relation is generally ignored when standard maximum like-
lihood approach (or classical hybrid generative-discriminative approach)
is employed for classification purpose. In this work, we propose to take into
account the geometric relations of the generative model by proposing an
ad hoc similarity measure for CG. In particular, the values relative to each
point of the grid is spread around its neighborhood by using information
coming from the CG training phase. The proposed approach is succesfully
applied in two applicative scenarios: expression microarray classification
and MRI brain classification. Experiments show a drastic improvement
over standard schemes when our approach is employed.
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1 Introduction

In pattern recognition some counting strategies are often introduced, especially
when source data is not naturally lying on a vectorial space. A very popular
example is the Bag of Words approach, where objects are represented as dis-
organized bags of basic components such as the words of a dictionary. This
approach has been succesfully employed in very different applicative domains
like computer vision for 2D image or 3D shape retrieval, in bioinformatics for
microarray classification, or in medical domain for brain disease detection [2–8].
However, the Bag of Words (BoW) method has some disadvantage since in many
situations it looses a lot of important information. For instance, BoW approach
does not take into account words relations or co-occurences. To this aim, LDA
or pLSA models have been succesfully proposed by showing how inter-relations
among words, i.e., topics are crucial to improve object encoding [9, 10]. Re-
cently, a new generative model has been proposed, namely Counting Grid (CG)
[1] which goes beyond topic-based approach. Indeed, CG exploits not only words
co-occurences but also topological relations among words. In particular, with CG
an ordering procedure between BoWs is introduced by allowing BoWs to lie in
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an n-dimensional grid structure. Such approach has already shown its bene-
fits on document retrieval, 2D scene classification, and microarray expression
classification[1, 11]. In all these applications, the classification stage has been
computed by standard maximum likelihood scheme, or by employing discrim-
inative classifiers like Support Vector Machine (SVM) with generative kernels,
nevertheless without taking into account the peculiar geometry of the model.

In this paper we propose to further exploit the advantage of CGs by studing
an ad hoc (dis)similarity measure. We start from the observation that in the CG
scenario, the classical classification scheme is based on the grid posterior of a
given sample, which is treated as a vector and used for comparison. In such a
way, spatial relation between values is lost. Nevertheless, due to the nature of
the CG, in the training phase a BoW, or a count, is distributed on a local region
around a specific point in the grid which is defined by an hidden variable. This
leads to a spatial relation among grid points which can be used to improve the
classification stage. The idea is to spread the posterior evaluated on a single grid-
point around its neighborhood. In this fashion, when two samples are compared,
an implicit cross-count evaluation is introduced by avoiding a fully grid alignment
constraint. Experiments show that our new (dis-)simmilarity approach leads to
a drastic improvement in comparison with standard methods.

The rest of the paper is organized as following. In Section 2 the background on
Counting Grids is introduced. Section 3 describes the proposed (dis-)similarity
measure for the proposed generative model. Section 4 reports experiments on
two applicative domains, namely expression microarray classification and MRI
brain disease classification. Finally, conclusions and future work are discussed in
Section 5.

2 Background: Counting Grid Model

Data samples are often represented as an unordered bags of features, where
each t-th observation is characterized by a vector called count vector {ctz} which
contains the number of occurrences of each feature z [12, 9]. For instance, a text
document can be described by the number of words occurrences it contains (or an
image with the number of occurrences of different visual features it contains).
This choice is often motivated by the difficulty or computational efficiency of
modeling the known structure of the data.

The counting grid model, recently introduced in [1], is a generative model
that extends such representations. The models starts from a common choice in
counting data modelling, which implies that the bag of features of a given sample
is generated by a latent variable; in the counting grid model, nevertheless it
is assumed that a spatial relation between latent variables exists, and can be
learnt and used to improve the understanding of the models or to provide rich
descriptors for classification. More explicitly, we can unformally say that the
generative process of a given bag of features is based on a latent variable but
also on some of its spatial neighbours. Formally, the basic counting grid πi,z is a
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Fig. 1. An example of a counting grid geometry

set of normalized counts of features indexed by z on the 2-dimensional1 discrete
grid indexed by i = (i, j) where i ∈ [1 . . . E1], j ∈ [1 . . . E2] and E = [E1, E2]
describes the extent of the counting grid. Since π is a grid of distributions,∑

z πi,z = 1 everywhere on the grid.
A given bag of features, represented by counts {cz} is assumed to follow a

count distribution found in a patch of the counting grid. In particular, using
a window of dimensions W = [W1,W2], each bag can be generated by first
selecting a position k on the grid and then by placing the window in the grid
such that k is its upper left corner. Then, all counts in this patch are averaged
to form the histogram hk,z = 1

W1·W2

∑
i∈Wk

πi,z , and finally a set of features in
the bag is generated. In other words, the position of the window k in the grid is
a latent variable given which the probability of the bag of features {cz} is

p({cz}|k) =
∏

z

(hk,z)
cz =

1

W1 ·W2

∏

z

(
∑

i∈Wk

πi,z)
cz

where with Wk we indicate the particular window placed at location k (see
Figure 1).

We will refer to E and W respectively as the counting grid and the win-
dow size. We will also often refer to the ratio of the CG area and the window
area κ = E1·E2

W1·W2
, as the capacity of the model, which can be seen – using a

topic models parallelism – as an equivalent number of topics (this is how many
nonoverlapping windows can be fit onto the grid). Computing and maximizing
the log likelihood of the data turns to be an intractable problem; therefore it is
necessary to employ an iterative EM algorithm. The E step aligns all bags of
features to grid windows, to match the bags’ histograms, inferring the posterior
probability qtk, the probability that the sample t is generated from the position

1 N-dimensional in general, here we focus on 2 dimensions.
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k, i.e., where each bag maps on the grid. This posterior can be computed as
qtk ∝ exp

∑
z c

t
z · log hk,z. In the M-step the model parameter, i.e. the counting

grid π, is re-estimated. To avoid severe local minima it is important to consider
the Counting Grid as a torus, and perform all windowing operation accordingly.
For details on the learning algorithm and on its efficiency see [1].

3 (Dis-)Similarity Measure for CG

Once the training phase is performed, the CG πi,z is available and can be used
for classification purposes. Given a sample A, represented by counts {cAz }, its
posterior qAk is computed. In general, the matrix qAk can be used in a maximum
likelihood scheme or it can be fed in a discriminative classifier such as a Support
Vector Machine, after its vectorization, representing a straightforward hybrid
generative-discriminative classification approach. When using standard vector-
based kernels (like linear kernel), the implicit assumption is that counts are well
aligned, so that each count in one sample is only compared to corresponding
count in another sample. Here, we exploit cross-count distances by observing
that each point in the grid depends by its neighborhood which is defined by
W. Indeed, we propose to spread the values qAk around a neighborhood region
defined by Wk. Actually, by construction, the value in a given location k is
computed by using all CG parameters belonging to the subwindow W.

More in details, given two samples A and B, our similarity measure – which
we call Spreading Similarity Measure is defined by:

SSMS(A,B) = SM(qAk ∗ SW, qBk ∗ SW), (1)

where SW(x) is a box function, of dimension defined by the spreading window
W, defined as:

SW(x) =

{
1 if x ∈ W
0 otherwise,

(2)

and SM(·, ·) is any (dis)-similarity measure. In our experiments we evaluate stan-
dard inner product[13], histogram intersection [14], and Jensen-Shannon distance
[15]. Reasonably, we chose to set the size of the spreading windows as the size
of the Counting Grid Window. In the experimental part we make some exper-
iments while varying the dimension of the spreading window, showing that, as
expected, our choice is almost always the best choice.

Figure 2 shows the effect of our new (dis)similarity measure. Two posteriors
are displayed, each with a peak in a particular zone of the grid. When using a
punctual kernel (such as the histogram intersection kernel), which needs aligned
grids, we can observe that even if the two peaks are close in the grid the intersec-
tion is almost null, and therefore the similarity is null as well (see Figure 2(top)).
Conversely, in Figure 2(center) and 2(bottom) the grid intersection, and there-
fore the similarity, is significative and it increases with the size of the convolution
window.
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Fig. 2. The spreding effect of using our approach in comparing q1 and q2. The his-
togram intersection (KHI(·, ·)) is considered as measure SM(·, ·). When standard KHI

is considered no intersection is observed (top), while using the spreding strategy the
similarity between q1 and q2 is significative (center), and it increases with the size of
W.

As a further note: it is straightforward to show that if SM(·) is a kernel,
also our SSMS(·, ·) is a kernel. This may be of great practical importance, since
permits to develop a hybrid generative-discriminative scheme where SVM can
be used as discriminative classifiers.

4 Experimental Evaluation

In this section the experimental evaluation is presented. In particular, the pro-
posed framework is evaluated within two biomedical applications: cancer clas-
sification via the analysis of expression microarray and schizophrenia detection
through brain classification using MRI scans.

4.1 Microarray Classfication

In this application, the goal is to analyze gene expression microarray data in
order to distinguish between healthy people and people affected by cancer. The
starting point is a microarray gene expression matrix, where the element at
position (i, j) represents the expression level of the i − th gene in the j − th
subject/sample. Methods based on counting values (as CG and topic models)
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have been recently and successfully applied in this context (see, e.g., [16, 17,
11]). This is possible if we establish an analogy between a word-document pair
and a gene-sample pair; it seems reasonable to interpret samples as documents
and genes as words. In this way, the gene expression levels in a sample may
interpreted as the word counts in a document. Consequently, we can simply take
a gene expression matrix and (of course, after a preprocessing step, for example,
to remove possibly negative numbers [16]) interpret it as a count matrix C from
which a CG or a LDA model can be estimated.

The experiments presented in this paper have been performed using two mi-
croarray datasets: the ovarian [18] and the colon [19] datasets, whose character-
istics are summarized in table 1.

Table 1. Summary of the employed microarray datasets

Dataset Name n. of genes n. of samples n. of classes citation

1. Ovarian cancer 1513 53 2 [18]
2. Colon cancer 2000 62 2 [19]

4.2 Brain Classification

In this application the main goal is to distinguish between healthy and
schizophrenic people through the classification of MRI brain scans.

Data Set. The study population used in this work consists of 42 patients (21
male, 21 female) who were being treated for schizophrenia and 40 controls (19
male, 21 female) with no DSM-IV axis I disorders and had no psychiatric disor-
ders among first-degree relatives. Diagnoses for schizophrenia were corroborated
by the clinical consensus of two psychiatrists. T1 weighted structural MRI scans
were acquired with a 1.5 Tesla machine and to minimize biases and head motion,
restraining foam pads were used. The original image size is 384x512x144; these
images are then rotated and realigned to a resolution of 256x256x192. After this
alignment, they were segmented into specific brain regions called Regions of In-
terest (ROIs) manually by experts following a specific protocol for each ROI [20].
In this work, we use three ROIs from the two hemispheres of the brain summing
upto a total of six different brain regions: Dorsolateral prefrontal cortex (ldlpfc
and rdlpfc), Entorhinal Cortex (lec and rec), and Thalamus (lthal and rthal)
which are found to be impaired in schizophrenic patients.

Preprocessing. After the alignment and ROI tracing, DARTEL [21] tools within
SPM software [22] was used to pre-process the data. Initially, images are seg-
mented into grey and white matter in Native and DARTEL imported spaces. The
DARTEL imported images have lower resolution than the original images but
are used to spatially align to standard MNI atlas. In the second step, DARTEL
template generation is applied which creates an average template from the in-
put data while simultaneously aligning white and grey matter. In this step, the
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flowfields of the registration are also computed which will be used to segment
the MNI space normalized images into ROIs. In the final step, the DARTEL
template is used to spatially normalize all images into standard MNI space. In
this way, smoothed (12 mm Gaussian), and Jacobian scaled grey matter images
are constructed which is general practice in neuroimaging applications.

Feature Extraction. The images at the end of the preprocessing pipeline are the
intensity probability maps which are then used to construct the features for our
classification experiments. Since we already have ROI segmented source images,
using the flow fields computed in the second step of preprocessing we create the
intensity maps for every subject and ROI instead of extracting a single set of
features for the whole brain. Since the ROIs have different bounding boxes, the
sizes of these images are not the same for all subjects. By applying thresholding
at 0.2 level, we compute histograms of probability maps for every subject and
ROI. Number of bins in each histogram is chosen to be 40 which showed the
best performance in our experiments. As a result, we have a data set of six
different ROIs, 82 subjects with a counting vector of size 40 which we apply our
classification pipeline.

4.3 Experimental Details

The experimental evaluation is aimed at validating the proposed approach. In
particular, we start by assessing the baseline CG results, without any spread-
ing operation, using the ovarian dataset. Then we evaluate the impact of the
proposed approach. Third, we investigate the impact of the dimension of the
spreading window. Finally, we show some more results on the colon microarray
experiment and on the Brain MRI classification task.

For all the experiments the following protocol has been adopted:

– Since, as a base level, we are mostly interested in the quality of unsuper-
vised learning of the distributions over the samples, the whole dataset has
been used to train a CG (of course labels are ignored in this phase), in a
transductive way [13, 4]. As explained in the methodological section, here
we employed bidimensional squared Counting Grid models (in principle, also
higher dimensional/not squared grids can be used, see [1]). Two parameters
should be set when learning the Couting Grid: the dimension of the Grid
E and the dimension of the Window W. Here we performed a large scope
analysis, reporting results for many different configurations, with E ranging
from [10, 10] to [90, 90], and W ranging from [4, 4] to [19, 19]2. An interest-
ing parameter which can be used to summarize the dimension of a Counting
Grid is the capacity κ, which, as explained in the methodological section,
represents the ratio between the dimension of the grid and the dimension of
the window, and can be seen as the number of topics in the standard topic
models.

2 Of course only valid configurations were retained – e.g. E = [10, 10],W = [15, 15] is
not a valid configuration.
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– In order to avoid to get stuck in local optima during the learning procedure
(given the initialization, E-M converges to the nearest local optima), we
repeated the training 10 times, starting from random initialization, retaining
the model with the highest training likelihood.

– Given the model, an hybrid generative-discriminative approach is used to
perform classification. In particular, for every pair of samples A,B, rep-
resented by counts {cAz }, {cBz }, we computed its posterior qAk , q

B
k given the

learned counting grid, comparing them with a kernel, employed to perform a
discriminative classification via Support Vector Machines. In all experiments
the parameter C of the SVM was set, after some preliminary evaluations, to
10000.

– In all experiments, classification accuracy has been computed using Leave-
One-Out Cross validation, as typically done with these small size problems.

– In all the experiments we also computed and reported the performances of
the Latent Dirichlet Allocation (LDA - [23]), the most famous topic model,
whose usefulness has been already shown in these contexts [17, 16, 24]. LDA
can straightforwardly be considered as a counting grid where the Window
Size is equal to 1, since there are no interactions between latent variables
(i.e. topics). For classification, the same hybrid generative-discriminative ap-
proach explained before is used. In this case, given a pair of samples A, B,
the posterior Dirichlet parameters have been computed through the learned
LDA model and compared via a kernel, to be used in a SVM classification
scenario. Given the parallelism between the concept of the capacity of the
Counting Grids and the number of topics, we performed an experiment with
LDA for every capacity value experimented for our approach.

Similarity Measures and Kernels Concerning the similarity measures / kernels
to be adopted in our hybrid generative-discriminative scheme, different options
can been used. Given the modularity of our proposed scheme, we can straightfor-
wardly apply the same kernel S(·, ·) with and without performing the spreading
via the convolution. This will permit us to directly investigate the impact of the
spreading operation. In particolar, we experimented three different options:

1. Linear Kernel. This is the standard inner product between the representa-
tions of the two objects, namely

K LI(qAk , q
B
k ) = qAk · qBk (3)

2. Jensen Shannon Kernel. This represents a standard and well known Informa-
tion Theoretic Kernel, namely a kernel based on probability measures. These
kernels have been shown very effective in classification problems involving
text, images, and other types of data [25–27]. Very recently, moreover, they
have been found to be very suitable in hybrid generative discriminative sce-
narios [28]. Given two posterior probabilities qAk and qBk , representing two
objects, the Jensen-Shannon kernel is defined as

K JS(qAk , q
B
k ) = ln(2)− JS(qAk , q

B
k ), (4)
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with JS(qAk , q
B
k ) being the Jensen-Shannon divergence

JS(qAk , q
B
k ) = H

(
qAk + qBk

2

)

− H(qAk ) +H(qBk )

2
, (5)

where H(p) is the usual Shannon entropy.
3. Histogram Intersection Kernel. This Kernel, initially designed to compare

histograms, can be safely used also in case of multinomials (as the Counting
Grid posteriors), which are simply normalized Histograms. Given two object
representations qAk and qBk , the kernel is defined as [29]

K HI(qAk , q
B
k ) =

∑

k

min(qAk , q
B
k ) (6)

A further note: by looking at the formulation of our proposed dissimilarity mea-
sure, some similarities with the diffusion distance [30] can be found. Actually,
in both cases, the value of every particular point is spread/diffused in its neigh-
borhood. It seems therefore interesting to compare our approach with this dis-
tance3, applied on the original model posteriors. More in detail, the distance
between two representations qAk , q

B
k is defined as a temperature field T (k, t)

with T (k, 0) = qAk − qBk . Using the heat diffusion equation

∂T

∂t
=

∂2T

∂k2

which has a unique solution

T (k, t) = T (k, 0) ∗ φ(k, t)

where

φ(k, t) =
1

(2φ)1/2t
exp− k2

2t2
,

we can compute the distance D as:

D(qAk , q
B
k ) =

∫ r

0

η(|T (k, t)|)dt

where η(·, ·) is a norm which measures how T (k, t) differs from 0. Given this
distance, we can obtain a kernel following the extended gaussian kernels recipe
[31]:

K DD(qAk , q
B
k ) = e−ρD(qAk ,qBk ) (7)

In our experiments, following the suggestion given in [32], the scale parameter ρ
has been set to the average diffusion distance between all pairs of objects in the
training set.

3 The code has been taken from the author’s home page:
http://www.ist.temple.edu/~hbling/code_data.htm

http://www.ist.temple.edu/~hbling/code_data.htm
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Fig. 3. Baseline results
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Fig. 4. Results obtained with the proposed spreading operation

4.4 Results

Results are presented in figures 3, 4, 5 and 6. More in detail, in Figure 3
the performances of the original Counting Grids scheme, without any spreading
operation, are presented for the different kernels. In particolar, on the x-axis
we have the different model size (different capacities), whereas in the y-axis we
reported the accuracy. The solid line represents the performances of the LDA.
The dimension E of the counting grid is represented by the color. From this figure
we can infer that Counting grids are better than the LDA model only for small
capacities, whereas for larger capacities the simpler LDA model is preferrable.
Moreover it can be noted that the diffusion distance-based kernel represents
the best choice (especially for LDA), confirming the intuition that diffusing the
values of the posterior represents a good idea. This is more evident by looking at
Figure 4, where we plot also the results with the proposed approach (marked with
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Fig. 5. Analysis of the impact of the dimension of the spreading window

an asterisk), for three of the four kernels – we excluded the diffusion distance-
based kernel since already possessing the property of spreading the values. In
this case, results with the Counting Grids always outperform the corresponding
LDA, making the choice of the capacity less crucial. In that figure, moreover,
we also plotted the different accuracies obtained by varying the dimension (from
2 to 10) of the spreading window (marked with a dot). From this figure, it is
evident that selecting as the size of the spreading window the size of the counting
grid window almost always represents the best choice, as expected. This can be
confirmed with the analysis plotted in Figure 5, where for some configurations
of the Counting Grid the accuracy for different values of the spreading window
is plotted. Also in this case, the asterisk indicates the CG window size, which is
almost everywhere among the best values.

Finally, with the same visualization scheme of figure 4, in figure 6 we plot
results for the MRI Brain dataset and for the colon cancer microarray dataset.
Also in these cases it is evident the gain obtained by the spreading approach.
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Fig. 6. Results on other datasets

5 Conclusions

In this paper a new approach to compare data represented by counts is intro-
duced. Starting from the recently proposed CGs, we show how the classification
perfomance can increase by carefully taking into account of information com-
ing from the generative learning procedure. The proposed Spreading Similarity
Mesure leads to a drastic improvement in comparison with standard approaches
as shown on different applicative scenarios. In particular, our SSM approach
outperfoms diffusion distance which is known to well dealing with cross-count
contraints.
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