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Abstract—In recent years a particular class of probabilistic graphical

models—called topic models—has proven to represent an useful and interpretable

tool for understanding and mining microarray data. In this context, such models

have been almost only applied in the clustering scenario, whereas the

classification task has been disregarded by researchers. In this paper, we

thoroughly investigate the use of topic models for classification of microarray data,

starting from ideas proposed in other fields (e.g., computer vision). A classification

scheme is proposed, based on highly interpretable features extracted from topic

models, resulting in a hybrid generative-discriminative approach; an extensive

experimental evaluation, involving 10 different literature benchmarks, confirms the

suitability of the topic models for classifying expression microarray data.

Index Terms—Expression microarray, topic models, hybrid generative

discriminative approaches
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1 INTRODUCTION

MICROARRAYS represent a widely employed tool in molecular
biology and genetics, resulting in an enormous amount of data to
be processed to infer knowledge. Computational methodologies
may be very useful in such analysis: among others, a relevant class
is represented by methodologies for classification or clustering [1],
[2]. In this context, in recent years some promising techniques [3],
[4], [5], [6] were based on a particular class of probabilistic
approaches, called topic models. Such models have been imported
from the text analysis realm as workhorses in several scientific
fields [7], [8]. Their wide usage is motivated by their simplicity and
expressiveness in dealing with very large data sets [9], thus being a
convenient tool for the microarray data analysis problem. In this
context, topic models have been mainly used for clustering: for
example, a specific topic model, called Latent Process Decomposi-
tion (LPD), has been proposed in [3] for clustering genes (some
extensions have been proposed by Ying et al. [4] and Masada et al.
[5]). An approach based on the probabilistic Latent Semantic
Analysis (pLSA—[10]) was proposed in [11], aimed at clustering
gene expressions and other information in order to find regulatory
modules. A further example can be found in [6], where the
biclustering issue was faced with the pLSA. On the other side, in

the specific context of expression microarray data analysis, the
classification issue has been almost completely disregarded by
researchers, thus not exploiting all the potentialities of such
models. In fact, even if topic models have been introduced for
clustering purposes, there exist some variants able to deal with the
classification. For example, DiscLDA [12] or Supervised LDA [13]
are able to explicitly take into account the label information while
building the model. Another successful line of research is
represented by the so-called generative embedding schemes (or
score spaces), where topic models are trained in a standard way
and exploited to map the objects to be classified into a feature
space, where a discriminative classifier can be used. This belongs
to the more general class of hybrid generative-discriminative
classification approaches [14], a recent class of techniques aimed at
taking advantage of the best of the generative and the discrimi-
native paradigms—the former based on probabilistic class models
and a priori class probabilities, learned from training data and
combined via Bayes law to yield posterior probabilities, the latter
aimed at learning class boundaries or posterior class probabilities
directly from data, without relying on generative class models [15].
Within the context of generative embeddings, it has been largely
shown in other fields that powerful and discriminative descriptors
may be extracted from topic models [7], [8], [16]; such analysis is
completely missing in the microarray context, where the potenti-
alities of the topic models have not completely been exploited.

In this paper we fill this gap, by investigating the capabilities of
topic models-derived feature vectors for the classification of
microarray data, resulting in a hybrid generative discriminative
classification scheme. The proposed approach has been tested on
several different data sets; obtained results, compared with the
state of the art and with other supervised variants, confirm the
suitability of such models for the classification of expression
microarray data. Some considerations on the interpretability of the
obtained feature descriptors have been also provided, with the use
of a real data set involving different species of grape plants.

The remainder of the paper is organized as follows: in Section 2,
the theory under the topic models is reviewed, whereas the
proposed approach is presented in Section 3, detailing how
discriminant features may be extracted from topic models; in that
section an example highlighting their interpretability is also
proposed. The experimental evaluation is presented in Section 4
and discussed in Section 5; finally in Section 6 conclusions are
drawn and future perspectives are envisaged.

2 TOPIC MODELS AND MICROARRAY

Topic models have been originally introduced in the text analysis
community, in order to describe and model a set of documents.
The basic idea underlying these methods is that each document
may be characterized by the presence of one or more topics (e.g.,
sport, finance, politics), which induces the presence of some
particular words. From a probabilistic point of view, the document
may be seen as a mixture of topics, each one providing a
probability distribution over words.

The application of topic models in the expression microarray
scenario starts from the analogy that can be set between the pair
word document and the pair gene sample: actually it is reasonable
to intend the samples as documents and the genes as word
occurrences. In fact, each sample is characterized by a vector of
gene expressions: the expression level of a gene in a sample may be
easily interpreted as the count of words in a document (the higher
the level the more present the gene/word is in the sample/
document). The representation of documents/samples and words/
genes with topic models has one clear advantage: each topic is
individually interpretable, providing a probability distribution
over words that picks out a coherent cluster of correlated terms.
This may be really advantageous in the expression microarray
context, since the final goal is to provide knowledge about
biological systems, and to suggest possible hidden correlations.
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In this paper, we employ two topic models: the probabilistic
Latent Semantic Analysis [10] and the Latent Process Decomposi-
tion [3], a variant of Latent Dirichlet Allocation (LDA—[17])
specifically designed for microarray.

Even if such models have been introduced in the text analysis
community, here we reformulated their theory in order to deal
with the microarray scenario, assuming the analogy gene/words,
sample/documents, and expression-level/word-counts.

2.1 Probablistic Latent Semantic Analysis

In the original formulation of probabilistic Latent Semantic
Analysis [10], the input is a set of documents, each one containing
a set of words. The documents are summarized by an occurrence
matrix, where each entry indicates the number of occurrences of a
given word in a given document. In the same way, in the
microarray scenario we can assume as an input a set of D samples,
summarized by an expression matrix nðgn; dÞ which measures the
expression level of the gene gn in the sample d. Suppose that we
have N different genes appearing in the sample set. In pLSA, the
presence of a gene gn in the sample d is mediated by a latent topic

variable, z 2 Z ¼ fz1; . . . ; zZg, also called aspect class, i.e.,

pðgn; dÞ ¼ pðdÞ �
X

z

pðgnjzÞ � pðzjdÞ: ð1Þ

In practice, the topic zk is a probabilistic co-occurrence of genes
encoded by the distribution �zk ðgÞ ¼ pðgjzkÞ, g ¼ fg1; . . . ; gNg.
pðzjdÞ (with z ¼ fz1; . . . ; zZg) represents the proportion of the
topics in the sample d; finally pðdÞ accounts for varying
expression levels of the genes.

The hidden distributions of the model, pðgjzÞ and pðzjdÞ, are
learned using Expectation-Maximization (EM), maximizing the
model data log-likelihood L:

L ¼
XN

n¼1

X

d

nðgn; dÞ � log pðgn; dÞð Þ: ð2Þ

The E-step computes the posterior over the topics, pðzjg; dÞ, and the
M-step updates the hidden distributions.

Once the model has been learned one can estimate the topic
proportion of an unseen sample. Usually, the learning algorithm is
applied fixing the previously learned parameters pðgjzÞ and
estimating pðzjdÞ for the sample in hand. For a deeper review of
pLSA, see [10].

2.2 Latent Process Decomposition

Latent Process Decomposition [3] represents a topic model which
has been specifically designed for the microarray scenario. This
model starts from the Latent Dirichlet Allocation [17], which has
been introduced, like pLSA, on the linguist concepts of words,
documents and topics.

In particular, the differences between LPD and pLSA are
twofold: from one hand, LPD inherits from LDA the introduction
of a Dirichlet prior on the mixture of topics that defines a
document (sample), permitting a true generative model for the
whole corpus of documents (samples) [18]. On the other hand, in
the LPD, the gene-topic probability is modeled by a single gaussian
h�g;z; �g;zi, thus reflecting the continuous nature of the expression
level, which is not captured with the discrete formulation or the
original LDA/pLSA.

The parameters of the model are two: �, namely the parameters
of the Dirichlet distribution from which the random variable � is
sampled—�s are the topic proportions that define a document,
namely the pðzjdÞ for pLSA; and �, namely the word distribution
over the topics—i.e., pðgjzÞ, for pLSA. Given these two parameters,
the joint distribution of a topic mixture �, a set of N topics zn, and a
set of N genes gn expressed in the sample is given by

P ð�; z;gj�; �Þ ¼ pð�j�Þ �
YN

n¼1

pðgnjzn; �Þ � pðznj�Þ; ð3Þ

where pðzn ¼ kj�Þ ¼ �ðkÞ, i.e., a multinomial evaluated in k.
For a deeper review of LPD and LDA please refer to [3] and

[17], respectively.

3 MICROARRAY DATA CLASSIFICATION WITH TOPIC

MODELS

This section describes how Topic Models may be used for
classification of expression microarray data. In particular, we will
describe how descriptive feature vectors can be extracted from
them, giving also some insights about their interpretability.

As introduced in the previous section, given the analogy
between the pair word document and the pair gene sample, we
can in general associate the expression matrix of a microarray
experiment to the count matrix <wj; d> of topic models, to be
explicitly or implicitly used to train the specific probabilistic
model.

A small remark: it is worth noting that gene expression is
subject to complex coregulation mechanisms, and there are aspects
of this interdependence that cannot be captured with words co-
occurrence. Nevertheless, we will show later that our methods may
work properly even if disregarding this biological aspect.1

3.1 The Feature Vector and the Classification Scheme

As explained in the introduction, the main idea is to employ a
staged hybrid generative-discriminative approach, which, in our
case, is realized as follows:

1. Generative model training: Given the training set, the
generative topic model is trained, as explained in the
previous section. Different schemes may be adopted to fit
the best model (or set of models) to the data, namely by
learning one model per class, one per the whole data set or
others. Here, we employ the basic one, namely training one
single model for all classes.

2. Generative embedding: Within this step, all the objects are

projected, through the learned model, to a vector space. In

particular, for a given experiment d, the representation

�ðdÞ in the generative embedding space is defined as the

estimated topic posteriors distribution (the pðzjdÞ for pLSA

and the analogous posterior Dirchlet parameter � [3] for

LPD). The intuition is that every topic may be approxi-

mately associated with a biological process (or to a set

of—[3], [6]), which involves some particular genes and is

active in particular samples. Thus, the topic distribution

characterizing a sample may indicate which and to which

extent the different processes are active in such sample,

thus representing a significative and possibly discriminant

feature. Moreover, it is important to notice that this

representation with the topic posteriors has been already

successfully used in computer vision tasks [20], [7] as well

as in the medical informatics domain [21].
3. Discriminative classification: in the resulting generative

embedding space any discriminative vector-based classi-

fier may be employed. In this fashion, according to the

generative/discriminative classification paradigm, we use

the information coming from the generative process as

discriminative features of a discriminative classifier.

These descriptors are advantageous from different points of
view:
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1. A preliminary version of a topic model considering this aspect has
been recently introduced by some of the authors in [19].



1. in other contexts it has been shown that they are very
descriptive for classification purposes [7], [20], [21] (this
being confirmed by our experimental evaluation);

2. they provide a really interpretable representation of the
microarray experiments, in terms of biological proces-
ses—see the next section for an example;

3. the dimensionality of the feature vector is reduced from
the number of genes N to the number of topics K, with
K � N—thus providing a more compact and easy-to-
manage representation.

4. finally, such descriptors represent multinomial distribu-

tions,2 which are suitable to be classified using kernels on

probability measures (also called Information Theoretic

Kernels)—which have been shown to be very effective in

classification problems involving text, images, and other

types of data (see [22] and the references therein); more-

over, very recently, they have been shown to be very

suitable for the hybrid generative-discriminative approach

(see, for example, [23]).

3.2 The Interpretability of the Feature Vector

The extracted feature vectors are highly interpretable: in

particular, pðzjdÞ (�dz ) of PLSA (LPD) characterizes “how present”

every topic is in a given sample; as shown in [3], [6], a topic may

be easily associated with a biological process. Intuitively, a topic

characterizes a subset of samples where the gene expressions are

highly correlated. Therefore, �ðdÞ may be used to infer the

different biological processes which are active over the different

samples. It should be noted that also the probability of the genes

given the topic—pðgjzÞ—may be very useful: actually it may be

interpreted as the impact of the different genes in a particular
biological process. Moreover, the probabilistic nature of these
models permits to encode also the level of the impact, thus taking
into account the well-known fact that not all biological processes
are taking place in every sample.

To show these characteristics we applied the proposed scheme
on a data set which included 48 samples (and 24,676 genes) of
microarray expressions of two grapevine species, V. vinifera and
V. riparia, both subjected to infection with Plasmopara viticola, a
pathogen responsible for a destructive disease. It is known that
V. riparia is resistant to the pathogen, while V. vinifera is more
susceptible to infection, and the study focused in understanding
molecular switches, signals, and effectors involved in resistance
[24]. In the paper, they reported a microarray analysis of early
transcriptional changes associated with P. viticola infection in both
susceptible Vitis vinifera and resistant Vitis riparia plants (12 and
24 h post inoculation). The same experiments have been conducted
with the plant treated with water, a neutral agent used as control.
We choose this data set since it is very complex and structured;
different classes can be highlighted: in particular, samples can be
divided on the basis of the type of plant (V. vinifera or V. riparia), of
the time point (after 12 or 24 h), or the pathogen/water treatment.

In the training phase, a pLSA model was trained 50 times and
the best model (in a likelihood sense) was retained. Guided by the
expertise of biologists, the number of topics has been set to 6 after
several trials. Then, information have been extracted from the
topic/document and word/topic distributions. In particular, in
Fig. 1 we report on the left an intuitive bar plot of the probability
pðzjdÞ (different rows correspond to different topics z), while the
figure on the right represents the functional categories of the most
important genes (found by looking at pðgjzÞ—a counterpart for
LPD may be somehow difficult to derive).

Studying the composition of the data set, we observed that it is
rather accurately reflected by the pðzjdÞ distribution (on the left of
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Fig. 1. PLSA analysis. (a) Bar representation of the pðzjdÞ distribution for each of the six topics (each bar corresponds to one sample). The main classes are represented
on the bottom of the figure. (b) Functional category distribution of topic specific genes.

2. Actually, in the LPD case, we used the normalized posterior.



the figure). Actually, every topic can reflect a different aspect of the
data set. For example, some topics show groups of samples which
are more correlated with the effects of treatment at the different
time points rather than with a specific reaction to the pathogen in
comparison with the control (water). This is evident in the third
and fourth topics, which represent V. vinifera after 12 and 24 hour,
respectively, the former without pathogen inoculation and the
latter infected. The last topic captures the processes of V. riparia
after 12 hour since the infiltration, in the first case with water, in
the second with the pathogen.

From the specific disease resistance point of view, the analysis
confirmed the tendency of a specific response in V. riparia. In fact,
the first topic deals with samples related to infected V. riparia’s
leaves at both time points (12 and 24 hours after infection). By
looking at the genes which are most active in the first topic,
biologists found that their distribution is particularly significant. In
fact, important functional categories among the involved genes
(listed on the right side of Fig. 1) are carbohydrate metabolism and
transport, in contrast with a strong contribution of photosynthesis-
related gene expression in other topics. As previously reported, the
primary metabolic reprogramming underlies defense in biotrophic
interactions in order to potentially supply both energy and
precursors to implement a defense mode.

It is also worth noting that, within topic 1, the same trend of the
last 12 experiments is visible on the classes of V. vinifera subjected
to inoculation (samples 12-24). In fact, this means that an activation
of some genes—possibly involved in the response to the
pathogen—is undergoing, but the response is too weak, explaining
the susceptibility of the plant to P. viticola.

Concluding, all these observations qualitatively confirm the
capabilities of the proposed descriptors to encode different
aspects of the data set. A quantitative evaluation is provided in
the next section.

4 EXPERIMENTAL EVALUATION

The suitability of the proposed classification scheme has been
extensively tested on 10 different well-known data sets, briefly
summarized in Table 1. The whole description of each data set may
be found in the reported reference.

As in many expression microarray analysis, a beneficial effect
may be obtained by selecting a sub group of genes, in order to limit
the dimensionality of the problem and to reduce the possible
redundancy present in the data set. Gene selection may be
obtained using different methodologies, ranging from the simple
variance filtering up to complicate statistics. Here, we employed
the Minimum-Redundancy Maximum-Relevance feature selection
approach [35], [36].3 In order to have a fair comparison with the
state of the art, for every data set we selected the best result in the

literature (at least to the best of our knowledge)—they are reported
in Table 1; we used then, in our experiments, the same number of
genes used in that paper (when specified); if not specified, we
retain 500 genes (as in the LPD paper [3]). For similar reasons, also
the cross-validation protocols—again reported in Table 1—have
been chosen by looking at the relative state-of-the-art papers.

In the learning phase, the pLSA and the LPD models have been
built only on the training set. Since the training procedure can
converge to local optima of the likelihood, the training has been
repeated 20 times, starting from different random initializations,
retaining the model with the highest data likelihood. The number
of topic is a free parameter in topic models, and should be set in
advance. Different automatic techniques have been proposed in
the literature to set such a number, ranging from hold-out
likelihood [3] to cross validation, from a priori knowledge to
probabilistic model selection methods—e.g., the Bayesian Informa-
tion Criterion (BIC—[46]). Here, we adopted a very simple scheme:
starting from the observation that topic models were initially
designed to discover and model groups of documents, we thought
reasonable to fix the number of topics as proportional to the
number of classes, namely the number of natural groups present in
the data set (after few trials, we found that three times the number
of classes was a reasonable choice). Despite the simplicity of this
rule, obtained results were very satisfactory. An analysis of the
performances of pLSA and LPD with respect to this parameter is
presented in the discussion part. A final note on the training for the
pLSA model: the expression matrix (real-valued numbers) cannot
be used as it is as the count matrix < wj; di > of topic models
(positive and integer values); therefore a simple normalization step
(shifting and scaling) has been applied to the matrix in order to
have positive and integer values.

As almost always in hybrid generative discriminative
schemes, the classification accuracies have been computed using
Support Vector Machines in the resulting generative embedding
space—the parameter C has been selected using Cross Validation
on the training set. Here, more than using the standard linear
kernel, we exploited the probabilistic nature of the feature vector
by the use of different kernels on measures (also called
information theoretic kernels [22]), which provide similarity
between probabilistic distributions. It has been shown in other
contexts (see, for example [23]) that such combination may be
beneficial for some hybrid generative-discriminative methods. In
particular, here we employ the standard Jensen-Shannon kernel
(JS) and a novel kernel, recently introduced by Martins et al. [22],
which is based on a nonextensive generalization of the classical
Shannon information theory, and defined on (possibly unnorma-
lized) probability measures (see [22] for all details): the Jensen-
Tsallis (JT) kernel (the parameter q has been adjusted by cross
validation on the training set).

In order to investigate the potentiality and the possible
extendibility of the proposed approach, we extracted from the
topic models a more complex feature, called Free Energy Score
Spaces (FESS—[8]), which expresses how well each data point (i.e.,
microarray experiment) fits different parts of a trained generative
model. It has been found that the FESS is highly informative for
discriminative learning, yielding state-of-the-art results in several
contexts [8], [47]. In our experiments, after extracting the FESS
descriptors, we used the linear kernel with SVM.

Another interesting point of analysis is related to the different
possible ways in which topic models can be exploited for
classification. Alternatives to our staged scheme exist, as explained
in the introduction: in particular, here we compared our approach
to a simple Bayesian scheme—which trains one model per class
and performs classification with the Bayes rule—, and to the
supervised topic models approach [13]—which explicitly takes
into account the labels in the training process.4
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TABLE 1
Summary of the Employed Data Set

In particular, G represents the number of genes, S the number of samples, and C
the number of classes.

3. http://www.mathworks.com/matlabcentral/fileexchange/14916.
4. The code can be found in http://cran.r-project.org/web/packages/

lda/.



All the obtained results are reported in Table 2, together with
state-of-the-art results (in bold the best result for every data set).
“Lin,” “JS,” and “JT” stand for linear, Jensen-Shannon, and Jensen-
Tsallis kernels, respectively. “FESS L2” and “FESS L3” are two
variants of the FESS approach—see [8] for all details.

5 DISCUSSION

As a general comment, from the table it can be argued that
descriptors extracted from Topic Models are really effective for
expression microarray classification. When compared with litera-
ture, we can observe that our results are in line with those results.
Moreover, in three cases (Brain1, Brain2, and 9 Tumors), our best
result is substantially better than the state of the art. It is important
to notice, at this point, that we compared our results (obtained
within a single framework) with results obtained with many
different techniques on different data sets, each technique possibly
tailored for the specific data set (which are very different in terms
of composition and difficulty—see Table 1).

Some more specific observations can be drawn from the table:

in particular, by looking at the behavior of the different kernels, we

can notice that a beneficial effect is obtained when exploiting the
probabilistic nature of the feature vector by using the information

theoretic kernels. Concerning the two employed generative

models, it seems that in average there is not such a big difference
betwenn pLSA and LPD in terms of accuracy, with some data sets

slightly preferring pLSA. A possible justification may be searched

in the sensibility of LPD model to the choice of the number of
topics. To investigate such behavior, we performed an exhaustive

analysis on the Leuk2 data set, by varying such number from 3 to

30 (step 3). In Fig. 2, the error curves are displayed.
It seems evident from the plots that the accuracies for the

pLSA do not vary too much while changing the number of topic,

whereas the LPD is more sensible to such choice (when properly

chosen, LPD outperforms pLSA). This is true both for linear and

for the JT kernels.
The potentiality and the possible extendibility of the proposed

approach are evident when looking at the results obtained with

FESS. Actually, it turned out that when the topic proportion

descriptor is somehow not enough to discriminate (see, for

example, NCI60 and 9 tumors), the FESS signature permits to

unravel the complexity of the problem, leading to excellent results

(on the contrary, when the topic proportion feature vector works

well, only a marginal improvement is got by using FESS).
Finally, by comparing the different ways of exploiting topic

models for classification (our approach, the Bayesian scheme, and
the supervised topic models method), it seems evident that in
problems with few classes a supervised topic model is a good
choice, leading to very good results. On the contrary, when the
number of classes increases, the other two choices seem to be
more appropriate. This is probably due to the fact that both
approaches treat in a separate way the data and the labels (the
Bayesian approach by splitting the training set, the hybrid
approach by the two-staged procedure), whereas supervised
topic models try to simultaneously consider both data and labels,
which can be very complicated in problems with large number of
classes. In general, our hybrid approach is better, confirming the
fact, shown in other many different contexts, that this scheme is
able to exploit the complementarity of the generative and the
discriminative paradigms.

6 CONCLUSIONS

In this paper, we investigated the use of topic models for
classification of expression microarray data. A classification scheme
is proposed, based on highly interpretable features extracted from
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TABLE 2
Classification Errors of the Proposed Approaches for Different Data Sets

Fig. 2. Accuracies on the Leuk data set by varying the number of topics. Results are shown for pLSA and LPD with linear (left) and Jensen-Tsallis (right) kernels.



topic models, resulting in a hybrid generative-discriminative
approach; an extensive experimental evaluation, involving 10
different literature benchmarks, confirmed the suitability of the
topic models for classifying this kind of data. Finally, a qualitative
analysis on grapevine plants expressions suggested the great
expressiveness of the proposed approach.
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