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Abstract: Most approaches to classifier learning for structured objects (such as images or sequences) are based on proba-
bilistic generative models. On the other hand, state-of-the-art classifiers for vectorial data are learned discrim-
inatively. In recent years, these two dual paradigms have been combined via the use of generative embeddings
(of which the Fisher kernel is arguably the best known example); these embeddings are mappings from the
object space into a fixed dimensional score space, induced by a generative model learned from data, on which
a (maybe kernel-based) discriminative approach can then be used.
This paper proposes a new semi-parametric approach to build generative embeddings for classification of mag-
netic resonance images (MRI). Based on the fact that MRI data is well described by Rice distributions, we
propose to use Rician mixtures as the underlying generative model, based on which several different generative
embeddings are built. These embeddings yield vectorial representations on which kernel-based support vector
machines (SVM) can be trained for classification. Concerning the choice of kernel, we adopt the recently
proposed nonextensive information theoretic kernels.
The methodology proposed was tested on a challenging classification task, which consists in classifying MRI
images as belonging to schizophrenic or non-schizophrenic human subjects. The classification is based on
a set of regions of interest (ROIs) in each image, with the classifiers corresponding to each ROI being com-
bined via boosting. The experimental results show that the proposed methodology outperforms the previous
state-of-the-art methods on the same dataset.

1 INTRODUCTION

Most approaches to learning classifiers belong to
one of two paradigms: generative and discriminative
(Ng and Jordan, 2002; Rubinstein and Hastie, 1997).
Generative approaches are based on probabilistic
class models and a priori class probabilities, learnt
from training data and combined via Bayes law to
yield posterior probability estimates. Discriminative
learning methods aim at learning class boundaries or
posterior class probabilities directly from data, with-
out relying on generative class models.

In the past decade, several hybrid generative-
discriminative approaches have been proposed
with the goal of taking advantage of the best
of both paradigms (Jaakkola and Haussler, 1999;
Lasserre et al., 2006). In this context, the so-called

generative score space methods (or generative em-
beddings) have stimulated significant interest. The
key idea is to exploit a generative model to map the
objects to be classified into a feature space, where
discriminative techniques, namely kernel-based ones,
can be used. This is particularly suitable to deal with
non-vectorial data (strings, trees, images), since it
maps objects (maybe of different dimensions) into a
fixed dimension space.

The seminal work on generative em-
beddings is arguably the Fisher kernel
(Jaakkola and Haussler, 1999). In that work, the
features of a given object are the derivatives of
the log-likelihood under the assumed generative
model, with respect to the model parameters, com-
puted at that object. Other examples of generative
embeddings have been more recently proposed



(Bosch et al., 2006; Perina et al., 2009).
In this paper, we exploit generative embed-

dings to tackle a challenging classification task:
based on a set of regions of interest (ROIs) of
a magnetic resonance image (MRI), classify the
patient as suffering, or not, from schizophrenia
(Cheng et al., 2009a). We build on the knowledge
of the fact that MRI data is well modeled by Rician
distributions (Gudbjartsson and Patz, 1994), and pro-
pose several generative embeddings based on Rician
mixture models. Concerning the kernels used in the
obtained feature space, we adopt the nonextensive
information theoretic kernels recently proposed by
(Martins et al., 2009). An SVM classifier is learnt for
each ROI. Finally, an optimal combination of these
SVM classifiers is learnt via the AdaBoost algorithm
(Freund and Schapire, 1997). The experimental re-
sults reported show that the proposed methodology
outperforms the previous state-of-the-art on the same
dataset.

The paper is organized as follows. Section 2 ad-
dresses the problem of estimating Rician finite mix-
tures using the expectation-maximization (EM) algo-
rithm. In Section 3, we propose several generative
embeddings based on the Rician mixture model. Sec-
tion 4 briefly reviews the information theoretic ker-
nels proposed by (Martins et al., 2009), while Section
5 described SVM combination via boosting. Finally,
Section 6 reports the experimental results on the mag-
netic resonance (MR) image categorization problem.

2 RICIAN MIXTURE FITTING
VIA THE EM ALGORITHM

2.1 The EM Algorithm

The expectation-maximization (EM) algorithm
(Dempster et al., 1977) is the most common ap-
proach for computing the maximum likelihood
estimate (MLE) of the parameters of a finite mixture.
In this section, we briefly review how EM is used to
estimate a mixture of Rician distributions. A Rician
probability density function (Rice, 1944) has the
form

fR(y;v,σ) =
y

σ2 e−
y2+v2

2σ2 I0

(yv
σ2

)
, (1)

for y > 0, and zero for y ≤ 0, where v is the mag-
nitude parameter, σ is the noise parameter, and I0(z)
denotes the 0-th order modified Bessel function of the
first kind (Abramowitz and Stegun, 1972)

I0(z) =
1

2π

∫ 2π

0
ezcosϕdϕ . (2)

A finite mixture of Rician distributions, with g
components, is thus

f (y;Ψ) =
g

∑
i=1

πi fR
(
y;νi,σ2

i
)
, (3)

where the πi’s, i = 1, . . . ,g, are nonnegative quanti-
ties that sum to one (the so-called mixing proportions
or weights), θi = (νi,σ2

i ) is the pair of parameters of
component i, and Ψ = (π1, . . . ,πg−1,θ1, . . . ,θg) is the
vector of all the parameters of the mixture model.

Let Y = {y1, . . . ,yn} be a random sample of size
n, assumed to have been generated independently by
a mixture of the form (3) and consider the goal of ob-
taining an MLE of Ψ, that is, Ψ̂ = argmaxΨ L(Ψ),
where

L(Ψ,Y )=
n

∑
j=1

log f (y j;Ψ)=
n

∑
j=1

log
g

∑
i=1

πi fR
(
y j;νi,σ2

i
)
.

(4)
As is common in EM, let z j ∈ {0,1}g be a g-

dimensional hidden/missing binary label vector asso-
ciated to observation y j, such that z ji = 1 if and only
if y j was generated by the i-th mixture component.
The so-called complete data is {(y1,z1), . . . ,(yn,zn)
and the corresponding complete loglikelihood for Ψ,
logLc(Ψ), is given by

Lc(Ψ,Y,Z) =
n

∑
j=1

g

∑
i=1

z ji
{

logπi + log fR(y j;θi)
}

(5)

where Z = {z1, . . . ,zn}.
The EM algorithm proceeds iteratively in two

steps. The E-step computes the conditional expec-
tation (with respect to the missing labels Z), of the
complete loglikelihood given the observed data y and
the current parameter estimate Ψ̂(k),

Q(Ψ;Ψ(k)) := EZ

[
Lc(Ψ,Y,Z)|Y,Ψ̂(k))

]
. (6)

Since the complete-data log likelihood is linear in the
unobservable data zi j (as is clear in (5)), this reduces
to computing the conditional expectation of hidden
variables and plugging these into the complete log-
likelihood. These conditional expectations are well
known and equal to the posterior probability that the
j-th sample was generated by the ith component of
the mixture; denoting this quantity as w ji, we have

w ji =
πi f (y j;θ(k)i )

∑g
h=1 π(k)

h f (y j;θ(k)h )
, (7)

for i = 1, . . . ,g and j = 1, . . . ,n. It follows that the
conditional expectation of the complete loglikelihood
(6) becomes

Q(Ψ;Ψ(k)) =
g

∑
i=1

n

∑
j=1

w ji
{

logπi + log f (y j;θi)
}
. (8)



The M-step obtains an updated parameter estimate
Ψ(k+1) by maximizing Q(Ψ;Ψ(k)) with respect to Ψ
over the parameter space Ω. The updated estimates of
the mixing proportions π(k+1)

i are well-known to be
given by

π(k+1)
i =

1
n

n

∑
j=1

w ji. (9)

2.2 Updating the Parameters of the
Rician Components

Updating the estimate of θi =(νi,σ2
i ) requires solving

g

∑
i=1

n

∑
j=1

w ji∇θ log fR(y j;θ) = 0, (10)

where ∇θ denotes the gradient with respect to θ. In
the following proposition (proved in the appendix),
we provide an explicit solution of (10) for the Rician
mixture.

Proposition 2.1. The updated estimate θ̂(k+1)
i =

(v̂(k+1)
i ,(σ̂2

i )
(k+1)), that is, the solution of (10), is

v̂(k+1)
i =

1
∑n
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n

∑
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w ji y j ϕ
(y jv

(k)
i

σ2(k)
i

)
(11)

and

(σ̂2
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(k+1)) =
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j=1 w ji

n

∑
j=1
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(k+1)
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(k)
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where

ϕ(u) =
I1(u)
I0(u)

. (13)

3 GENERATIVE EMBEDDINGS
BASED ON RICIAN MIXTURES

This section introduces several generative embed-
dings for images based on the Rician mixture model.
Let Xs =

{
ys

1, . . . ,y
s
Ns

}
, for s = 1, . . . ,S, be a set of

images, each belonging to one of R classes. Each
image Xs is modeled simply as a bag of Ns strictly
positive pixels ys

j ∈ R++, for j = 1, . . . ,Ns. Each im-
age is mapped into a finite-dimensional Hilbert space
(the so–called feature space) using the Rician mixture
generative model, as explained next.

Based on a K-components Rician mixture with pa-
rameters Ψ, the posterior probability that ys

j (the j-th

pixel of the s-th image) belongs to the i-th component
of the mixture is

wi(ys
j;Ψ) =

πi f (ys
j;θi)

∑K
k=1 πk f (ys

j;θk)
, (14)

as used in the E-step (7). Based on (14), different
generative embeddings can be defined, as shown in
Definitions 3.1, 3.2, and 3.3.

Definition 3.1. If a single Rician mixture Ψ is esti-
mated for the S images, the embedding of an image
X = {y1, . . . ,yN} is a K-dimensional vector given by

ẽ single(X ;Ψ) =

1
N

[
N

∑
j=1

w1(y j;Ψ), . . . ,
N

∑
j=1

wK(y j;Ψ)

]T

. (15)

Definition 3.2. If a set of R Rician mixtures (one per
class) is estimated, {Ψ1, . . . ,ΨR}, each with K com-
ponents, the embedding of an image X = {y1, . . . ,yN}
is a (KR)-dimensional vector given by

ẽ(X ;Ψ1, . . . ,ΨR) =

1
Ns

[(
ẽ single(X ;Ψ1)

)T
, ...,

(
ẽ single(X ;ΨR)

)T
]T

.

(16)

Other possible embeddings and their generalizations
are introduced in the following definition.

Definition 3.3. We will also consider the two follow-
ing K-dimensional embeddings, defined for an arbi-
trary image X = {y1, . . . ,yN} as

ē single(X ;Ψ) =
1
N

N

∑
j=1

[
π1 f (y j;θ1), . . . ,πK f (y j;θK)

]T

and

ê single(X ;Ψ) =
1
N

N

∑
j=1

[
f (y j;θ1), . . . , f (y j;θ1)

]T
,

as well as their (KR)-dimensional generalizations to
the case in which a Rician mixture is estimated for
each of the R classes,

ē(X ;Ψ1, . . . ,ΨR) =[(
ē single(X ;Ψ1)

)T
, . . . ,

(
ē single(X ;ΨR)

)T
]T

and

ê(X ;Ψ1, . . . ,ΨR) =[(
ê single(X ;Ψ1)

)T
, . . . ,

(
ê single(X ;ΨR)

)T
]T

.



4 NONEXTENSIVE
INFORMATION THEORETIC
KERNELS ON MEASURES

This section briefly reviews the information theo-
retic kernels proposed in (Martins et al., 2009), intro-
ducing notation which will be useful later on.

4.1 Suyari’s Entropies

Begin by recalling that both the Shannon-Boltzmann-
Gibbs (SBG) and the Tsallis entropies are particu-
lar cases of functions Sq,ϕ following Suyari’s axioms
(Suyari, 2004). Let ∆n−1 be the standard probability
simplex and q ≥ 0 be a fixed scalar (the entropic in-
dex). The function Sq,ϕ : ∆n−1→ R has the form

Sq,ϕ(p1, · · · , pn) =

{ k
ϕ(q)
(
1−∑n

i=1 pq
i
)

if q ̸= 1
−k ∑n

i=1 pi ln pi if q = 1
(17)

where ϕ : R+→R is a continuous function with prop-
erties stated in (Suyari, 2004), and k > 0 an arbitrary
constant, henceforth set to k = 1. For q = 1, we re-
cover the SBG entropy,

S1,ϕ(p1, · · · , pn) = H(p1, · · · , pn) =−
n

∑
i=1

pi ln pi,

while setting ϕ(q) = q−1 yields the Tsallis entropy

Sq(p1, · · · , pn) =
1

q−1

(
1−

n

∑
i=1

pq
i

)
=−

n

∑
i=1

pq
i lnq pi,

where lnq(x) =
(x1−q−1)

1−q is the q-logarithmic function.

4.2 Jensen-Shannon (JS) Divergence

Consider two measure spaces (X ,M ,ν), and
(T ,J ,τ), where the second is used to index the first.
Let H denote the SBG entropy, and consider the ran-
dom variables T ∈ T and X ∈ X , with densities π(t)
and p(x) ,

∫
T p(x|t)π(t). The Jensen divergence

(Martins et al., 2009) is defined as
Jπ(p), Jπ

H(p) = H(E[p])−E[H(p)]. (18)
When X and T are finite with |T | = m,
Jπ

H(p1, · · · , pm) is called the Jensen-Shannon (JS)
divergence of p1, · · · , pm, with weights π1, · · · ,πm
(Burbea and Rao, 1982), (Lin, 1991). In partic-
ular, if |T | = 2 and π = (1/2,1/2), p may be
seen as a random distribution whose value on
{p1, p2} is chosen tossing a fair coin. In this case,
J(1/2,1/2) = JS(p1, p2), where

JS(p1, p2), H
(

p1 + p2

2

)
− H(p1)+H(p2)

2
,

which will be used in Section 4.4 to define JS kernels.

4.3 Jensen-Tsallis (JT) q–Differences

Notice that Tsallis’ entropy can be written as

Sq(X) =−Eq[lnq p(X)] ,

where Eq denotes the unnormalized q–expectation,
which, for a discrete random variable X ∈ X with
probability mass function p : X → R, is defined as

Eq[X ], ∑
x∈X

x p(x)q;

(of course, E1[X ] is the standard expectation).
As in Section 4.2, consider two random variables

T ∈ T and X ∈ X , with densities π(t) and p(x) ,∫
T p(x|t)π(t). The Jensen q-difference (nonextensive

analogue of (18)) (Martins et al., 2009) is

T π
q (p) = Sq(E[p])−Eq[Sq(p)].

If X and T are finite with |T | = m, T π
q (p1, · · · , pm)

is called the Jensen-Tsallis (JT) q-difference of
p1, · · · , pm, with weights π1, · · · ,πm. In particular, if
|T |= 2 and π = (1/2,1/2), define Tq = T 1/2,1/2

q

Tq(p1, p2) = Sq

(
p1 + p2

2

)
−

Sq(p1)+ sq(p2)

2
,

which will be used in Section 4.4 to define JT kernels.
Naturally, T1 coincides with the JS divergence.

4.4 Jensen-Shannon and Tsallis Kernels

The JS and JT differences underlie the kernels pro-
posed in (Martins et al., 2009), which can be defined
for normalized or unnormalized measures.
Definition 4.1 (weighted Jensen-Tsallis kernels). Let
µ1 and µ2 be two (not necessarily probability) mea-
sures; the kernel k̃q is defined as

k̃q(µ1,µ2),
(
Sq(π)−T π

q (p1, p2)
)
(ω1 +ω2)

q

where p1 =
µ1
ω1

and p2 =
µ2
ω2

are the normalized coun-
terparts of µ1 and µ2, with corresponding total masses
ω1 and ω2, and π = (ω1 +ω2)

−1 [ω1,ω2]. The kernel
kq is defined as

kq(µ1,µ2), Sq(π)−T π
q (p1, p2)

Notice that if ω1 = ω2, k̃q and kq coincide up to
a scale factor. For q = 1, kq is the so-called Jensen-
Shannon kernel, kJS(p1, p2) = ln2− JS(p1, p2).

The following proposition characterizes these ker-
nels in terms of positive definiteness, a crucial aspect
for their use in support vector machines (SVM).

Proposition 4.1. The kernel k̃q is positive definite
(pd), for q ∈ [0,2]. The kernel kq is pd, for q ∈ [0,1].
The kernel kJS is pd.



5 COMBINING SVM
CLASSIFIERS VIA BOOSTING

The final building block of our approach to MR
image classification is a way to combine the classi-
fiers working on each of the several regions of interest
(ROI). For that end, we adopt the Adaboost algorithm
(Freund and Schapire, 1997), which we now briefly
review. In the description of AdaBoost in Algorithm
5.1, each (weak) classifiers Gm(x), m= 1, . . . ,M, each
corresponding to one of the M regions.

Algorithm 5.1 AdaBoost
(Freund and Schapire, 1997)

1. Initialize weights pi = 1/S, i = 1, . . . ,S.
2. For m = 1 to M:

(a) Learn classifier Gm(x) with current weights.
(b) Compute weighted error rate:

errm =
∑S

i=1 pi1(yi ̸=Gm(xi))

∑S
i=1 pi

.

(c) Compute γm = log(1− errm)− log(errm) .
(d) pi← pi · exp(γm1(yi ̸=Gm(xi))), i = 1, . . . ,S.

3. Output G(x) = sign
[
∑M

m=1 γmGm(x)
]

.

Each boosting step requires learning a classifier by
minimizing a weighted criterion, that is, with weights
p1, . . . , pS corresponding to each training observa-
tions (yi,Xi), i = 1, . . . ,S. In our case, the classi-
fier Gm is a weighted version of the SVM classifier
corresponding to the m-th ROI, i.e., the SVM clas-
sifier whose kernel function is built on the Rician
mixture estimated for that ROI. To take into account
these weights, the optimization problem solved by the
SVM learning algorithm requires a modification: the
penalty on the slack variable ξi corresponding to the
example Xi is set to be proportional to the weight pi.
The corresponding modified 1-norm SVM optimiza-
tion problem (Cristianini and Shawe-Taylor, 2000),
(Schölkopf and Smola, 2002) is
min

ξ,β,β0
⟨β,β⟩+C ∑S

i=1 piξi (19)

s.t. yi (⟨β,ϕ(Xi)⟩+β0)≥ 1−ξi, i = 1, . . . ,S
ξi ≥ 0, i = 1, . . . ,S .

The Lagrangian for problem (19) is

Lp (β,β0,ξ,α,µ) =
1
2
∥β∥2 +C

S

∑
i=1

piξi

−
S

∑
i=1

αi [yi(⟨ϕ(Xi),β⟩+β0)− (1−ξi)]−
S

∑
i=1

µiξi

(20)

with αi ≥ 0 and µi ≥ 0. By minimizing Lp with re-
spect to β, β0, ξi and µi, i = 1, . . . ,S, the Lagrange
dual problem results

max
α

∑S
i=1 αi− 1

2 ∑S
i, j=1 αiα jyiy jk(Xi,X j) (21)

s.t. 0≤ αi ≤ piC

∑S
i=1 αiyi = 0 .

Notice that each αi is constrained to be less or
equal to piC rather than C while the objective func-
tion in (21) is the same as the original 1-norm
dual problem (Cristianini and Shawe-Taylor, 2000),
(Schölkopf and Smola, 2002). As a consequence, if
pi is close to zero, so is αi, thus contributing very
weakly to the definition of the optimal hyperplane,
which is still given by

f (X ,α∗,β0) =
S

∑
i=1

yi α∗i k(Xi,X)+β∗0 . (22)

6 EXPERIMENTS

Let us begin this section with a summary of the
proposed approach. The training data consists of set
of images, each containing a set of M regions of inter-
est (ROI) and labeled as belonging to a schizophrenic
or non-schizophrenic patient. For each ROI of the
set of training images, either a single Rician mixture
or two Rician mixtures (one for each class) are esti-
mated and used to embed the data on a Hilbert space,
as described in Section 3. On the Hilbert space for
each ROI, one of the information theoretic kernels de-
scribed in Section 4 is used. Finally, a set of M (one
per ROI) SVM classifiers is obtained by the AdaBoost
algorithm described in Section 5; the final classifier is
the one resulting at the last step of Algorithm 5.1.

The baselines against which we compare the pro-
posed approach are SVM classifiers with linear ker-
nels (LK) and Gaussian radial basis function ker-
nels (GRBFK) built on the same generative embed-
dings. SVM training is carried out using the LIBSVM
package (http:// www. csie. ntu. edu. tw/ ˜cjlin/
libsvm ). The underlying Rician mixtures were esti-
mated using the EM algorithm described in Section
2, with K (the number of components) selected using
the criterion proposed in (Figueiredo and Jain, 2002);
this leads to numbers in the [4,6] range. We tested the
generative embeddings ẽ, ē and ê proposed in Section
3, both in the single-mixture and R-mixtures versions.

The dataset contains 124 images (64 patients and
60 controls), each with the following 14 ROIs (7
pairs): Amygdala (1-Left, 2-Right), Dorso-lateral
PreFrontal Cortex (3-Left, 4-Right), Entorhinal Cor-



tex (5-Left, 6-Right), Heschl’s Gyrus (7-Left, 8-
Right), Hippocampus (9-Left, 10-Right), Superior
Temporal Gyrus (11-Left, 12-Right), Thalamus (13-
Left, 14-Right). To evaluate the classifiers, the dataset
was split 50%-50% into training and test subsets and
10 runs were performed.

SVM classifiers were trained for each individual
ROI (without the boosting-based combination), and
the conclusion was that ROI 10 leads to the best accu-
racy (see Tables 1, 2, 3). The accuracy is robust to the
number of components of the mixture. The best per-
formances over q and C are reported. For the GRBFK,
the best performance over the width parameter and
over C are reported. Mean accuracies are plotted in
Figure 1 as a function of q for the best value of C and
as a function of C for the best value of q, for the gen-
erative embeddings ẽ, ē and ê, with 2 (one per class)
Rician mixtures each with 4 components. The results
with a single mixture are very similar, thus omitted.
For q > 1, the results shown for the weighted JT ker-
nel (which is positive definite only for q ∈ [0,1]) cor-
respond to q = 1. These results show that the pro-
posed generative embeddings lead to comparable per-
formances. The information theoretic kernels outper-
form the LK and GRBFK. Namely, the best perfor-
mances are obtained with the JT and weighted JT ker-
nels, for all ROIs. The standard error of the mean is
less than 0.006.

Results obtained by combining the SVM clas-
sifiers with the AdaBoost algorithm are shown
in Table 4 for the generative embeddings ẽ, ē
and ê. These results show that the proposed
approach outperforms state-of-the-art methods
for ROIs intensity histograms for this dataset,
see (Cheng et al., 2009a), (Cheng et al., 2009b),
(Ulas et al., 2010), (Ulas et al., 2011).

7 CONCLUSIONS

In this paper, we have proposed a new approach
for building generative embeddings for kernel-based
classification of magnetic resonance images (MRI) by
exploiting the Rician distribution that characterizes
MR images. Using generative embeddings, the im-
ages to be classified are mapped onto a Hilbert space,
where kernel-based techniques can be used. Concern-
ing the choice of kernel, we have adopt the recently
proposed nonextensive information theoretic kernels.
The proposed approach was tested on a challenging
classification task: classifying subjects as suffering,
or not, from schizophrenia on the basis of a set of re-
gions of interest (ROIs) in each image. To this pur-
pose, an SVM classifier for each ROI is learnt. Fi-

nally, we propose to combine the SVM classifiers via
a boosting algorithm. The experimental results show
that the proposed methodology outperforms the pre-
vious state-of-the-art methods on the same dataset.

A Proof of Proposition 2.1

Proof. First of all, let us note that f (y j;θi) can be
written in factorized form as

fi (y j;θi) = A(y j;θi) ·B(y j;θi) (23)

where

A(y j;θi) =
y j

σ2
i

e
−

y2
j+v2

i
2σ2

i (24)

and

B(y j;θi) = I0

(
y jvi

σ2
i

)
(25)

It follows that the partial derivatives of the log-
likelihhod with respect to vi and σ2

i result

∂ log f (y j;θi)

∂vi
=

1
f (y j;θi)

·
∂ f (y j;θi)

∂vi

=
1

A ·B
·
[

∂A
∂vi
·B+A · ∂B

∂vi

]
=

1
A
· ∂A

∂vi
+

1
B
· ∂B

∂vi
(26)

∂ log f (y j;θi)

σ2
i

=
1
A
· ∂A

∂σ2
i
+

1
B
· ∂B

∂σ2
i

(27)

The partial derivative of A(y j;θi) with respect to vi is

∂A(y j;θi)

∂vi
=

y j

σ2
i

e
−

y2
j+v2

i
2σ2

i ·
(
− 1

2σ2
i
·2vi

)
(28)

Moreover, recalling that the higher order modified
Bessel functions In(z), defined by the contour integral

In(z) =
1

2πi

∮
e(

z
2 )(

t+1
t )t−n−1dt (29)

where the contour encloses the origin and is traversed
in a counterclockwise direction, can be expressed in
terms of I0(z) through the following derivative iden-
tity (Abramowitz and Stegun, 1972)

In(z) = Tn

(
d
dz

)
I0(z) (30)

where Tn(z) is a Chebyshev polynomial of the first
kind (Abramowitz and Stegun, 1972)

Tn(z) =
1

4πi

∮
(1− t2)t−n−1

(1−2tz+ t2)
dt (31)
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Figure 1: Mean accuracy on 10 runs as a function of q (best C) and as a function of C (best q) for the SVM classifier learnt on
ROI 10 using one Rician mixture per class with K = 4 components and embeddings ẽ ((a), (b)), ē ((c), (d)) and ê ((e), (f)).



Table 1: Mean accuracy for the best values of q and C for the SVM classifiers learnt on ROI 2, 4, 6 respectively, using one
Rician mixture per class with K = 4,5,6 components and embeddings ẽ, ē and ê.

ROI 2 4 6
No. of components 4 5 6 4 5 6 4 5 6
Embedding ẽ
Linear 54.84 53.06 53.39 60.16 60 60 57.26 58.23 58.23
RBF 59.52 60.16 62.26 60.81 60.81 61.13 65.32 65.16 64.48
Jensen-Shannon 58.87 58.39 59.84 60.81 58.55 60.32 67.42 66.61 65.48
Jensen-Tsallis 59.35 60 60.97 62.42 59.84 62.42 67.58 67.42 65.97
Weighted JT k̃q 59.35 59.84 60.97 61.13 60.32 61.94 67.74 67.26 66.29
Weighted JT kq 59.35 59.19 59.84 62.42 59.84 62.42 67.58 66.94 65.97

Embedding ē
Linear 53.06 51.94 51.94 58.87 58.23 57.74 56.45 58.55 57.74
RBF 61.94 62.26 63.39 59.84 60.48 60.97 64.03 63.39 63.55
Jensen-Shannon 60 61.45 60.32 57.74 57.74 57.26 64.84 65.48 65.81
Jensen-Tsallis 61.45 61.45 62.9 60.48 60.16 60 67.1 67.58 66.61
Weighted JT k̃q 62.58 62.26 62.1 57.9 58.06 58.87 66.13 65.97 65
Weighted JT kq 61.77 61.45 63.23 56.94 58.06 57.09 66.45 66.94 67.74

Embedding ê
Linear 52.74 53.55 55.65 58.39 58.06 58.55 57.1 57.26 57.1
RBF 61.94 62.1 63.39 60.32 60.65 60.32 65.81 64.84 65.16
Jensen-Shannon 60.48 60.32 60.97 57.74 57.74 57.9 65 66.45 65.97
Jensen-Tsallis 60.97 61.13 63.39 59.52 60.16 59.52 66.76 68.06 66.29
Weighted JT k̃q 62.1 62.58 62.42 58.39 57.9 58.55 64.08 65 65.65
Weighted JT kq 61.45 61.45 62.42 57.74 57.74 59.84 65.32 66.13 67.74

Table 2: Mean accuracy for the best values of q and C for the SVM classifiers learnt on ROI 8, 12, 14 respectively, using one
Rician mixture per class with K = 4,5,6 components and embeddings ẽ, ē and ê.

ROI 8 12 14
No. of components 4 5 6 4 5 6 4 5 6
Embedding ẽ
Linear 62.58 60.32 59.52 58.39 60.65 59.35 55.32 55 55.48
RBF 65.48 65.32 64.03 65.97 65.32 63.71 61.94 62.74 61.13
Jensen-Shannon 65.32 65 64.84 64.35 64.84 64.52 62.42 61.45 60.16
Jensen-Tsallis 66.45 66.13 65.65 66.13 66.94 64.68 62.58 62.1 61.45
Weighted JT k̃q 67.26 66.77 65.65 66.13 66.29 65 62.74 61.94 61.45
Weighted JT kq 66.45 65.65 65.65 66.13 66.94 64.68 62.58 62.1 61.45

Embedding ē
Linear 59.35 60.16 59.19 58.23 59.03 57.26 55 54.84 54.84
RBF 63.71 64.68 63.23 62.42 62.9 62.9 62.1 63.55 63.06
Jensen-Shannon 63.71 64.68 63.23 60.65 61.94 62.1 66.61 65.98 65.32
Jensen-Tsallis 64.68 64.84 64.68 62.58 64.84 63.71 67.9 66.61 66.29
Weighted JT k̃q 65.16 64.19 63.23 63.87 64.19 62.9 65.48 64.84 63.87
Weighted JT kq 64.84 64.03 64.03 64.03 63.87 63.23 65 64.19 63.71

Embedding ê
Linear 59.19 60.48 58.87 60.48 60.16 60 55.65 55.65 56.13
RBF 64.03 63.87 63.06 64.03 64.52 62.74 63.23 63.55 63.06
Jensen-Shannon 63.39 64.84 63.71 60.97 62.74 62.26 66.61 66.13 64.35
Jensen-Tsallis 64.68 64.84 64.03 62.74 62.74 63.87 68.06 67.1 65.48
Weighted JT k̃q 64.84 64.03 63.39 64.35 63.55 63.39 65.48 65 63.87
Weighted JT kq 64.52 64.35 63.87 64.35 65.65 63.06 64.68 64.68 63.23



Table 3: Mean accuracy for the best values of q and C for the SVM classifier learnt on ROI 10 using one Rician mixture per
class with K = 4,5,6 components and embeddings ẽ, ē and ê.

ROI 10
No. of components 4 5 6
Embedding ẽ
Linear 58.39 58.23 57.42
RBF 66.13 67.26 67.42
Jensen-Shannon 69.68 68.71 68.06
Jensen-Tsallis 71.13 70.32 68.87
Weighted JT k̃q 70.65 70.97 69.19
Weighted JT kq 71.13 70.32 68.87

Embedding ē
Linear 56.29 56.13 55.81
RBF 65.65 67.42 67.26
Jensen-Shannon 68.06 68.55 69.68
Jensen-Tsallis 69.03 69.68 70.48
Weighted JT k̃q 67.1 67.58 68.39
Weighted JT kq 67.26 67.26 69.19

Embedding ê
Linear 56.94 57.1 57.9
RBF 67.9 66.94 67.42
Jensen-Shannon 68.55 68.39 69.52
Jensen-Tsallis 69.84 70 70.48
Weighted JT k̃q 66.94 67.26 68.55
Weighted JT kq 67.9 67.26 69.03

Table 4: Mean accuracy for the best values of q and C for the set of SVM classifiers obtained by the boosting algorithm, using
one Rician mixture per class with K = 4,5,6 components and embeddings ẽ, ē and ê. Results with state-of-the-art methods
for ROIs intensity histograms using leave-one-out are also reported.

Boosting
No. of components 4 5 6
Embedding ẽ
Jensen-Shannon 78.55 78.23 77.74
Jensen-Tsallis 79.68 80.16 79.03
Weighted JT k̃q 80 79.03 78.39
Weighted JT kq 79.68 80.16 79.03

Embedding ē
Jensen-Shannon 75 75.97 77.42
Jensen-Tsallis 78.71 78.06 79.84
Weighted JT k̃q 78.23 78.06 77.58
Weighted JT kq 78.71 78.39 78.55

Embedding ê
Jensen-Shannon 77.90 76.94 76.61
Jensen-Tsallis 79.35 78.39 78.39
Weighted JT k̃q 81.77 78.39 78.06
Weighted JT kq 80.48 77.90 78.39

State-of-the-art methods
Methodology Accuracy
SVM Best Single ROI
(Cheng et al., 2009a) 73.4

Dissimilarity representations
(Ulas et al., 2011) 78.07

SVM Multiple ROIs
Constellation probab. model + Fisher kernel
(Cheng et al., 2009b) 80.65

Combined dissimilarity representations
(Ulas et al., 2010) 79

Dissimilarity representations
(Ulas et al., 2011) 76.32



with the contour enclosing the origin and traversed
in a counterclockwise direction, and in particular that
T1(z) = z, then the partial derivative of B results

∂B(y j;θi)

∂vi
=

∂I0

(
y jvi

σ2
i

)
∂vi

= I1

(
y jvi

σ2
i

)
·

y j

σ2
i

(32)

Substituting (28) and (32) in (26) we get

∂ log f (y j;θi)

∂vi
=− vi

σ2
i
+

I1

(
y jvi

σ2
i

)
I0

(
y jvi

σ2
i

) · y j

σ2
i

(33)

which, substituted in (10) yields (11).
The same considerations hold for the partial

derivatives with respect to σ2
i , yielding to the follow-

ing expressions for the partial derivative of A and B
(with respect to σ2

i )

∂A(y j;θi)

∂σ2
i

=−
y j

σ4
i

e
−

y2
j+v2

i
2σ2

i +
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(34)
∂B(y j;θi)

∂σ2
i

= I1

(
y jvi

σ2
i

)
·

y jvi

σ4
i

(35)

Substituting (34) and (35) in (27), the partial deriva-
tive of log f (y j;θi) with respect to σ2

i results

∂ log f (y j;θi)

∂σ2
i

=− 1
σ2

i

(
1−

y2
j + v2

i

2σ2
i

)

−
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(
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)
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(
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i

) · y jvi

σ4
i

(36)

which, plugged in (10) yields (12).
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