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ABSTRACT: In this article, a novel approach to schizophrenia classi-

fication using magnetic resonance images (MRI) is proposed. The

presented method is based on dissimilarity-based classification tech-

niques applied to morphological MRIs and diffusion-weighted images
(DWI). Instead of working with features directly, pairwise dissimilar-

ities between expert delineated regions of interest (ROIs) are consid-

ered as representations based on which learning and classification

can be performed. Experiments are carried out on a set of 59 patients
and 55 controls and several pairwise dissimilarity measurements are

analyzed. We demonstrate that significant improvements can be

obtained when combining over different ROIs and different dissimilar-
ity measures. We show that combining ROIs using the dissimilarity-

based representation, we achieve higher accuracies. The dissimilar-

ity-based representation outperforms the feature-based representa-

tion in all cases. Best results are obtained by combining the two
modalities. In summary, our contribution is threefold: (i) We introduce

the usage of dissimilarity-based classification to schizophrenia detec-

tion and show that dissimilarity-based classification achieves better

results than normal features, (ii) We use dissimilarity combination to
achieve better accuracies when carefully selected ROIs and dissimi-

larity measures are considered, and (iii) We show that by combining

multiple modalities we can achieve even better results. VVC 2011 Wiley

Periodicals, Inc. Int J Imaging Syst Technol, 21, 179–192, 2011; Published

online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/ima.20279

Key words: schizophrenia detection; dissimilarity-based classification;

structural MRI; diffusion-weighted imaging

I. INTRODUCTION

Computational neuroanatomy using magnetic resonance imaging

(MRI) is a growing research field that uses image analysis methods to

quantify morphological characteristics of different brains (Giuliani

et al., 2005). The ultimate goal is to identify structural brain abnormal-

ities by comparing normal subjects with patients affected by a certain

disease. Advanced computer vision and pattern recognition techniques

may deeply help the understanding of brain characteristics and func-

tionalities, and there are several studies where these techniques are

applied (Davatzikos, 2004; Fan et al., 2007; Cheng et al., 2009a). In

this sense, MRI techniques are crucial for effective automatic brain

analysis, especially in the context of mental health research. Current

approaches consist of identifying structural or functional brain abnor-

malities by comparing normal subjects (controls) with patients

affected by a certain disease. A recent article by Agarwal et al. (2010)

is an excellent review on the use of MR for psychiatric diseases.

In this work, we try to address one of the unsolved fundamental

questions: ‘‘Is it possible to identify mental illnesses just by analyz-

ing brain images?’’ Here, we focus on schizophrenia, which is a het-

erogeneous psychiatric disorder characterized by several symptoms

such as hallucinations, delusions, cognitive, and thought disorders

(Bellani et al., 2010). Although genetic and environmental factors

play a role in the disorder, their etiology remains unknown, and a

substantial body of research demonstrates numerous structural and

functional brain abnormalities in patients (Shenton et al., 2001;

Rujescu and Collier, 2009). In the context of schizophrenia research,

several works have been proposed for human brain classification

(Gerig et al., 2001; Fan et al., 2007; Yoon et al., 2007). Besides

standard volumetric methods (Ashburner and Friston, 2000; Baiano
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et al., 2008), the most promising approaches focus on: (i) shape char-

acterization (Gerig et al., 2001), (ii) surface computation (Yoon

et al., 2007), and (iii) high-dimensional pattern classification (Fan

et al., 2007). Gerig et al. (2001) introduced a region of interest

(ROI)-based morphometric analysis by defining spherical harmonics

and a 3D skeleton as shape descriptors.

Yoon et al. (2007) proposed a support vector machine (SVM) to

classify cortical thickness using the Euclidean distance between linked

vertices on the inner and outer cortical surfaces. Fan et al., (2007)

defined a new morphological signature by combining deformation-

based morphometry with SVM. Pohl and Sabuncu (2009) used an ana-

tomical parametrization of spatial warps to reveal structural differences

between healthy and schizophrenic subjects. They use four ROIs:

superior temporal gyrus (STG), amygdala, hippocampus, and para-

hippocampal gyrus. The parameters are estimated by minimizing a

Kullback–Leibler divergence measure and are classified using SVMs.

Encouraged by our previous studies (Cheng et al., 2009a,c; Ulas�
et al., 2010), we extend our earlier work and go beyond volumetric

measurements by proposing an alternative approach to discriminate

between subjects affected by schizophrenia and healthy controls on

the basis of MRI imaging. We adopt a recent and promising frame-

work, called dissimilarity-based paradigm (Pekalska and Duin,

2005), exploiting a particular selection of ROIs in the brain.

The dissimilarity-based paradigm pursued in this work differs from

typical pattern recognition approaches where objects to be classified

are represented by feature vectors. In the dissimilarity-based approach,

objects are described using pairwise (dis)similarities (Pekalska and

Duin, 2005). This offers the analyst a different way to express back-

ground knowledge when compared with features. In a second step, the

dissimilarity representation is transformed into a vector space in which

traditional statistical classifiers can be used. Unlike the related kernel

approach, whose application is often constrained by technicalities such

as fulfilling Mercer’s condition, basically any dissimilarity measure

can be used. We investigate the discriminativeness of such space by

using different dissimilarity measures computed between subjects; in

particular, dissimilarities are computed between histograms (or pdfs)

derived from the MRI images. Using different dissimilarity measures

between histograms and using the dissimilarity space, we transform

the problem into a different space, where in our case shows improve-

ments in accuracy compared to the original feature space.

Our main contribution is the application of this dissimilarity-

based classification paradigm to the detection of schizophrenia in

MR images and the demonstration of its accuracy using dissimilarity

combination using multiple ROIs, dissimilarity measures, and modal-

ities. An extensive experimental evaluation on a rather large dataset

(114 subjects) shows the appropriateness of the paradigm to this sce-

nario. Moreover, we see that by combining multiple modalities, one

can achieve even better results than combining the dissimilarity mat-

rices of the same modality. The rest of the article is organized as fol-

lows: In Section II, we introduce the population used in this study, and

in Sections III and IV, we show how we preprocess the raw images

and how the data set is formed. In Section V, we define the dissimilar-

ity measures used in this study, and the classification methodology

applied into the dissimilarity space is detailed in Section VI. Extensive

experiments are illustrated in Section VII, and Section VIII concludes

the work with a final discussion and future perspectives.

II. MATERIALS

Quantitative data collection and processing in MRI-based research

implies facing several methodological issues to minimize biases

and distortions. The standard approach is to follow well-established

guidelines, issued by international organizations, such as the World

Health Organization (WHO) or codified by respected institutions,

such as leading universities.

In the analysis of MR images, two are the main categories: (i)

methods based on the analysis of ROIs and (ii) methods based on

voxel-based morphometry (VBM) (Ashburner and Friston, 2000).

ROI-based methods focus on a limited set of brain subparts, which

are manually traced by experts. Methods based on VBM use the

whole brain after a normalization procedure, which maps the cur-

rent brain onto a standard reference, namely the stereotaxic space.

In this fashion, a voxel-by-voxel correspondence is available among

the analyzed subjects. In this article, we introduce our dataset that

consists of ROIs of MRI images. The choice of ROIs is based on

earlier investigations into their abnormal activity in case of schizo-

phrenia (Baiano et al., 2008; Potkin et al., 2009; Corradi-DellAcqua

et al., in press).

A. Study Population. This study involves a 59-patient subset of

a larger database cared by the Research Unit on Brain Imaging and

Neuropsychology (RUBIN) at the Department of Medicine and

Public Health-Section of Psychiatry and Clinical Psychology of the

University of Verona. The dataset is composed of MRI brain scans

of 59 patients recruited from the area of South Verona (i.e., 100,000

inhabitants) through the South Verona Psychiatric Case Register (Tan-

sella and Burti, 2003). All had received a diagnosis of schizophrenia

according to the criteria of the Diagnostic and Statistical Manual of

Mental Disorders, fourth edition (DSM-IV, 1994) and were being

treated by the South Verona Community-based Mental Health Service

(for a detailed description please refer to Andreone et al., 2007) and

by other clinics reporting to the South Verona Psychiatric Care Regis-

ter (Amaddeo and Tansella, 2009). Diagnoses for schizophrenia were

obtained using the Item Group Checklist of the Schedule for Clinical

Assessment in Neuropsychiatry (World Health Organization, 1992),

administered by research clinical psychologists who had extensive ex-

perience with it. They were required to show inter-rater reliability

(IRR) both blindly and independently with those of a senior investiga-

tor also trained in the procedure by achieving similar diagnosis for at

least 8 of 10 assessments.

Moreover, the psychopathological item groups completed by the

two raters were compared, to discuss any major symptom discrep-

ancies. The reliability of the IGC-SCAN diagnoses was also

ensured by holding regular consensus meetings with the psychia-

trists treating the patients and a senior investigator. The Italian ver-

sion of the SCAN was edited by the RUBIN group (World Health

Organization, 1996), and our investigators attended specific training

courses to learn how to administer the IGC-SCAN.

Subsequently, diagnoses for schizophrenia according to the

DSM-IV criteria were corroborated by the clinical consensus of two

staff psychiatrists. Patients with comorbid psychiatric disorders,

alcohol or substance abuse within the 6 months preceding the study,

history of traumatic head injury with loss of consciousness, epi-

lepsy, or other neurological diseases were excluded.

At the time of imaging, only two patients were not receiving an-

tipsychotic medication. More specifically, 25 patients were on typi-

cal antipsychotic drugs (16 on haloperidol, three on chlorproma-

zine, two on fluphenazine, two on clotiapine, one on thioridazine,

one on zuclopenthixol) and 45 on atypical antipsychotic medication

(25 on olanzapine, nine on clozapine, nine on risperidone, two on

quetiapine). Patients’ clinical information was retrieved from psy-

chiatric interviews, the attending psychiatrist, and medical charts.
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The Brief Psychiatric Rating Scale (24-item version) (Ventura et al.,

2000) was used to characterize clinical symptoms. Again, it was

administered by trained research clinical psychologists following the

same reliability procedure as outlined above for the IGC-SCAN.

Additionally, 55 individuals without schizophrenia (control sub-

jects) were also recruited. They had no DSM-IV axis I disorders, as

determined by a modified version of the Structured Clinical Inter-

view for DSM-IV nonpatient version. As well, they had no history

of psychiatric disorders among first-degree relatives, no history of

alcohol or substance abuse, and no current major medical illness.

Typical control subjects were hospital/university staff volunteers or

individuals undergoing imaging for dizziness whose MRI showed no

evidence of central nervous system abnormalities when reviewed by

the neuroradiologist. Any dizziness was due to benign paroxysmal

positional vertigo or to nontoxic labyrinthitis. Participants in the con-

trol group were scanned only after a full medical history was taken

and general neurological, otoscopic, and physical examinations were

carried out; they had completely recovered from dizziness. Also,

none of these participants was taking medication, including drugs for

nausea or vertigo. For details see Tomasino et al. (2010).

This research study was approved by the Biomedical Ethics

Committee of the Azienda Ospedaliera of Verona. All participants

provided signed informed consent after they understood all aspects

of study participation.

Table I shows relevant demographic and clinical characteristics

of both groups.

B. MRI Procedure. MRI scans were acquired with a 1.5-T Mag-

netom Symphony Maestro Class Syngo MR 2002B (Siemens), and in

total, it took about 19 min to complete an MR session. A standard

head coil was used for radio frequency transmission and reception of

the MR signal, and restraining foam pads were used to minimize head

motion. T1-weighted images were first obtained to verify the partici-

pants head position and image quality (TR 5 450 ms, TE 5 14 ms,

flip angle 5 908, FOV 5 230 3 230, 18 slices, slice thickness 5 5

mm, and matrix size 5 384 3 512, NEX 5 2). Proton density (PD)/

T2-weighted images were then acquired (TR 5 2500 ms, TE 5 24/

121 ms, flip angle 5 1808, FOV 5 230 3 230, 20 slices, slice thick-

ness 5 5 mm, matrix size 5 410 3 512, and NEX 5 2) according to

an axial plane running parallel to the anterior-posterior (AC-PC) com-

missures to exclude focal lesions. Subsequently, a coronal 3D magnet-

ization-prepared rapid gradient echo (MP-RAGE) sequence was

acquired (TR5 2060 ms, TE5 3.9 ms, flip angle5 158, FOV5 176

3 235, slice thickness 5 1.25 mm, matrix size 5 270 3 512, and

inversion time5 1100) to obtain 144 images covering the entire brain.

C. Diffusion-Weighted Imaging Procedure. MRI performing

different types of diagnostic images including high-resolution volu-

metry and diffusion imaging might provide a new strategy for the

detection of subtle structural alterations that cannot be visualized

by conventional volumetric imaging.

Diffusion-weighted imaging (DWI) investigates molecular

water mobility within the local tissue environment, providing in-

formation on tissue microstructural integrity. The diffusion of

water in the brain is characterized by its apparent diffusion coeffi-

cient (ADC), which represents the mean diffusivity of water along

all directions (Taylor et al., 2004). Thus, ADC gives potential in-

formation about the size, orientation, and tortuosity of both intra-

cellular and extracellular spaces, providing evidence of disruption

when increased (Rovaris et al., 2002). ADC has also been used to

explore regional grey matter microstructure, being higher in the

case of potential neuron density alterations or volume deficit (Ray

et al., 2006).

Diffusion weighted echoplanar images in the axial plane parallel

to the AC-PC line (TR 5 3200 ms, TE 5 94 ms, FOV 5 230 3
230, 20 slices, slice thickness 5 5 mm with 1.5-mm gap, matrix

size5128 3 128, echo-train length 5 5; these parameters were the

same for b 5 0, b 5 1000, and the ADC maps). Specifically, three

gradients were acquired in three orthogonal directions. ADC maps

(denoted by DADC) were obtained from the diffusion images with

b5 1000, according to the following equation:

� bDADC ¼ ln½AðbÞ=Að0Þ�

where A(b) is the measured echo magnitude, b is the measure of dif-

fusion weighting, and A(0) is the echo magnitude without diffusion

gradient applied.

In Figure 1, we can see two slices of the same subject acquired

by using MRI and DWI techniques. We can see that while MRI

images are more reliable, DWI resolution is very low and it is hard

to segment ROIs from these DWI images. That is why we adopted

a registration approach to segment DWI.

III. PREPROCESSING

This database has been investigated several times, for example, to

produce large sample studies aimed at confirming previous reports

of pathophysiological abnormalities associated with the given men-

tal illnesses (Agarwal et al., 2008; Baiano et al., 2008). Each of

these studies focuses on a particular subregion of the brain, a so-

called (ROI), whose abnormal activity is known to affect cognitive

processes. We use a subset of the data we used in our previous

work (Ulas� et al., 2010) where we used a total of 124 subjects but

only one sensor and one modality. In this work, we extract four

modalities, which are intensity histograms of structural MRI

images, ADC histograms of DWI images, and two geometric

descriptors, computed from the surfaces of the ROI, which are

Shape Index and Mean Curvature (details are in Section 4).

Table I. Demographic and clinical characteristics of the study groups

Group mean (and standard deviation) Statistics

Characteristic Control (n5 55) Patient (n5 59) Test df p

Age 40.24 (11.13) [range 23–59] 38.68 (11.78) [range 18–62] t 5 0.72 112 0.47

Male/female 30/25 39/20 v2 5 1.59 1 0.21

Age at onset 26.02 (9.10)

Illness duration 13.50 (10.23)

BPRS 44.65 (17.49)

df, degrees of freedom; p, significance value; BPRS, brief psychiatric rating scale. Student’s t-test of the age means rejects (at a two-tailed significance level of p < 0.05) the hypoth-
esis that the groups are significantly different in age, and Pearson’s v2 confirms the same for the gender differences.
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A. Segmentation of ROIs. The raw images are transferred to PC

workstations to be processed for ROI tracing. Based on manual iden-

tification of landmarks, these slices are resampled and realigned by

the medical personnel using the Brains2 software. The same software

is used to manually trace the ROIs by manually drawing contours

enclosing the intended region. This was carried out by a trained

expert following a specific protocol for each ROI (Baiano et al.,

2008) without knowledge of the class labels. There are methods that

automatically segment the ROIs, but their accuracy is lower than the

manual methods, so manual segmentation was preferred. In this

sense, every ROI has a protocol based on the individuation of partic-

ular anatomical landmarks in the brain. The detailed guidelines can

be found in APPENDIX: GUIDELINES FOR ROI TRACING.

The ROIs traced are seven pairs (for the left and the right hemi-

sphere respectively) of disconnected image areas:

� Amygdala (lamyg and ramyg in short);

� Dorso-lateral preFrontal cortex (ldlpfc and rdlpfc);
� Entorhinal cortex (lec and rec);
� Heschl’s gyrus (lhg and rhg);
� Hippocampus (lhippo and rhippo);
� STG (lstg and rstg);
� Thalamus (lthal and rthal).

We select these ROIs because they have consistently been found

to be impaired in schizophrenia, and in a recent work, some of them

have been found to support a specific altered neural network (Cor-

radi-DellAcqua et al., in press). The IRR values for each brain

hemisphere and ROI can be seen in Table II, which shows us the

reliability of the segmentation. Higher value means that the seg-

mentation is more reliable.

In Figure 2, we show a sample from the dataset, specifically the

ROI volume of the right STG for subject 11. This volume is made

up of 35 slices of size 41 3 40 and can be arranged as a montage of

images (ordered from left to right, top to bottom). Within this

Figure 1. Two slices acquired by 3D morphological (left) and diffusion-weighted imaging (right) techniques. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Table II. IRR values for ROI segmentation

ROI Left Right

amyg 0.91 0.98

dlpfc 0.93 0.98

ec 0.94 0.96

hg 0.96 0.98

hippo 0.96 0.96

stg 0.93 0.99

thal 0.95 0.96

Figure 2. Montage of the slices in the ROI volume (41 3 40 3 35)

of rstg for subject 11. At the top, the MRI values; at the bottom, the
corresponding binary masks. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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bounding box, the ROI itself is irregularly shaped, as can be clearly

seen from the corresponding binary masks (shapes) at the bottom,

artificially colored to highlight the ROI shape. These are the images

where intensities and shape information is extracted.

Additionally, another important ROI that is traced is the intra-

cranial volume (ICV) that is the volume occupied by the brain in

the cranial cavity leaving out the brainstem and the cerebellum.

This information is extremely useful for normalizing volume values

against differing overall brain sizes.

IV. FEATURE EXTRACTION

From source data, we extract four different feature sets, which we

explain in this section.

A. Intensity Histograms of Structural MRI Images. From

the slices of ROIs, we compute histograms of normalized intensities

(will be called SMRI throughout the text) and use them for our fea-

ture-based experiments and calculating the dissimilarity matrices. A

major disadvantage of MRI compared with other imaging techni-

ques is the fact that its intensities are not standardized. Even MR

images taken for the same patient on the same scanner with the

same protocol at different times may differ in content due to a vari-

ety of machine-dependent reasons, therefore, image intensities do

not have a fixed meaning (Ny’ul et al., 2000). This implies a signifi-

cant effect on the accuracy and precision of the following image

processing, analysis, segmentation, and registration methods relying

on intensity similarity.

A successful technique used to calibrate MR signal characteris-

tics at the time of acquisition uses phantoms (Edelstein et al.,

1984), by placing physical objects with known attributes within the

scanning frame. Unfortunately, this technique is not always

exploited, which is our present case. Alternatively, it is possible to

obtain good results by retrieving deformation mappings for the

image intensities, that is, by developing histogram mappings (Jager

and Hornegger, 2009; Ny’ul et al., 2000) or using an iterative non-

parametric approach (Sled et al., 1998).

In this work, we retrieve the rescaling parameters to form inten-

sity histograms from the ICV histograms (Figure 3). In this way, we

focus on the interesting content of the images, which usually con-

tain ‘‘noise’’ in the form of bone and muscle tissue surrounding the

brain matter proper (Cheng et al., 2009b). It is also easier to identify

landmarks on the histograms that match the canonical subdivision

of intracranial tissue into white matter, gray matter, and cerebrospi-

nal fluid. We opt to select a simple rescaling mapping that con-

serves most of the signal in the gray matter—white matter area, cor-

responding to the two highest bumps in the range 60–90, because

ROIs primarily contain those kinds of tissue. With this technique,

we form the histograms of intensity values of images using the

whole ROI and use them as bases for our experiments.

B. Histograms of ADC Values. Although we do not have man-

ually segmented ROIs for DWI images, we use deformable registra-

tion to segment DWI images into ROIs. For this purpose, every sub-

jects’ DWI image is registered into the corresponding structural

Figure 3. ICV intensity histograms (treated like probability density functions) before and after the normalization process. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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MRI image. Then ADC values are calculated using these images.

Figure 4 shows how the registration is performed.

The registration consists of matching high-resolution (also

known as T1-w) and DWI images defined in different coordinate

systems. Open source libraries of National Library of Medicine

‘‘Insight Segmentation and Registration Toolkit’’ are adopted for

the coregistration procedure, while Tcl/Tk code and VTK open

source libraries are chosen for the graphic interface. Digital Imag-

ing and Communications in Medicine format (DICOM) tag parame-

ters necessary for the coregistration are Image Origin, Image Spac-

ing, Patient Image Orientation, and Frame of Reference.

Assuming the same anatomy topology for different studies, a

Mutual Information technique based on Mattes algorithm is applied.

An in-house software for multimodal registration has been devel-

oped. The program 3D SlicerTM, a free open source software for

visualization and image computing, is used for the graphic inter-

face. The process has been performed in several steps.

The source DWI study (moving image) is aligned through a

roto-translational matrix with the T1-w data (fixed image); the two

studies are acquired in straight succession with the same MR unit

without patient repositioning; the parameters related to algorithm

implementation are automatically defined; then, by applying a mul-

tiresolution pyramid, we are able to reach a registration within eight

iterations avoiding local minimal solution.

The results of the registration are visually inspected in a check-

erboard, where each block alternately displayed data from each

study, verifying alignment of anatomical landmarks (ventricles,

etc.) for confirmation.

This procedure is needed because sMRI images have better reso-

lution, and the anatomy can better be seen for manual ROI segmen-

tation. We use this procedure to extract ADC values for each of the

ROIs instead of the whole image (Will be referred to as ADC

throughout the text).

C. Geometric Shape Descriptors. From the set of 2D ROIs of

the shapes (slices), the 3D surface is computed as triangle mesh

using marching cubes. A minimal smoothing operation is applied to

remove noise and voxelization effect. We encode geometric proper-

ties of the surface using the Shape Index (Koenderink and van

Doorn, 1992), which, for every point on the surface, is defined as:

sh ¼ � 2

p
arctan

k1 þ k2
k1 � k2

� �
k1 > k2;

where k1 and k2 are the principal curvatures of a generic surface

point. The Shape Index (denoted by sh) varies in [21, 1] and pro-

vides a local categorization of the shape into primitive forms such

as spherical cap and cup, rut, ridge, trough, or saddle (Koenderink

and van Doorn, 1992). Shape index is pose and scale invariant

(Koenderink and van Doorn, 1992), and it has already been success-

fully used in biomedical domain (Awate et al., 2009). The shape

index is computed at each vertex of the extracted mesh. Then, all

the values are quantized, and a histogram of occurrences is com-

puted. Such histograms represent the descriptor of a given subject,

and it basically encodes the brain local geometry of a subject, disre-

garding the spatial relationships (will be referred as SH throughout

the text).

Figure 5 shows the 3D surface of the left-Amygdala (left), the

surface colored according with Shape Index values (right), and the

histogram of Shape Index occurrences (bottom). It is worth noting

that convex regions (in blue) are clearly distinguished from concave

regions (in red) by the Shape Index values. As a further step, we

also calculate the mean curvature using the same methodology (will

be referred as MCUR):

m ¼ k1 þ k2
2

One can also convert histograms into discrete probability distribu-

tions and use the probability density functions (pdfs) as features.

We use these (histograms which will be referred to as hist and their

corresponding pdfs which will be referred to as pdf) as features for
our feature-based classification experiments. From these four

modalities, several dissimilarity measures are defined between pairs

Figure 4. Registration of DWI to sMRI. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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of histograms (and their pdfs) all of which are described in the next

section. In the spirit of dissimilarity-based classification, there are

various other ways to calculate dissimilarities between brain images

based on registration of brains (Klein et al., 2010). In this study, we

opted not to choose this direction because of the computational

complexity and time required to pairwise register brain images and

leave this as feature work to calculate dissimilarities between

images without resorting to histograms.

V. DISSIMILARITY MEASURES

There are several ways to calculate dissimilarities between two fea-

ture sets or two objects, depending on the origin of the objects. One

can use dissimilarities based on graph representations, Euclidean

distance and other dissimilarities between two vectors. There are

also some problems where the objects are already represented as

dissimilarities. In this study, our feature sets consist of histograms

of different measures (i.e. intensities and ADC values), so we use

different dissimilarity measures specifically designed for computing

the dissimilarity between histograms (and pdfs). There are various

dissimilarity measures that can be applied for this purpose (Cha and

Srihari, 2002; Serratosa and Sanfeliu, 2006). All measures have

their own assumptions, which we believe covers different relations

between the subjects at hand. The relation between these measures

and DSM-IV criteria can be a new line of research, which we wish

to exploit in the future.* Moreover, histograms are converted to

pdfs, and dissimilarity measures between two discrete distributions

are used as well. The measures we investigate in this article are the

most commonly used and accepted measures in the literature, which

are described in the following.

Given two histograms S and M with n bins, we define the num-

ber of elements in S and M as |S| and |M|, respectively.

A. Histogram Intersection. It measures the number of intersect-

ing values in each bin (Swain and Ballard, 1991):

simðS;MÞ ¼
Pn

i¼1 minðSi;MiÞ
minðjSj; jMjÞ :

As this is a similarity measure, we convert it to a dissimilarity using

D ¼ minðjMj; jSjÞ3ð1� simðS;MÞÞ:

Figure 5. Geometric feature extraction: 3D surface of the left-amygdala (left), the surface colored according with shape index values (right),
and the histogram of shape index occurrences (bottom). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

*We thank the anonymous reviewer for this suggestion.
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B. Diffusion Distance. In diffusion distance (Ling and Okada,

2006),y the distance between two histograms is defined as a temper-

ature field T(x, t) with T(x, 0) 5 S(x) 2 M(x). Using the heat diffu-

sion equation

@T

@t
¼ @2T

@x2

which has a unique solution

Tðx; tÞ ¼ Tðx; 0Þ3/ðx; tÞ

where

/ðx; tÞ ¼ 1

ð2/Þ1=2t
exp� x2

2t2
;

we can compute D as:

D ¼
Z T

0

kðjTðx; tÞjÞdt

C. v2 Distance. This metric is based on the v2 test for testing the

similarity between histograms. It is defined as

D ¼
Xn

i¼1

ðSi �MiÞ2
Si þMi

:

It is a standard measure for histograms.

D. Earth Mover’s Distance. This distance was originally pro-

posed by Rubner et al. (2000). It is basically defined as the cost to

transform one distribution into another. It is calculated using linear

optimization by defining the problem as a transportation problem.

For 1D histograms, it reduces to a simple calculation (Cha and Sri-

hari, 2002), which is implemented in this work.

Ci ¼
Xi

j¼1

ðSj �MjÞ
�����

�����D ¼
Xn
i¼1

Ci:

Similarly, we consider the following dissimilarities between pdfs:

E. Bhattacharyya. It is used to measure the similarity of discrete

probability distributions p and q. It is defined as:

Dðp; qÞ ¼ � logBCðp; qÞ;

where

BCðp; qÞ ¼
X
x2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxÞqðxÞ:

p

F. Kullback–Leibler (KL) Divergence. Kullback–Leibler diver-

gence is defined as

Dðp; qÞ ¼
Xn
i¼1

qi log
qi
pi
:

This measure is not a distance metric but a relative entropy because

D(p, q) = D(p, q), that is, the dissimilarity matrix is not symmetric.

There are various ways to symmetrize this matrix. We simply used D
5 D(p,q)1 D(q,p) and the so-called Jensen–Shannon divergence:

D ¼ 1

2
Dðp; rÞ þ 1

2
Dðq; rÞ;

where r is the average of p and q.

In summary, we used the following 13 measures:

� hist-euclid: Euclidean distance between histograms.

� hist-l1: L1 distance between histograms.

� hist-intersect: Intersection between histograms.

� hist-diffusion: Diffusion distance between histograms.

� hist-chi: v2 distance between histograms.

� hist-emd: Earth mover’s distance between histograms.

� pdf-euclid: Euclidean distance between pdfs.

� pdf-l1: L1 distance between pdfs.

� pdf-emd: Earth mover’s distance between pdfs.

� pdf-bs: Bhattacharyya distance between pdfs.

� pdf-kl: Symmetrized KL divergence between pdfs.

� pdf-kl-orig: Original, asymmetric KL divergence.

� pdf-js: Jensen–Shannon divergence between pdfs.

Summarizing, there are 14 ROIs and 13 different dissimilarity

measures per modality, which yield a total of 182 3 4 dissimilarity

matrices. In addition to these, we propose to merge the different dis-

similarity matrices into one overall dissimilarity matrix per modal-

ity potentially exploiting complementary information useful to

improve the classification accuracy. We also test the accuracy of

these combinations against combining classifiers in the original fea-

ture space (histograms and pdfs for each of the four modalities).

Further details of this combination are provided below.

VI. DISSIMILARITY SPACE

Suppose that we have n objects and we have a dissimilarity matrix D
of size n 3 n, which represents the dissimilarities between all pairs

of objects. And suppose that the dissimilarity between two objects o
and ô is denoted by D(o,ô). There are several ways to transform an n
3 n dissimilarity matrix D with elements D(o,ô) into a vector space

with objects represented by vectors X 5 {x1, . . ., xo, . . ., xô,. . ., xn}
(Pekalska and Duin, 2005). Classical scaling (for proper Euclidean

dissimilarities) and pseudo-Euclidean embedding (for arbitrary sym-

metric dissimilarities) yield vector spaces in which vector dissimilar-

ities can be defined that produce the given dissimilarities D. As
almost all dissimilarity measures studied here are non-Euclidean,

classification procedures for these pseudo-Euclidean spaces are ill-

defined, as for instance the corresponding kernels are indefinite.

A more general solution is to work directly in the dissimilarity

space. It postulates a Euclidean vector space using the given dissimi-

larities to a representation set as features. As opposed to the previ-

ously mentioned techniques, it is not true anymore that dissimilarities

in this space are identical to the given dissimilarities, but this is an

advantage in case it is doubtful whether they really represent dissimi-

larities between the physical objects. As this holds in our case, we

construct such a dissimilarity space using all available objects by tak-

ing X equal to D. In the dissimilarity space basically any traditional

classifier can be used. The number of dimensions, however, equals
yThe code has been taken from the author’s home page: http://www.ist.tem-

ple.edu/�hbling/code__data.htm.
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the number of objects, which is 114 in our case. Many classifiers will

need dimension reduction techniques or regularization to work prop-

erly in this space. Here, we used the linear SVM to avoid this.

It is a well-known fact that there is no single most accurate clas-

sification algorithm, so methods have been proposed to combine

classifiers based on different assumptions (Kuncheva, 2004;

Alpaydın, 2004). Every algorithm makes a different assumption

about the data and makes errors on different instances; therefore, it

seems reasonable that by combination; the overall error can be

decreased. Keeping this in mind, we use the same idea to combine

dissimilarity measures to achieve higher accuracy.

Combined dissimilarity spaces can be constructed by combining

dissimilarity representations. As in normal classifier combination

(Kittler et al., 1998), a simple and often effective way is using an

(weighted) average of the given dissimilarity measures:

Dcombined ¼
X
i

aiDi ð1Þ

It is related to the sum-rule in the area of combining classifiers. The

weights can be optimized for some overall performance criterion, or

determined from the properties of the dissimilarity matrix Di itself,

for example, its maximum or average dissimilarity. In this work, we

used equal weights while combining multiple dissimilarity matrices,

because it is computationally fast and we do not need to keep part of

the data to train and compute the weights. All the dissimilarity matri-

ces are scaled such that the average dissimilarity is one, that is:

Dðo; ôÞ
1

nðn�1Þ
P

o;ôDðo; ôÞ
¼ 1

This is done to assure that the results are comparable over the dis-

similarities as we deal with dissimilarity data in various ranges and

scales. Such scaled dissimilarities are denoted as ~D. In addition, we

assume here that the dissimilarities are symmetric. So, every dis-

similarity ~Dðo; ôÞ is transformed by

~Dðo; ôÞ :¼
~Dðo; ôÞ þ D̂ðô; oÞ

2

VII. EXPERIMENTS

We considered 182 dissimilarity matrices using four different

modalities. For assessing the performance of each technique, we

report the leave-one-out accuracy using a two-class classification

task to discriminate between healthy and schizophrenic subjects.

For every subject xi, we train the model (classifier) using the

remaining set of subjects, and we use this model to check if xi is
classified correctly. The accuracy is then the number of correctly

classified subjects divided by the number of all subjects. For com-

paring the performances of the provided techniques, we used one-

sided paired t-test. All accuracy differences reported in this article

are significant at p 5 0.05. The dissimilarity spaces have been built

in a transductive way by using all available subjects for dissimilar-

ity (of course labels are ignored in this phase). Three classifiers are

considered to compare the performances:

� Linear SVM classifier on the original feature space (called svm)
� The 1-nearest neighbor (NN) rule on the dissimilarity matri-

ces (called 1nn)
� Linear SVM classifier on the dissimilarity space (called sv0)

The linear SVM in dissimilarity space avoids complications that

could arise from the dissimilarity measures being non-Euclidean

because we treat the dissimilarities as features in this new space.

While combining dissimilarities, we use for ai in [Eq. (1)] the recip-

rocal of the number of dissimilarity matrices to be combined (Lee

et al., 2010). On the original feature space, the SVM classifiers pro-

duce posterior probability outputs, and these outputs are combined

using the SUM rule (Kittler et al., 1998). So, on the original feature

space, we combine after training the classifiers, whereas on the dis-

similarity space, we combine before we do classification. The

experiments are carried out using the Matlab package PRTools

(Duin, 2005). We designed three experiments to show the improve-

ments of dissimilarity-based pattern recognition techniques and

combination of dissimilarities using multiple ROIs and modalities:

1. ROI-based classification: for each modality, we report the

highest accuracy that a classifier reaches without combina-

tion (on the original feature space and on the dissimilarity

space). We use these results as baseline for comparison.

2. Multi-ROI classification: in these set of experiments, for

each modality, we fix the dissimilarity measure and combine

all ROIs using this dissimilarity measure.

3. Multimodal classification: in this experiment, we go one fur-

ther step to combine information coming from different sour-

ces by combining different dissimilarity matrices from differ-

ent modalities.

We note that, through this section, we will use the following

notation: every dissimilarity representation will be referred to as

modality-ROI-dissimilarity-measure (i.e., SMRI-ldlpfc-pdf-js shows

the dissimilarity matrix for the structural MRI of ROI ldlpfc using

the dissimilarity measure of Jensen–Shannon divergence). The mo-

dality, ROI, or the dissimilarity measure will be omitted when it is

clear from the context.

A. ROI-Based Classification. We evaluate the classification

accuracies for each of the original dissimilarity matrices. Table III

summarizes the results for structural MRI. For each ROI, the best

performance is reported with respect to various dissimilarity meas-

ures. First column reports the accuracy estimates for svm using the

original feature space (histograms and pdfs). Second column reports

the maximum accuracy of 1nn on different dissimilarity measures.

Third column reports the leave-one-out accuracy estimates of the

linear SVM in dissimilarity space. It shows clearly the improve-

ments of our dissimilarity-based approach. Except for two ROIs

(rhg and rthal) SVM classifier in the dissimilarity space is always

better than classifiers in the standard space. Although the best accu-

racy of standard approaches is 68.42%, we can reach 78.07% accu-

racy on dissimilarity space, and dissimilarity space accuracies are

more stable.

Table IV shows the same results for the ADC values extracted

from DWI images. We can again note that when we switch to dis-

similarity-based classification, we get better accuracies (either 1nn
or sv0) except for two ROIs (lamyg and rec). We can again see that

with a single ROI and dissimilarity measure, we can reach 70.18%,

whereas the highest accuracy we can obtain in the original space is

64.04%. The same trend can be observed when we look at Table V

and VI. Also in these modalities, the best accuracy can be achieved

using dissimilarities. We can see that on SH, we reach 68.42% using

1nn and 65.79% using sv0. The best accuracy using the features on

the original space is 55.26%. Also on MCUR, best accuracy is

reached using sv0.
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B. Multi-ROI Classification. In this subsection, we will show

our experiments where we combine multiple ROIs, fixing the mo-

dality, and the dissimilarity measure. We also conducted experi-

ments by fixing the ROIs and combining multiple dissimilarity mat-

rices using the same ROI. We see that the accuracy does not

increase when compared with combining ROIs with fixed dissimi-

larity measure. This conforms to our previous studies, therefore in

this article, we do not report combination of dissimilarity measures

with fixed ROI.

In this experiment, a multi-ROI approach is adopted to use all

ROIs at the same time. All the dissimilarity matrices for each ROI

are combined by averaging the normalized dissimilarity matrices.

Second and third columns of Table VII report the results on inten-

sity histograms, using 1-NN rule on the dissimilarity matrices and

the support vector classifiers in the dissimilarity spaces. Also in this

case, the classification on the dissimilarity space clearly outper-

forms the standard approach. Moreover, the multi-ROI approach

brings an improvement by confirming the complementary informa-

tion enclosed onto the different brain subparts when we use sv0 on

the dissimilarity space. In most of the cases, the results from the

averaged similarity matrices are better than the respective best sin-

gle-ROI results. The row average in Table VII reports the error esti-

mates computed on the overall dissimilarity matrix (combining all

the measures and ROIs), which has the highest accuracy 76.32%

(same as combining all ROIs for pdf-l1) for both standard approach

and dissimilarity-based approach, respectively. The last row reports

the accuracy of combining all SVM classifiers in the original fea-

ture space. When we combine all the SVM classifiers on the origi-

nal space, we get 71.93% accuracy. This shows us that, the dissimi-

larity space produces better results also when we consider classifier

combination. We repeated the same experiments also with the other

modalities. In Tables VIII–X, we see the results using the other

modalities. We observe that again we get the most accurate results

when we combine ROIs in the dissimilarity space using sv0 except

mean curvature histograms where the best results are obtained using

1nn (using dissimilarities again).

C. Combining Different Modalities. As a further step to under-

stand how information from multiple sources can be combined to

reach better classification accuracy, we develop another experiment

where we combine information from multiple modalities. We have

182 dissimilarity matrices from each of the four modalities. It is not

possible to exhaustively search the whole solution space to find the

best solution (optimum subset for combination), so instead, we

choose the most accurate four ROI-dissimilarity pairs from each

modality and do an exhaustive search on the combination of these

matrices to get the best result. We can see the selected dissimilarity

matrices and their base accuracies in Table XI. With a total of 16

dissimilarity matrices (modality-ROI-dissimilarity triples), we can

get the best accuracy 86.84% (last row in Table XI), which contains

Table IV. Best single ROI accuracies for each ROI on histograms of ADC

values

ROI svm 1nn sv0

lamyg 64.04 (hist) 57.89 (hist-emd) 62.28 (hist-emd)

ramyg 54.39 (pdf) 56.14 (pdf-l2) 59.65 (pdf-bc)

ldlpfc 56.14 (pdf) 51.75 (pdf-l2) 61.40 (pdf-kl)

rdlpfc 54.39 (hist) 56.14 (hist-emd) 65.79 (pdf-emd)

lec 53.51 (pdf) 62.28 (pdf-emd) 61.40 (hist-emd)

rec 64.04 (pdf) 58.77 (pdf-l2) 60.53 (pdf-kl-orig)

lhg 55.26 (hist) 61.40 (pdf-l1) 54.39 (pdf-l2)

rhg 50.88 (hist) 58.77 (hist-emd) 58.77 (hist-emd)

lhippo 52.63 (hist) 57.02 (hist-emd) 59.65 (pdf-l1)

rhippo 48.25 (hist) 55.26 (hist-emd) 52.63 (pdf-kl)

lstg 54.39 (pdf) 56.14 (hist-l2) 60.53 (hist-intersect)

rstg 64.04 (hist) 60.53 (hist-emd) 70.18 (pdf-bc)

lthal 57.89 (hist) 57.89 (pdf-l1) 58.77 (pdf-kl-orig)

rthal 53.51 (pdf) 60.53 (pdf-bc) 59.65 (pdf-js)

Table III. Best single ROI accuracies for each ROI on histograms of

intensities

ROI svm 1nn sv0

lamyg 68.42 (pdf) 64.04 (hist-l1) 78.07 (pdf-bc)

ramyg 54.39 (hist) 65.79 (pdf-l1) 66.67 (hist-chi)

ldlpfc 60.53 (hist) 62.28 (pdf-kl-orig) 76.32 (pdf-js)

rdlpfc 64.04 (hist) 57.89 (hist-intersect) 68.42 (pdf-kl-orig)

lec 64.04 (pdf) 56.14 (pdf-emd) 64.91 (hist-l1)

rec 64.91 (pdf) 65.79 (pdf-l1) 71.05 (hist-intersect)

lhg 51.75 (pdf) 60.53 (pdf-l1) 63.16 (pdf-bc)

rhg 50.00 (hist) 63.16 (hist-l1) 59.65 (hist-emd)

lhippo 63.16 (pdf) 60.53 (hist-intersect) 72.81 (pdf-kl-orig)

rhippo 60.53 (pdf) 64.04 (pdf-emd) 66.67 (pdf-bc)

lstg 55.26 (pdf) 59.65 (hist-intersect) 69.30 (hist-chi)

rstg 63.16 (hist) 57.02 (pdf-emd) 64.91 (pdf-kl)

lthal 58.77 (pdf) 64.91 (pdf-l1) 67.54 (hist-l1)

rthal 64.91 (pdf) 59.65 (pdf-l2) 64.04 (pdf-emd)

Table V. Best single ROI accuracies for each ROI on shape index

histograms

ROI svm 1nn sv0

lamyg 45.61 (hist) 68.42 (hist-emd) 64.91 (hist-emd)

ramyg 49.12 (hist) 53.51 (hist-l2) 57.89 (pdf-kl-orig)

ldlpfc 52.63 (hist) 62.28 (hist-l2) 57.89 (hist-chi)

rdlpfc 54.39 (hist) 59.65 (hist-intersect) 60.53 (hist-chi)

lec 46.49 (hist) 51.75 (pdf-emd) 54.39 (pdf-emd)

rec 52.63 (hist) 60.53 (hist-emd) 57.02 (hist-chi)

lhg 47.37 (hist) 54.39 (pdf-js) 65.79 (hist-intersect)

rhg 43.86 (hist) 55.26 (pdf-emd) 55.26 (hist-intersect)

lhippo 55.26 (hist) 50.00 (hist-diffusion) 57.02 (hist-chi)

rhippo 47.37 (hist) 59.65 (pdf-emd) 57.02 (pdf-kl-orig)

lstg 40.35 (hist) 58.77 (pdf-js) 52.63 (pdf-emd)

rstg 53.51 (hist) 55.26 (pdf-bc) 57.89 (pdf-emd)

lthal 46.49 (hist) 53.51 (pdf-l2) 57.89 (hist-l2)

rthal 54.39 (hist) 57.89 (hist-emd) 59.65 (hist-l1)

Table VI. Best single ROI accuracies for each ROI on mean curvature

histograms

ROI svm 1nn sv0

lamyg 43.86 (pdf) 61.40 (hist-intersect) 57.02 (hist-l1)

ramyg 46.49 (hist) 58.77 (hist-chi) 57.89 (pdf-kl-orig)

ldlpfc 49.12 (pdf) 53.51 (hist-chi) 53.51 (hist-emd)

rdlpfc 56.14 (pdf) 57.02 (hist-l1) 60.53 (hist-chi)

lec 47.37 (pdf) 53.51 (pdf-kl) 53.51 (pdf-emd)

rec 52.63 (hist) 65.79 (hist-emd) 63.16 ([df-l2)

lhg 61.40 (hist) 56.14 (pdf-bc) 62.28 (pdf-kl-orig)

rhg 57.89 (pdf) 64.04 (pdf-emd) 61.40 (pdf-js)

lhippo 53.51 (hist) 58.77 (hist-intersect) 62.28 (pdf-emd)

rhippo 54.39 (pdf) 55.26 (pdf-emd) 58.77 (pdf-js)

lstg 50.00 (hist) 50.00 (pdf-bc) 51.75 (pdf-l1)

rstg 41.23 (pdf) 63.16 (hist-emd) 57.89 (hist-intersect)

lthal 53.51 (pdf) 56.14 (pdf-emd) 58.77 (pdf-kl-orig)

rthal 48.25 (pdf) 54.39 (hist-chi) 67.54 (pdf-bc)
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two dissimilarity matrices from intensities (ldlpfc-pdf-kl-orig and

ldlpfc-pdf-bc both having 75.44% accuracy) and one dissimilarity

matrix from shape index (rdlpfc-hist-chi with 60.53% accuracy).

This accuracy is the best accuracy, which has been reached using dis-

similarity combination and cannot be reached using only one modal-

ity. Applying the same methodology, we can reach only 76.32%

accuracy with 1nn and 83.33% accuracy with svm on the original fea-

ture space. This also shows us why it is important to combine useful

information from different sources to come up with better accuracy.

We see that the accuracy can be increased when complementary in-

formation using different modalities are combined.

In a medical application, besides increasing accuracy, the inter-

pretability of the results is also important. We use this experiment

to deduce information on the use of ROIs, their complementary in-

formation, and how each modality relates to the detection of schizo-

phrenia. For this purpose, we select all the combinations of distance

matrices with accuracies above 82% (we have 69 different combi-

nations) and count the occurrences of dissimilarity matrices for

every combination. From Table XI, we can see that most of the

combinations include ldlpfc of SMRI and the shape index of rthal.
This shows us that these two modality-ROI pairs contribute and

complement other dissimilarity matrices and by using these two in

combination, we increase accuracy. After these two dissimilarity

matrices, we see that mean curvature of rthal and shape index of

rdlpfc are used in combination the most. These are followed by

ldlpfc of histogram intensities and the mean curvature of rec. With

ADC, we see that most used ROI is rstg, which has been selected 38

times. This also shows us that the DWI information is the least

complementary modality in this scenario and one can design experi-

ments without this modality, focusing on the other modalities. We

can use this information to decrease the costs of the operation, that

is, not performing DWI analysis. Also we see that the most accurate

dissimilarity matrix (SMRI-lamyg-pdf-bc) is the eighth most used dis-

similarity when we consider combination. This interesting fact

shows us that when doing combination, the complementary infor-

mation is more important than individual accuracies.

Another interesting fact is that some ROIs are more discrimina-

tive when the structural information is considered, and some are

more discriminative when we consider DWI. The ROIs selected

from the structural analysis in this experiment are those, considered

crucial for the impaired neural network in schizophrenia and comply

with current studies in the literature (Corradi-DellAcqua et al., in

press), in contrast DWI is particularly keen in exploring the micro-

structural organization of white matter therefore providing intriguing

information on brain connectivity (Brambilla and Tansella, 2007) but

does not have complementary contribution in this context.

Table IX. Best accuracies for each dissimilarity measure combining all

ROIs on shape index histograms

Measure 1nn sv0

hist-l2 57.89 57.89

hist-l1 58.77 60.53

hist-intersect 40.35 53.51

hist-diffusion 58.77 60.53
hist-chi 59.65 57.02

hist-emd 55.26 56.14

pdf-l2 50.88 55.26

pdf-l1 50.88 58.77

pdf-emd 60.53 60.53

pdf-bc 48.25 57.89

pdf-kl 52.63 59.65

pdf-kl-orig 57.02 59.65

pdf-js 48.25 60.53

average 54.39 60.53

svm 51.75

Table VII. Best accuracies for each dissimilarity measure combining all

ROIs on histograms of intensities

Measure 1nn sv0

hist-l2 62.28 71.05

hist-l1 62.28 74.56

hist-intersect 66.67 68.42

hist-diffusion 62.28 74.56

hist-chi 57.02 71.05

hist-emd 52.63 58.77

pdf-l2 57.02 74.56

pdf-l1 60.53 76.32

pdf-emd 59.65 75.44

pdf-bc 65.79 69.30

pdf-kl 66.67 70.18

pdf-kl-orig 64.04 64.91

pdf-js 65.79 71.93

average 60.53 76.32

svm 71.93

Table VIII. Best accuracies for each dissimilarity measure combining all

ROIs on histograms of ADC values

Measure 1nn sv0

hist-l2 50.00 60.53

hist-l1 46.49 64.91

hist-intersect 43.86 61.40

hist-diffusion 46.49 64.91

hist-chi 50.88 55.26

hist-emd 58.77 51.75

pdf-l2 57.02 60.53

pdf-l1 54.39 61.40

pdf-emd 57.89 53.51

pdf-bc 53.51 53.51

pdf-kl 55.26 48.25

pdf-kl-orig 49.12 51.75

pdf-js 52.63 54.39

average 51.75 60.53

svm 63.16

Table X. Best accuracies for each dissimilarity measure combining all

ROIs on mean curvature histograms

Measure 1nn sv0

hist-l2 49.12 50.88

hist-l1 50.00 51.75

hist-intersect 53.51 50.88

hist-diffusion 50.00 51.75

hist-chi 55.26 48.25

hist-emd 43.86 53.51

pdf-l2 57.02 51.75

pdf-l1 54.39 46.49

pdf-emd 50.00 52.63

pdf-bc 44.74 52.63

pdf-kl 48.25 49.12

pdf-kl-orig 55.26 46.49

pdf-js 53.51 48.25

average 54.39 49.12

svm 47.37
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With this analysis, we can open a new perspective of how to use

each of these modalities to get better accuracies. One can use this

information to setup new experiments considering the contributions

of these ROIs on these modalities.

D. Discussion on Computational Complexity. In a multi-

classification scenario, the computational complexity of the system

increases with the number of features, modalities, combinations,

and so forth. In this work, main increase for the computational com-

plexity is acquisition and extraction of the features. Concatenation

of features is not used, so the classifiers are trained using the origi-

nal features without increasing complexity. The combination is

achieved by averaging the outputs of classifiers after each one is

trained. The same is also valid on the dissimilarity space. This time,

the distance matrices are combined by averaging before training the

classifier. In both cases, the combination is achieved through aver-

aging which is a simple operation. Of course, as the number of

modalities increase, number of feature sets to be trained also

increase, but considering the modern-day computers and the inher-

ent parallelizability of training these classifiers, this does not

increase the complexity that much. In a different scenario, where

one has to optimize the weights of combination [ai in Eq. (1)], one

has to leave part of the data to optimize the combiner weights,

which is not our case. So, the complexity in the system arises from

acquisition and extraction of features from each modality. This is

indeed a problem especially when the extraction of a feature

requires acquisition of data from a costly sensor, which we also

tried to tackle using our exhaustive analysis. One may discard

modalities, which contribute less to the combination accuracy by

saving from cost and complexity.

VIII. DISCUSSION AND CONCLUSIONS

In this article, a novel approach based on dissimilarity-based pattern

recognition is proposed for the detection of schizophrenic brains.

Several dissimilarity measures are proposed to deal with histograms

of different types for different ROIs. ROI-based classification onto

the dissimilarity space shows improvements of the standard NN

rule and the support vector classifier on the original space. More-

over, a Multi-ROI classification strategy is obtained by simply aver-

aging the similarity matrices observed in each ROI. Such approach

improves the single-ROI one, by highlighting the complementary

information enclosed in the several ROIs. This confirms the benefit

of combining dissimilarity information and fusing information from

various regions in the brain.

We investigate further to combine information from multiple

modalities such as intensities, ADC values, and geometric informa-

tion. We can see that, some ROIs are discriminative when we use

intensities; some are useful when DWI data is considered. Geomet-

ric properties of some ROIs play a part in schizophrenia detection.

We show that we get the best accuracy when we combine multiple

modalities.

We can interpret the results of combining multiple modalities to

set up further experiments in this context. Our results show that the

least contributing modality is the DWI. With this information, one

can skip using this modality and focus more on histograms of inten-

sities and geometric information. Also, one can use this result to

reduce the costs of this operation, by not performing DWI measure-

ments and without the patient undergoing further medical

operations.

We would like to emphasize that in building the (combined) dis-

similarities no parameters are optimized w.r.t. performance. The

proposed approach of combining dissimilarities on the dissimilarity

space opens new perspectives in neuroanatomy classification by

allowing the possibility to exploit dissimilarity measures where one

does not have to deal with technical difficulties such as the metric

requirements of distance-based classification and kernel restrictions

of SVMs.

As part of our future work, we aim to develop novel dissimilar-

ity measures (independent or dependent on ROIs), which should

reflect the underlying brain structure in a better way and, in turn,

further improve the detection of schizophrenia from MR. One pos-

sible way to do this is to pairwise register subjects and calculate the

distances using registration-based dissimilarity measures. On the

more methodological side, we would like to study the use of

weighted combinations of dissimilarity matrices to quantify the im-

portance of each ROI-dissimilarity. Introducing a weighting, how-

ever, means an increase in the number of parameters to estimate in

the classification scheme and as such poses a problem, considering

the limited number of subjects a medical application like this typi-

cally involves. The careful design of a proper regularizer, however,

should make this approach feasible.

APPENDIX: GUIDELINES FOR ROI TRACING

Hippocampus. The first slice to be traced was the one where the

superior colliculus completely connected with the thalamus bilater-

ally. Moving anteriorly through the brain, we traced around the hip-

pocampi using first the corona radiata, and then the ambient cistern

as the superior border. The white matter acted as the inferior border

and the inferior horn of the lateral ventricle as the lateral one. The

anterior limit was one slice posterior to the slice where the mammil-

lary body became visible. On average, 16 slices were traced.

Amygdala. The first slice to be traced was the one where the

mammillary body becomes visible. The superior and lateral borders

were defined by the temporal lobe white matter and the inferior one

by the parahippocampal gyrus white matter. Moving forward, the

anterior limit, either right or left, was defined by the point when the

Table XI. Most accurate four dissimilarity matrices from each modality,

their single performances, and number of occurrences in the combination of

most accurate results

Selected dissimilarity Accuracy Occurrences

SMRI-ldlpfc-pdf-js 76.32 60

SH-rthal-hist-l1 59.65 57

MCUR-rthal-pdf-bc 67.54 52

SH-rdlpfc-hist-chi* 60.53 50

SMRI-ldlpfc-pdf-bc* 75.44 48

SMRI-ldlpfc-pdf-kl-orig* 75.44 48

MCUR-rec-pdf-l1 63.16 47

SMRI-lamyg-pdf-bc 78.07 42

ADC-rstg-hist-l2 65.79 38

SH-lamyg-hist-emd 64.91 38

ADC-rstg-pdf-bc 70.18 20

MCUR-rec-pdf-l2 63.16 17

ADC-rdlpfc-pdf-emd 65.79 14

ADC-rstg-pdf-js 65.79 9

SH-lhg-hist-intersect 65.79 8

MCUR-lhippo-pdf-emd 62.28 1

Dissimilarities with * are in the

optimum combination

86.84
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amygdale became too diffuse to be resolved from the temporal lobe

gray matter. In average, seven slices were traced.

Entorhinal Cortex. The entorhinal cortex was traced on MRI

coronal slices. The frontotemporal stem delimited the region of in-

terest anteriorly. The intersection of the line along the gray-white

junction with the medial bank of the collateral sulcus defined the

inferolateral border. The superomedial border was defined rostrally

by the sulcus semiannularis and caudally by the uncal cleft. The

intersection of the line along the gray-white junction with the corti-

cal surface was used to improve the definition of these structures.

The most anterior slice in which the body of the hippocampus first

became clearly visible was chosen as the posterior limit. It should

be noted that the prior methods were slightly modified because the

lateral geniculate body was poorly detectable in most of our scan,

and therefore, it was not used as a posterior limit. Also, the perirhi-

nal cortex was included in our tracing.

Dorsolateral Prefrontal Cortex. The DLPFC was defined as

slices anterior to the posterior border of the genu till the anterior

border of the the Sylvian horizontal ramus; the superior border was

the superior frontal sulcus, the inferior border was the upper border

of the Sylvian fissure posteriorly and the horizontal ramus of the

Sylvian fissure anteriorly, the lateral boundary was the edge of the

brain, and the medial boundary was the line connecting the most

medial point of the superior frontal sulcus and the Sylvian fissure/

horizontal ramus.

Thalamus. The tracing of the thalamus was performed on the T1-
weighted MP-RAGE sequence, beginning at the coronal slice where

the anterior pillars of the fornix merge into the mammillary bodies

and continuing to the slice in which it was no longer possible to dis-

tinguish the thalamus from the surrounding brain matter. The lateral

ventricles at the superior border, the red nucleus and the substantia

nigra at the inferior border, the posterior limb of the internal capsule

at the lateral border separating the thalamus from the adjacent lenti-

form nucleus, and the third ventricle at the medial border demar-

cated the limits of the thalamus. The presence of the adhesio inter-

thalamica was also detected.

Superior Temporal Gyrus. STG was traced bilaterally in the

coronal plane. The anterior border was defined by the first slice

where the temporal stem appeared. Posteriorly, it was traced to the

end of the Sylvian fissure. The superior border was the Sylvian fis-

sure, and the inferior one was the superior temporal sulcus.

Heschl’s Gyrus. The HG was anatomically identified as an

omega or heart-shaped protrusion in the supratemporal plane. It is

defined medially by the first transverse sulcus of temporal lobe and

laterally by Heschl’s sulcus. If there are two complete Heschl’s

sulci defining two gyri, then the anterior gyrus was used.
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