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Abstract. Face recognition is among the most challenging techniques
for personal identity verification. Even though it is so natural for humans,
there are still many hidden mechanisms which are still to be discovered.
According to the most recent neurophysiological studies, the use of dy-
namic information is extremely important for humans in visual percep-
tion of biological forms and motion. Moreover, motion processing is also
involved in the selection of the most informative areas of the face and
consequently directing the attention. This paper provides an overview
and some new insights on the use of dynamic visual information for face
recognition, both for exploiting the temporal information and to define
the most relevant areas to be analyzed on the face. In this context, both
physical and behavioral features emerge in the face representation.

1 Introduction

Biometric recognition has attracted the attention of scientists, investors, govern-
ment agencies as well as the media for the great potential in many application
domains. It turns out that there are still a number of intrinsic drawbacks in
all biometric techniques. In this talk we postulate the need for a proper data
representation which may simplify and augment the discrimination among dif-
ferent instances or biometric samples of different subjects. In fact, considering
the design of many natural systems, it turns out that spiral (circular) topologies
are the best suited to economically store and process data. Among the many de-
veloped techniques for biometric recognition, face analysis seems to be the most
promising and interesting modality. The ability of the human visual system of
analyzing unknown faces, is an example of the amount of information which can
be extracted from face images. This is not limited to the space or spectral do-
main, but heavily involves the time evolution of the visual signal. Nonetheless,
there are still many open problems which need to be faced as well. This not only
requires to devise new algorithms but to determine the real potential and lim-
itations of existing techniques, also exploiting the time dimensionality to boost
recognition performances.
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This paper highlights some basic principles underlying the perceptual mecha-
nisms of living systems, specially related to dynamic information processing, to
gather insights on sensory data acquisition and processing for recognition [1].

Recently, the analysis of video streams of face images has received an in-
creasing attention in biometric recognition [2,3,4,5,6,7,8,9]. Not surprisingly, the
human visual system also implements a very sophisticated neural architecture
to detect and process visual motion [10].

A first advantage in using dynamic video information is the possibility of
employing redundancy present in the video sequence to improve still images
recognition systems. One example is the use of voting schemes to combine results
obtained for all the faces in the video, or the choice of the faces best suited for
the recognition process. Another advantage is the possibility is to use the frames
in a video sequence to build a 3D representation or super-resolution images.

Besides these motivations, recent psychophysical and neural studies [1,11]
have shown that dynamic information is very crucial in the human face recog-
nition process. These findings inspired the development of true spatio-temporal
video-based face recognition systems [2,3,4,5,6,7,8,9]. Last, but not least, the
recognition of faces in the human visual system also involves attention mecha-
nisms to detect and analyze the “most salient” features in the face. How these
features are defined and detected is still not completely understood. Nonetheless,
very distinctive information are used to characterize human faces. A computer
implementation is introduced where salient regions are defined by analyzing sev-
eral individuals. A set of multi-scale patches are extracted from each face image
before projecting them into a common feature space. The degree of “distinc-
tiveness” of any patch depends on its distance in feature space from patches
mapped from other individuals. Both a perceptual experiment, involving 45 ob-
servers and a technological experiment were performed and compared. A further
comparative analysis showed that the performance of the n-ary approach is as
good as several contemporary unary, or binary, methods - whilst tapping a com-
plementary source of information.

2 Human Vision and Information Processing

Neural systems that mediate face recognition appear to exist very early in life.
In normal infancy, the face holds particular significance and provides nonverbal
information important for communication and survival [12].

The ability to recognize human faces is present during the first 6 months
of life, while a visual preference for faces and the capacity for very rapid face
recognition are present at birth [13,14]. By 4 months, infants recognize upright
faces better than upside down faces, and at 6 months, infants show differential
event-related brain potentials to familiar versus unfamiliar faces [15,16]. Apart
from speech, face analysis is certainly the first and major biometric cue used by
humans and therefore very important to be accurately studied.

Early studies on face recognition in primates revealed a consistent neural ac-
tivity in well identified areas of the brain, mainly involving the temporal sensory
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Face perception 

Fig. 1. Picture of the human brain as seen from below. The highlighted areas are those
initially devoted to the perception of faces and object’s form.

area. More recent research revealed that this is not the case, but many different
brain areas are taken into play at different stages of face analysis and recogni-
tion. This also recalls the need for a very complex representation including both
photometric and dynamic information on the facial characteristics.

2.1 Space-Variant Image Representations

To achieve any visual task, including face recognition, humans are able to purpo-
sively control the flow of input data limiting the amount of information gathered
from the sensory system [17,18,19]. This is needed to reduce the space and com-
putation time required to process the incoming information. The anatomy of the
early stages of the human visual system is a clear example: despite the formi-
dable acuity in the fovea centralis (1 minute of arc) and the wide field of view
(about 140x200 degrees of solid angle), the optic nerve is composed of only 106

nerve fibres. The space-variant distribution of the ganglion cells in the retina al-
lows a formidable data flow reduction. In fact, the same resolution would result
in a space-invariant sensor of about 6x108 pixels, thus resulting in a compres-
sion ratio of 1:600 [20]. The probability density of the spatial distribution of the
ganglion cells, which convey the signal from the retinal layers to the optic nerve
and is responsible for the data compression, follows a logarithmic-polar law. The
number of cells decreases from the center of the retina toward the periphery,
with the maximal resolution in the fovea [21]. The same data compression can
be obtained on electronic images, either by using a specially designed space-
variant sensor [22], or re-sampling a standard image according to the log-polar
transform [19,20]. The analytical formulation of the log-polar mapping describes
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Fig. 2. (a) Log-polar sampling for Cartesian image remapping and (b) discrete log-
polar model

the mapping that occurs between the retina (retinal plane (ρ, θ)) and the visual
cortex (log-polar or cortical plane (ξ, η)). The derived logarithmic-polar law,
taking into account the linear increment in size of the receptive fields, from the
central region (fovea) towards the periphery, is given by:

{
x = ρ cos θ
y = ρ sin θ

{
η = q θ
ξ = lna

ρ
ρ0

(1)

where a defines the amount of overlap among neighboring receptive fields, ρ0 is
the radius of the innermost circle, 1

q is the minimum angular resolution of the
log-polar layout, and (ρ, θ) are the polar coordinates of an image point.

Other models for space-variant image geometries have been proposed, like
the truncated pyramid [23], the reciprocal wedge transform (RWT) [24] and the
complex logarithmic mapping (CLM) [25]. Several implementations of space-
variant imaging have been developed: space-variant sensors [22], custom designed
image re-sampling hardware [26], and special software routines [19,27]. Given the
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high processing power of current computing hardware, image re-mapping can be
performed at frame rate without the need of special computing hardware, and
also allows the use of conventional, low cost, cameras.

3 Visual Attention and Selective Processing

A very general and yet very important perceptual mechanism in humans is visual
attention [28]. This mechanism is exploited by the human perceptual system
to parse the input signal in various dimensions: ”signal space” (low or high
frequency data), depth (image areas corresponding to objects close or far from
the observer), motion (static or moving objects) etc. The selection is controlled
through ad-hoc band-limiting or focusing processes, which determine the areas
of interest in the scene to which direct the gaze [29].

Fig. 3. Schema of the saccades performed by the human visual system analyzing an
unfamiliar face (reprinted from [28])

In the case of face perception, both space-variant image re-sampling and the
adoption of a selective attention mechanism can greatly improve the performance
of any recognition/authentication algorithm. While the log-polar mapping allows
to adaptively reduce the frequency content of the input signal, more sophisti-
cated processes are needed to discard low information areas in the image. Visual
attention in humans is also devoted to detect the most informative areas in the
face to produce a compact representation for higher level cognitive processes.

Behavioral studies suggest that, in general, the most salient parts for face
recognition are, in order of importance, eyes, mouth, and nose [30]. Eye-scanning
studies in humans and monkeys show that eyes and hair/forehead are scanned
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more frequently than the nose [28,31], while human infants focus on the eyes
rather than the mouth [32]. Using eye-tracking technology to measure visual
fixations, Klin [33] recently reported that adults with autism show abnormal
patterns of attention when viewing naturalistic social scenes. These patterns
include reduced attention to the eyes and increased attention to mouths, bodies,
and objects. The high specialization of specific brain areas for face analysis and
recognition motivates the relevance of faces for social relations. On the other
hand, this further demonstrates that face understanding is not a low level process
but involves higher level functional areas in the brain.

Even though visual attention is generally focused on almost fixed facial land-
marks, this does not imply that these are the only areas processed for face
perception. Facial features are not simply distinctive points on the segmented
face, but rather a collection of image features representing specific (and anatom-
ically stable) areas of the face such as the eyes, eyebrows, ears, mouth, nostrils
etc. Two different kind of landmarks can be defined:

– face-invariant landmarks, such as the eyes, the nose, the mouth, the ears and
all other elements which are typical of every face;

– face-variant landmarks, which are distinctive elements for a given subject’s
face [34,35].

The face-invariant landmarks are important to distinguish faces from non-faces,
and constitute the basic elements to describe both familiar and unfamiliar faces.
All face-variant landmarks constitute the added information, which is learned by
the human visual system, to uniquely characterize a subject’s face. As a conse-
quence, attention is selectively driven to different areas of the face corresponding
to the subject’s specific landmarks. This hypothesis is grounded, not only on con-
siderations related to the required information processing, but also on several
observations of the eye movements while processing human faces [13,28,31,32,33].
In all reported tests, the gaze scanpaths were different according to the iden-
tity of the presented face. As a consequence, the classification of subjects based
on the face appearance, must be tuned to extract and process the most salient
features of the face itself.

3.1 A Computational Model for Selective Face Processing

In order to define distinctive or salient areas of an individual’s face a comparative
analysis is made. All the areas of an individual’s face, that appear distinct when
compared to other faces from the population, are selected.

Because the appearance of different subjects is compared, this approach is
conceptually different from most of the existing feature extraction methods that
rely on the detection and analysis of specific face areas for authentication or
recognition purposes—e.g. the Elastic Bunch Graph Matching technique [36]. It
differs also from more elaborate techniques that identify the most “salient” parts
within the face according to a pre-specified criterion. Among these [37,38,39,40],
the system described by [41] that detects “key points” from a set of lines ex-
tracted from the face image and that in [42] which selects “characteristic points”
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Fig. 4. Schema describing the pair-wise differences algorithm. The x and y axes repre-
sent two hypothetical coordinates in the feature space.

in a generic image by means of a local optimization process applied to the dif-
ference of Gaussians image, filtered at different scales and orientations. Though
they all vary in implementation, robustness, computational requirements and
accuracy, each of the above approaches is essentially a unary technique: salient
regions are defined by analyzing only one instance of the face class, namely only
images of the same individual. On the contrary, we identify local patches within
an individual’s face that are different from other individuals by performing a
pair-wise, or binary, analysis. This avoids issues that may arise when invoking
a single average face, or canonical model, against which each face would then
be distinguished. In particular, differences between faces are determined by di-
rectly extracting from one individual’s face image the most distinguishing or
dissimilar patches with respect to another’s. Image patches from the same in-
dividual tend to cluster together when projected in a multi-dimensional space
and the distance, in that space, of that patch from clusters formed by other
faces can be used as a measure of “distinctiveness”—as sketched, in just 2-D, in
Fig. 8.

It is worth noting that the concept of comparative face analysis is also inherent
in the work by Penev and Atik [43] (Local Feature Analysis), as well as by Li et
al. [44] (Local Nonnegative Matrix Factorization), and by Kim et al. [45] (Locally
Salient Independent Component Analysis). These are locally salient versions of
dimensionality reduction techniques, applied to a database of images so to obtain
a local representation (as a set of basis) of the training set. Even if not explicitly
developed to extract salient parts of a face, all these techniques find utility in
characterizing a face by performing a comparative local analysis.
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(a) (b) (c)

Fig. 5. Log polar sampling: (a) original image (b) all fixations (c) some reconstructed
log-polar patches

An interesting approach more related to this work extracts most salient patches
(there denoted fragments) of a set of images [46]. There a sufficient coverage of
patches are extracted from a set of “client” images, before each patch is weighted
in terms of its mutual information with respect to a selected set of classes. How-
ever, the optimality criterion there used to select the most relevant patches differs
from ours. We use a deterministic criterion computing the distance from the “im-
postor” set, while they adopt a probabilistic criterion based on empirical estima-
tion of probability function. In order to obtain a reliable estimate, their approach
thus requires a considerably large training set.

Multi-scale patches extraction. From each face-image, candidate patches
are extracted. These patches must be spatially distributed in a way to cover
most of the face area. This methodology is similar to the one adopted in patch-
based image classification [47,48,49,50] and image characterization [51]. Since
face recognition requires to process information at different spatial resolutions,
there may be an advantage in extracting candidate patches at multiple scales.
In agreement with the analysis presented in a previous section, a space-variant,
multi-scale image sampling is adopted. This allows to avoid two notable pitfalls:
(a) blind analysis - whereby information revealed at one scale is not usefully
available at other scales, and (b) repeated image processing - which would add
to the overall computational expense. Each face-image is sampled using patches
derived from a log-polar mapping [27], considering the resulting sampled vectors
as our features.

As an example, Figure 5(b) shows the sampling points (corresponding to fovea
fixations) of one face.

In particular, the face-image is re-sampled at each point following a log-polar
scheme so that the resulting set of patches represents a local space-variant remap-
ping of the original image, centered at that point.

Finding differences between face-pairs. Without loss of generality, we start
by considering the two-face case, i.e. when client set and impostor set contain



Recognition of Human Faces: From Biological to Artificial Vision 199

face A face B face C face D
Fixations

A vs. B B vs. A C vs. D D vs. C
25 most weighted patches

A vs. B B vs. A C vs. D D vs. C
100 most weighted patches

Fig. 6. Two examples of differences extracted from pairs of images of different persons:
(A,B) and (C,D)

only one face each. Later we examine how this process can be expanded to the
multi-face case.

The main idea is that the patches from one face-image will tend to form their
own cluster in the feature space, while those of the other face-image ought to
form a different cluster—e.g. see Fig. 8. The “distinctiveness” of each patch can
be related to its locus in feature space with respect to other faces. Any patches
of the first face, found near loci of a second face can be considered less distinctive
since they may easily be confused with the patches of that second face, and thus
may lead to algorithmic misclassification. Conversely, a patch lying on the limb
of its own cluster, that is most distant from any other cluster, should turn out to
be usefully representative, and may thus be profitably employed by a classifier.

We formalize the degree of distinctiveness of each face patch by weighting it
according to its distance from the projection of the other data-cluster. Patches
with the highest weights are then interpreted as encoding the most important
differences between the two face-images.
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Qualitative examples. All images used in the experiments were gray-level,
with resolution 320 × 200 pixels, and cropped in order to reduce the influence
of the background. Fixations, or centers of the patch sampling process (edge-
points), were computed using zero-crossings of a LoG filter. After a preliminary
evaluation, log-polar patch resolution was set to 15 eccentricity steps (Nr), at
each of which there were 35 receptive fields (Na), with a 70% overlap along the
two directions (Or and Oa). This represents a reasonable compromise between
fovea resolution and peripheral context. Some examples of log-polar patches,
rebuilt from the log-polar representations, are shown on Fig. 5(c).

Fig. 6 represents the comparison between different individuals.
The first two columns (subjects A and B) reveal that the main differences are

in the ears and in the eyebrows: this is clearly evidenced in row 3 that shows
that the first 25 patches are located on the ear in the right part of the face and
on the eyebrows. This result is re-enforced when adding patches (last row): note
how the left ear is now highlighted.

4 Video-Based Face Image Analysis

Conversely to previous hypotheses of human neural activity, face perception
rarely involve a single, well defined area of the brain. It seems that the traditional
“face area” is responsible for the general shape analysis but it is not sufficient
for recognition. In the same way, face recognition by computers can not be seen
as a single, monolithic process, but several representations must be devised into
a multi-layered architecture.

An interesting approach to multi-layer face processing has been proposed by
Haxby [52]. The proposed architecture (sketched in figure 7) divides the face
perception process into two main layers: the former devoted to the extraction
of basic facial features and the latter processing more changeable facial features
such as lip movements and expressions. It is worth noting that the encoding
of changeable features of the face also captures some behavioral features of the
subject, i.e. how the facial traits are changed according to a specific task or
emotion.

4.1 Relevance of the Time Dimension

As shown by Vaina et al. [10], the visual task strongly influences the areas
activated during visual processing. This is specially true for face perception,
where not only face-specific areas are involved, but a consistent neural activity
is registered in brain areas devoted to motion perception and gaze control.

The time dimension is involved also when unexpected stimuli are presented
[1,11]. Humans can easily recognize faces which are rotated and distorted up to
a limited extent. The increase in time reported for recognition of rotated and
distorted faces implies: the expectation on the geometric arrangement of facial
features, and a specific process to organize the features (analogous to image
registration and warping) before the actual recognition process can take place.
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Inferior occipital gyri
Eary perception of
facial features

Superior temporal sulcus
Changeable aspects of faces –
perception of eye gaze, expression
and lip movement

Lateral fusiform gyrus
Invariant aspects of faces –
perception of unique identity

Core system: visual analysis

Intraparietal sulcus
Spatially directed attention

Auditory cortex
Prelexical speech perception

Amygdala, insula, limbic system
Emotion

Anterior temporal
Personal identity, name and
biographical information

Extended system:
further processing in concert
with other neural systems

Fig. 7. A model of the distributed neural system for face perception (reproduced from
[52])

On the other hand, it has been shown that the recognition error for an upside-
down face decreases when the face is shown in motion [1].

From the basic element related to the face shape and color, subduing a multi-
area neural activity, cognitive processes are started not only to determine the
subject’s identity, but also to understand more abstract elements (even uncor-
related to the subject’s identity) which characterize the observed person (age,
race, gender, emotion etc.) [10,53,54,55,56,57,58]. As a consequence, non-rigid
and idiosyncratic facial motions constitute a very powerful “dynamic template”
which augments the information stored for familiar faces and may also improve
the memory recall of structured information for identity determination [11].

4.2 A Computational Model for Computing Face Shape and Motion

The double layered architecture proposed by Haxby [52] can be represented
by two distinct but similar processing units devoted to two distinct tasks. The
system proposed in the remainder of the paper proposes the use of the Hid-
den Markov Models as elementary units to build a double layer architecture to
extract shape and motion information from face sequences. The architecture is
based on a multi-dimensional HMM which is capable of both capturing the shape
information and the change in appearance of the face. This multi-layer archi-
tecture was termed Pseudo Hierarchical Hidden Markov Model to emphasize the
hierarchical nature of the process involved [59].

A discrete-time Hidden Markov Model λ can be viewed as a Markov model
whose states cannot be explicitly observed: a probability distribution function
is associated to each state, modelling the probability of emitting symbols from
that state [60].
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Given a set of sequences {Sk}, the training of the model is usually performed
using the standard Baum-Welch re-estimation. During the training phase, the
parameters (A,B, π) that maximize the probability P ({Sk}|λ) are computed.
The evaluation step (i.e. the computation of the probability P (S|λ), given a
model λ and a sequence S to be evaluated) is performed using the forward-
backward procedure.

Pseudo Hierarchical-HMM. The emission probability of a standard HMM
is typically modeled using simple probability distributions, like Gaussians or
Mixture of Gaussians. Nevertheless, in the case of sequences of face images, each
symbol of the sequence is a face image, and a simple Gaussian may not be
sufficiently accurate to properly model the probability of emission. Conversely,
for the PH-HMM model, the emission probability is represented by another
HMM, which has been proven to be very accurate to represent variations in the
face appearance [61,62,63,64].

The PH-HMM can be useful when the data have a double sequential profile.
This is when the data is composed of a set of sequences of symbols {Sk}, Sk =
sk
1 , sk

2 , · · · , sk
T , where each symbol sk

i is a sequence itself: sk
i = ok

i1, o
k
i2, · · · , ok

iTi
.

Let us call Sk the first-level sequences, whereas sk
i denotes second-level

sequences.
Fixed the number of states K of the PH-HMM, for each class C the training

is performed in two sequential steps:

1. Training of emission. The first level sequence Sk = sk
1 , sk

2 , · · · , sk
T is “un-

rolled”, i.e. the {sk
i } are considered to form an unordered set U (no matter

the order in which they appear in the first level sequence). This set is subse-
quently split in K clusters, grouping together similar {sk

i }. For each cluster
j, a standard HMM λj is trained, using the second-level sequences contained
in that cluster. These HMMs λj represents the emission HMMs.

This process is similar to the standard Gaussian HMM initialization
procedure, where the sequence is unrolled and a Mixture of K Gaussians is
fitted to the unordered set. The Gaussians of the mixture are then used to
roughly estimate the emission probability of each state (with a one to one
correspondence with the states).

2. Training of transition and initial states matrices. Considering that the
emission probability functions are determined by the emission HMMs, the
transition and the initial states probability matrices of the PH-HMM are
estimated using the first level sequences. In other words, the standard Baum
Welch procedure is used, recalling that

b(o|Hj) = λj (2)

The number of clusters determines the number of the PH-HMM states. This
value could be fixed a priori or could be directly determined from the data
(using for example the Bayesian Inference Criterion [66]). In this phase, only
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the transition matrix and the initial state probability are estimated, since
the emission has been already determined in the previous step.

Because of the sequential estimation of the PH-HMM components (firstly
emission and then transition and initial state probabilities), the resulting HMM
is a “pseudo” hierarchical HMM. In a truly hierarchical model, the parameters
A, π and B should be jointly estimated, because they could influence each other
(see for example [67]).

Verification of face sequences. Given few video sequences captured from the
subject’s face, the enrollment or modelling phase aims at determining the best
PH-HMM modeling the subject’s face appearance. This model encompasses both
the invariant aspects of the face and its changeable features. Identity verification
is performed by projecting a captured face video sequence on the PH-HMM
model belonging to the claimed identity.

The enrollment process consists on a series of sequential steps (for simplicity
we assume only one video sequence S = s1, s2, · · · , sT , but the generalization to
more than one sequence is straightforward):

1. The video sequence S is analyzed to detect all faces sharing similar expres-
sion, i.e. to find clusters of expressions. Firstly, each face image si of the
video sequence is reduced to a raster scan sequence of pixels, used to train a
standard spatial HMM [61,64]. The resulting face HMM models are clustered
in different groups based on their similarities [68,69]. Faces in the sequence
with similar expression are grouped together, independently from their ap-
pearance in time. The number of different expressions are automatically
determined from the data using the Bayesian Inference Criterion [66].

2. For each expression cluster, a spatial face HMM is trained. In this phase
all the sequences of the cluster are used to train the HMM. At the end of
the process, K HMMs are trained. Each spatial HMM models a particular
expression of the face in the video sequence. These models represents the
emission probabilities functions of the PH-HMM.

3. The transition matrix and the initial state probability of the PH-HMM
are estimated from the sequence S = s1, s2, · · · , sT , using the Baum-
Welch procedure and the emission probabilities found in the previous step
(see Sect. 4.2). This process aims at determining the temporal evolution
of facial expressions over time. The number of states is fixed to the num-
ber of discovered clusters, this representing a sort of model selection
criterion.

In summary, the main objective of the PH-HMM representation scheme is to
determine the facial expressions in the video sequence, modelling each of them
with a spatial HMM. The expressions change during time is then modelled by
the transition matrix of the PH-HMM, which constitutes the “temporal” model
(as sketched in Fig. 8).
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video

PH−HMM
Trained

Expr 1 Expr 2 Expr 3

clustering
expressions

train train train
spatial HMMs

training

Training
PH−HMM

Fig. 8. Sketch of the enrollment phase of the proposed approach

4.3 Clustering Facial Expressions

The goal of this step is to group together all face images in the video sequence
with the same appearance, namely the same facial expression. It is worth noting
that this process does not imply a segmentation of the sequence into homo-
geneous, contiguous fragments. The result is rather to label each face of the
sequence corresponding to its facial expression, independently from their po-
sition in the sequence. Since each face is described with an HMM sequence,
the expression clustering process is casted into the problem of clustering se-
quences represented by HMMs [68,69,70,71]. Considering the unrolled set of faces
s1, s2, · · · , sT , where each face si is a sequence si = oi1, oi2, · · · , oiTi , the cluster-
ing algorithm is based on the following steps:

1. Train one standard HMM λi for each sequence si.
2. Compute the distance matrix D = {D(si, sj)}, where D(si, sj) is defined as:

D(si, sj) =
P (sj |λi) + P (si|λj)

2
(3)
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Fig. 9. Sampling scheme applied to generate the sequence of sub-images and the HMM
model of the sampled sequence, representing a single face image

This is a natural way for devising a measure of similarity between stochastic
sequences. Since λi is trained using the sequence si, the closer is sj to si, the
higher is the probability P (sj |λi). Please note that this is not a quantitative
but rather a qualitative measure of similarity [68,69].

3. Given the similarity matrix D, a pairwise distance-matrix-based method
(e.g. an agglomerative method) is applied to perform the clustering. In par-
ticular, the agglomerative complete link approach [72] has been used.

In typical clustering applications the number of clusters is defined a priori. In
this application, it is practically impossible (or not viable in many real cases)
to arbitrarily establish the number of facial expressions which may appear in a
sequence of facial images. Therefore, the number of clusters has been estimated
from the data, using the standard Bayesian Inference Criterion (BIC) [66]. This
is a penalized likelihood criterion which is able to find the best number of clusters
as the compromise between the model fitting (HMM likelihood) and the model
complexity (number of parameters). It is defined as:

BIC(Mk) = log P (X |M̂k) − 1
2
|M̂k| log(N) (4)

where X is the data set (of cardinality N) to be modeled, {Mk} (kmin ≤ k ≤
kmax) are the candidate models, M̂k is the Maximum Likelihood estimate of the
model Mk, and |M̂k| is the number of free parameters of the model Mk.

4.4 PH-HMM Modeling: Analysis of Temporal Evolution

From the extracted set of facial expressions, the PH-HMM is trained. The differ-
ent PH-HMM emission probability functions (spatial HMMs) model the facial
expressions, while the temporal evolution of the facial expressions in the video
sequence is modelled by the PH-HMM transition matrix. In particular, for each
facial expression cluster, one spatial HMM is trained, using all faces belonging
to the cluster. The transition and the initial state matrices are estimated using
the procedure described in section 4.2.
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One of the most important issues when training a HMM is the model selection,
or the estimation of the best number of states. In fact, this operation can prevent
overtraining and undertraining which may lead to an incorrect model representa-
tion. In the presented approach, The number of states of the PH-HMM directly
derives from the previous stage (number of clusters), representing a direct smart
approach to the model selection issue.

4.5 Face Verification

The verification of a subject’s identity is straightforward. Captured a sequence of
face images from an unknown subject, and a claimed identity, the sequence is fed
to the corresponding PH-HMM, which returns a probability value. The claimed
identity is verified if the computed probability value is over a predetermined
threshold. This comparison corresponds to verifying if the captured face sequence
is well modeled by the given PH-HMM.

The system has been tested using a database composed of 21 subjects. During
the video acquisition, each subject was requested to vocalize ten digits, from one
to ten. A minimum of five sequences for each subject have been acquired, in two
different sessions. Each sampled video is composed of 95 to 195 color images,
with several changes in facial expression and scale (see fig. 10). The images have
a resolution of 640x480 pixels. For the face classification experiments the images
have been reduced to gray level with 8 bits per pixel. It is worth noting that
there is no need for an explicit normalization for the different length of the
sequences. The normalization in the time domain is obtained by self transitions
of temporal HMM’s states. In other words, if the subject takes 10 frames to
change expression, it is likely that the system remains in the same expression
state for 10 iterations before moving to the next state (self transitions).

The proposed approach has been tested against three other HMM-based
methods, which do not fully exploit the spatio-temporal information. The first
method, called “1 HMM for all”, applies one spatial HMM to model all images
in the video sequence. In the authentication phase, given an unknown video se-
quence, all the composing images are fed into the HMM, and the sum of their
likelihoods represents the matching score. In the second method, called “1 HMM
for cluster”, one spatial HMM is trained for each expression cluster, using all the
sequences belonging to that cluster. Given an unknown video, all images are fed
into the different HMMs (and summed as before): the final matching score is the
maximum among the different HMMs’ scores. The last method, called “1 HMM
for image”, is based on training one HMM for each image in the video sequence.
As in the “1 HMM for cluster” method, the matching score is computed as the
maximum between the different HMMs’ scores.

In all experiments only one video sequence for each subject has been used for
the enrollment phase. Full client and impostor tests have been performed com-
puting a ROC (Receiving Operating Characteristic) curve. Testing and training
sets were always disjoint, allowing a more reliable estimation of the error rate.
In table 1 the Equal Error Rates (error when false positive and false negatives
are equal) for the four methods are reported.
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Fig. 10. (Top) Example frames of one subject extracted from the collected video data-
base. (Bottom) One sample frame of five subjects, extracted from the first acquisition
session.
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Fig. 11. The computed ROC curve for the verification experiment from video sequences
of faces for the 4 methods reported

The analysis of the video sequences with the hierarchical, spatio-temporal
HMM model produced a variable number of clusters, varying from 2 to 10,
depending on the coding produced by the spatial HMMs. To choose the HMM
that best fits the data, the Bayesian Inference Criterion (BIC) [66].

It is worth noting that when incorporating temporal information into the
analysis a remarkable advantage is obtained, thus confirming the importance of
explicitly modeling the face motion for identification and authentication.

The adopted test database is very limited and clearly too small to give a sta-
tistically reliable estimate of the performances of the method. Nonetheless, the
results obtained on this limited data set already show the applicability and the
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Table 1. Verification results for the reported HMM-based, face modeling methods

Method EER
Still Image: 1 HMM for all 20.24%
Still Image: 1 HMM for cluster 10.60%
Still Image: 1 HMM for image 13.81%
Video: PH-HMM 6.07%

potential of the method in a real application scenario. On the other hand, the
tests performed on this limited dataset allowed to compare different modeling
schemes where the face dynamics was loosely integrated into the computational
model. The proposed PH-HMM model outperforms all other modeling schemes
based on the HMMs, at the same time it represents a very interesting computa-
tional implementation of the human model of face recognition, as proposed by
Haxby in [52] and described in section 4. It is important to stress that, far from
being the best computational solution for face recognition of faces from video,
the proposed scheme closely resembles the computational processes underlying
the recognition of faces in the human visual system.

In order to further investigate the real potential of the proposed modeling
scheme, the results obtained will be further verified performing a more extensive
test on a database including at least 50 subjects and 10 image sequences for each
subject.

5 Conclusions

The human visual system encompasses several complex mechanisms for parsing
and analyzing the visual signal in space, time and frequency. These mechanisms,
which include scale-space analysis and selective attention, allow the perception
and recognition of complex and deformable objects, such as human faces. There
is much to learn from the neural architecture of face perception and on the
processes involved. Another important issue, which is rather difficult to address,
is how human faces are “coded” in the brain. It seems that a complex mecha-
nism exists which is adaptive to the nature of the perceived faces, i.e. if they are
familiar or unfamiliar. Within this context, a crucial role is plaid by the concept
of “model face”, which is the reference for face detection and recognition. While
a standard face model is required for distinguishing faces from non-faces, a per-
sonalized, user-dependent model is required for recognition. This concept can be
stretched up to the definition of a subject-dependent face model, which is linked
not only on the identification of standard facial landmarks, such as the eyes and
the mouth (which indeed are demonstrated to be actively scanned by the gaze
during face fixations) but rather on distinguishing face landmarks. These must
correspond to very distinctive patterns on the face.

In this paper, a method to automatically extract the most distinguishing pat-
terns in the subject’s face has been proposed. The system, which has been tested
on a standard face database, demonstrated to be able to select the face areas



Recognition of Human Faces: From Biological to Artificial Vision 209

which are the most distinguishing for a given subject. The algorithm is based on
the analysis of a number of randomly sampled matches on the face image. The
results obtained show a remarkable similarity with the most prominent facial
features perceived by human subjects. This method will be very important to
devise facial templates which are not related to a general face model nor to a
general template model, but rather the resulting template is fully adaptable to
the subject’s appearance.

Despite of the simple neural architectures for face perception hypothesized in
early neurological studies, the perception of human faces is a very complex task
which involves several areas of the brain. The neural activation pattern depends
on the specific task required rather than on the nature of the stimulus. This
task-driven model may be represented by a dual layer architecture where static
and dynamic features are analyzed separately to devise a unique face model.
The dual nature of the neural architecture, subduing face perception, allows to
capture both static and dynamic data. As a consequence, not only physiolog-
ical features are processed, but also behavioral features, which are related to
the way the face traits are changing over time. This last property is character-
istic of each individual and implicitly represents the changeable features of the
face.

A statistical model of the face appearance, which reflects the described dual-
layered neural architecture, has been presented. In order to capture both static
and dynamic features, the model is based on the analysis of face video sequences
using a multi-dimensional extension of Hidden Markov Models, called Pseudo
Hierarchical HMM. In the PH-HMM model, the emission probability of each
state is represented by another HMM, while the number of states is determined
from the data by unsupervised clustering of facial expressions in the video. The
resulting architecture is then capable of modeling both physiological and behav-
ioral features, represented in the face image sequence and well represents the
dual neural architecture described by Haxby in [52]. It is worth noting that the
proposed approach far from being the best performing computational solution
for face recognition from video, has been explicitly devised to copy the neural
processes subduing face recognition in the human visual system.

Even though the experiments performed are very preliminary, already demon-
strate the potential of the algorithm in coupling photometric appearance of the
face and the temporal evolution of facial expressions. The proposed approach
can be very effective in face identification or verification to exploit the subject’s
cooperation in order to enforce the required behavioral features and strengthen
the discrimination power of a biometric system.
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