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Abstract

This paper presents a new approach to scene analysis, which aims at extracting structured information from a video sequence using
directly low-level data. The method models the sequence using a forest of Hidden Markov models (HMMs), which are able to extract two
kinds of data, namely, static and dynamic information. The static information results in a segmentation that explains how the chromatic
aspect of the static part of the scene evolves. The dynamic information results in the detection of the areas which are more affected by
foreground activity. The former is obtained by a spatial clustering of HMMs, resulting in a spatio-temporal segmentation of the video
sequence, which is robust to noise and clutter and does not consider the possible moving objects in the scene. The latter is estimated using
an entropy-like measure defined on the stationary probability of the Markov chain associated to the HMMs, producing a partition of the
scene in activity zones in a consistent and continuous way. The proposed approach constitutes a principled unified probabilistic frame-
work for low level scene analysis and understanding, showing several key features with respect to the state of the art methods, as it
extracts information at the lowest possible level (using only pixel gray-level temporal behavior), and is unsupervised in nature. The
obtained results on real sequences, both indoor and outdoor, show the efficacy of the proposed approach.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Video analysis and understanding is undoubtedly an
important research area, whose interest has grown in the
last decade, promoting a set of interesting applications,
each one characterized by different goals. For instance, vid-
eo summarization [1,2] aims at subdividing a video in sig-
nificant shots which characterize it overall. In video
retrieval by content [3,4] the target is to retrieve videos
from a database only on the basis of its content, trying
to identify it using some specific features. Another class
of approaches has increased its importance in the last few
years, generally grouped under the name of ‘‘scene under-
standing,’’ whose aim is to infer knowledge about a scene,
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easily interpretable by a human operator by analyzing a
video sequence. An example is represented by video surveil-
lance approaches [5,6], where the goal is to find ‘‘atypical’’
situations and behaviors in an outdoor/indoor environ-
ment. Furthermore, one can go beyond the detection of
such situations, by carrying out higher-level analysis in sev-
eral ways. In this class, methods classifying the activities
occurring in a scene by analyzing the object trajectories
have been proposed [7,8], other approaches studied the
interactions between the objects in a scene [9–12]; model-
ling and synthesis of general complex behaviors have been
also devised [13,48,49].

The key concept under all these approaches is the
‘‘learning,’’ i.e., the capability of gaining such knowledge
by training a particular model on the basis of the informa-
tion extracted from a video sequence. In this way, the
trained model can be subsequently used to generalize to
other situations. All these approaches can be classified as
generative models [14,15], in which the goal is to develop
flexible models that can explain (generate) visual input as

mailto:bicego@uniss.univr.it
mailto:cristanm@sci.univr.it
mailto:vittorio.murino@univr.it


M. Bicego et al. / Computer Vision and Image Understanding 102 (2006) 22–41 23
a combination of hidden variables and can adapt to new
input types. A recent and complete review on generative
models for scene analysis is presented in [14].

In this paper, we propose a computational framework
aimed at processing low level data (the pixel gray levels)
coming from a typical video surveillance sequence in which
the camera is in a fixed location. The final aim is to provide
knowledge usable to:

(1) draft a description about how the background
evolves (e.g., periodic chromatic fluctuations possibly
due to local/global illumination changes): this is
accomplished via a segmented image in which each
region corresponds to a compact patch of background
pixels with similar gray level and with similar time-
chromatic behavior1;

(2) detect the degree of foreground activity in the scene:
this is performed by an activity map, based on an
entropy-driven measure;

(3) improve the preprocessing steps of the classical video
surveillance flowchart, as background initialization
[22,23], and other related tasks (listed in Section 4.4).

The first two points encourage us to define the proposed
analysis as low-level scene understanding. This term high-
lights the fact that the analysis is performed on rough video
data and the fact that, taken as independent process, our
approach is able to easily extract human-interpretable
knowledge about an observed scene.

This method presents several key characteristics that dif-
ferentiate it from the state of the art, which will be reported
and justified in the following.

Actually, many approaches in the literature [16,17,48]
base their analysis on typical and well known operations,
i.e., segmentation and tracking. Typically, these procedures
are adequate when a priori knowledge is available (for
example, the shape of an object to be identified, the number
of objects to be tracked, the location of appearing/disap-
pearing objects), but they are weak when this information
is not provided. This problem occurs, for instance, when
a camera is monitoring a crowded scene, in which multiple
occlusions and clutter are present.

Our approach circumvents this problem by performing
an analysis at the lowest level, i.e., by considering directly
and only the temporal pixel-level behavior.

A somewhat similar idea is at the basis of the methods
proposed in [18–21,54], in which the extraction of semantic
information is carried out without segmentation or trajec-
tory extraction, but performing low- (pixel) and mid-level
(blob) analysis, after a background analysis modelling.
Nevertheless, our approach is only similar in spirit to the
1 In the paper, the use of the words chromo or chromatic concerns the
aspects related to the gray-level values of the image pixels as all the
processed sequences are converted in gray-level values. Nevertheless, the
extension to the RGB scale is straightforward, and does not raise
particular issues to the proposed method.
above quoted work since, unlike those approaches, only
low-level analysis at pixel level is performed and a different
probabilistic method is used.

Another important characteristic of the approach
regards the modelling tool used to analyze the video
sequence. The sequence is modelled using a forest of Hid-
den Markov models (HMMs) [24], each one modelling
the temporal evolution of a pixel. HMMs represent a wide-
ly employed generative model for probabilistic sequential
data modelling [24], also used in the context of visual pro-
cessing, using either the basic structure [48] or extensions
(like transformed HMM [1], distance HMM [53], or
dynamically multi-linked HMM [54]). An interested reader
may refer to [51] for a complete review of the use of the
HMMs in computer vision and other applications, and
more in general to [14] for the use of the generative graph-
ical models in the context of learning and understanding
scene activity.

The popularity of HMMs derives from three appealing
characteristics: the intrinsic capability to deal with sequen-
tial evolution, the effective and fast training algorithm
(derived from the expectation maximization (EM)
[27,28]), and the clear Bayesian semantic interpretation.
The HMMs appear a suitable choice for our task: they rep-
resent a good combination between expressivity power and
low computational complexity; in addition, we developed
HMM clustering techniques that allow to infer similarity
degrees among models, while exploiting inter-pixels
analysis.

The main difference between our approach and those
presented in the related literature based on HMMs is that
in our case these models are used at the lowest possible level

to directly model the evolution of each pixel gray level in a
scene, rather than modelling high-level structured objects.
In this sense, the modelling used by our approach is similar
to that used in [29,30], where the temporal evolution of
each pixel is modelled by a HMM. However, in these cases,
the aim was not to infer knowledge from a sequence, but
only to realize a robust background modelling module.

Moreover, our approach is inherently unsupervised in
the sense that no learning step is necessary before process-
ing the video data. The HMMs are actually trained using
exactly the video sequence to analyze, and the inferences
over the trained models provide the results of the analysis.

Finally, another characteristic feature of the proposed
approach concerns its versatility, being able to contempo-
rarily infer two types of data about a scene, namely static

and dynamic information (Fig. 1). The terms static and
dynamic indicates that we are extracting information about
entities that are static or dynamic in a spatial sense.

The former gives some insight about the chromatic
behavior of the static part of a scene, i.e., the background,
whereas the latter aims at discovering the extent of fore-
ground activity in the observed scene.

In this paper, we consider as ‘‘activity’’ a temporal pat-
tern which cannot be classified as regular, or, in other
words, which has not a predictable behavior. The static



Fig. 1. Input and output of the proposed analysis: starting from the rough
pixel data (top), the analysis performed can be represented using two
images (bottom). On the left, the activity map, indicating the total amount
of foreground activity in the scene (dynamic information). On the right,
the chromo-spatio temporal segmentation, that describes how the chro-
matic aspect of the background evolve (static information): each region is
characterized by a homogeneous gray-level and a similar temporal
evolution. In the bottom of both the boxes, the related applications to
which our analysis can be devoted, described in Section 4.4.
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information is extracted by performing a chromo-spatio-
temporal segmentation of the background, obtained by
clustering the pixelwise HMMs. To this end, a new similar-
ity measure between HMMs is proposed, able to remove
non-stationary components of the sequence. Using this
measure and a simple region-growing procedure, a segmen-
tation of the scene is obtained in which the regions show a
homogeneous gray level and a similar temporal evolution.
In this case, the resulting segmentation is a spatial segmen-
tation of the scene, obtained by using all available informa-
tion: chromatic (different regions have different gray-level
values), spatial (each region is connected in the image
space), and temporal (each region varies its color homoge-
neously along time). Actually, our approach has two main
advantages: first, the spatial knowledge, typically used to
obtain standard segmentation, is augmented with temporal
information. This is useful to discover, in a region with
homogeneous color, additional subregions subjected to
periodic chromatic fluctuations (caused for example by
changes of illumination). Therefore, this segmentation
could generally appear as over-segmented, but each region
is however meaningful for the addressed task. The second
advantage is that moving objects have not to be removed
from the sequence (as in the single image segmentation),
since this operation is automatically accomplished by the
envisioned similarity measure.

The dynamic information is obtained by looking at the
model parameters, and by inferring which pixels are mainly
dealt with foreground ‘‘activity.’’ To compute this activity
measure, the stationary probability distribution of the
Markov chain associated with the HMMs is used. By
visualizing all these measures, we estimate the ‘‘activity
map’’ of the scene, in which are recognizable the areas that
are more engaged with activities, i.e., more affected by fore-
ground motion.

The proposed approach has been tested using real exper-
iments, showing that it represents a useful tool for scene
analysis, which, starting from the lowest-level data repre-
sentation, is able to support and increase the understanding
of a monitored scene, as either an independent analysis
module or embedded in a classical video-surveillance
framework. Other perspective applications of this informa-
tion are proposed at the end of the paper.

Summarizing, the main features of the proposed
approach are: (1) scene analysis is carried out at the lowest
possible level by directly processing the temporal behavior
of the pixels� values, and without resorting to an explicit
segmentation of moving objects; (2) this analysis is useful
per se or embedded in a typical video surveillance structure
as a preprocessing step (see Section 4.4); (3) the training
phase represents the core of the process, from which fol-
lows the unsupervised character of the analysis; (4) the
approach is based on a unified probabilistic framework,
the hidden Markov modelling, which is able to simulta-
neously derive both static and dynamic information.

The rest of the paper is organized as follows. In Section 2,
the basic principles of the Hidden Markov models are pre-
sented. The proposed strategy is then detailed in Section 3,
and extensive experimental results and a comparative
analysis are presented in Section 4, showing the superiority
of the proposed approach. Finally, in Section 5, conclusions
are drawn and future perspectives are envisaged.

2. Fundamentals

In this section, the fundamental instruments of the pro-
posed approach are described. In particular, in Section 2.1
the definition of the Hidden Markov model approach is
given, while in Section 2.2 the concept of stationary prob-
ability of a HMM, representing a key entity in the
approach proposed in this paper, is introduced. Finally,
Section 2.3 contains the description of the HMM-based
clustering approach.

2.1. Hidden Markov models

A Hidden Markov model k can be viewed as a Markov
model whose states cannot be explicitly observed: each
state has associated a probability distribution function,
modelling the probability of emitting symbols from that
state. The HMM methodology is not exhaustively
described in this paper, and interested readers are referred
to [24]. Briefly, a HMM is defined by the following entities:

• S = {S1,S2, . . . ,SN} the finite set of the possible hidden
states;

• the transition matrix A = {aij, 1 6 j 6 N} representing
the probability of going from state Si to state Sj
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aij ¼ P ½Si ! Sj�; 1 6 i; j 6 N

with aij P 0 and
PN

j¼1aij ¼ 1;
• the emission matrix B = {b(o|Sj)}, indicating the proba-

bility of the emission of the symbol o when system state
is Sj. In this paper continuous HMMs are employed,
hence b(o|Sj) is represented by a Gaussian distribution,
i.e.

bðojSjÞ ¼ N ðojlj;RjÞ; ð1Þ

where N ðojl;RÞ denotes a Gaussian density of mean l and
covariance R, evaluated at o;
• p = {pi}, the initial state probability distribution, repre-

senting probabilities of initial states, i.e.

pi ¼ P ½q1 ¼ Si�; 1 6 i 6 N

with pi P 0 and
PN

i¼1pi ¼ 1.

For convenience, we denote a HMM as a triplet k = (A,
B,p).

The training of the model, given a set of sequences {Oi},
is usually performed using the standard Baum–Welch re-
estimation technique [24], able to determine the parameters
(A,B,p) that maximize the probability P ({Oi}|k). The eval-
uation step, i.e., the computation of the probability P (O|k),
given a model k and a sequence O to be evaluated, is per-
formed using the forward–backward procedure [24].

2.2. The stationary probability distribution

In this section, the stationary probability distribution of
a HMM is defined, which represents the core of our
approach.

Given a HMM k = (A,B,p), consider the associated Mar-
kov chain Q = Q1,Q2,Q3. . . with state set S = {S1, . . . ,SN},
stochastic transition matrix A, and initial state probability p.
We can define the vector of state probabilities at time t as

pt ¼ pt 1ð Þ; . . . ; pt jð Þ; . . . ; pt Nð Þ½ �
¼ P Qt ¼ S1ð Þ; . . . ; P Qt ¼ Sj

� �
; . . . ; P Qt ¼ SNð Þ

� �
;

where pt(i) represents the probability of being in state Si at
time t. Obviously, pt can be computed recursively from
p1 = pA, p2 = p1A = pAA, and so on. In short, pt = pAt.

We are interested in the stationary probability distribution

p1, which characterizes the equilibrium behavior of the
Markov chain, i.e. when we let it evolve indefinitely. This
vector represents the probability that the system is in a par-
ticular state after an infinite number of iterations. Since it is
a stationary distribution, p1 has to be a solution of

p1 ¼ p1A

or, in other words, it has to be a left eigenvector of A asso-
ciated with the unit eigenvalue. Under some conditions (see
[31] for details), the Perron–Frobenius theorem states that
matrix A has a unit (left) eigenvalue and the corresponding
left eigenvector is p1. All other eigenvalues of A are strictly
less than 1, in absolute value. Finding p1 for a given A
then amounts to solving the corresponding eigenvalue/
eigenvector problem.

2.3. HMM-based clustering

HMMs have not been extensively employed for cluster-
ing sequences, so that only a few papers exploring this
direction appeared in the literature. Even if some alterna-
tive approaches to HMM-based clustering have been pro-
posed (e.g. [32,33]), the typically employed method is the
so-called proximity-based approach [50], which uses the
HMM modelling to compute distances between sequences,
using another standard approach based on pairwise dis-
tance matrices (as hierarchical agglomerative) to obtain
clustering [34–37]. The distance between sequences is typi-
cally based on the likelihood of the HMM, and could be
obtained using several methods (for example, see
[37,38,48]).

In more detail, given a set of R sequences {O1, . . . ,OR},
the standard approach to clustering trains one HMM ki for
each sequence Oi. Subsequently, a pairwise distance
between sequences is defined using these models, in which
the key entity is the likelihood Lij, defined as Lij = P (Oj|ki).
This probability is used to devise a distance (or a similarity)
measure between sequences. The simplest example has been
proposed in [50], and is defined as

Dði; jÞ ¼ 1

2
ðLij þ LjiÞ. ð2Þ

A more complex one, inspired from the Kullback–Leibler
measure [39] and proposed in [37], is defined as

Dði; jÞ ¼ 1

2

Lij � Ljj

Ljj
þ Lji � Lii

Lii

� �
. ð3Þ

Once given these distances, any standard pairwise distance-
based clustering algorithm could be used, such as those
belonging to the hierarchical agglomerative family.

In Section 3.2, we will see how this standard method
could be extended to deal with spatial segmentation, which
represents a particular kind of clustering.

3. The proposed approach

In this section the proposed approach is presented. In
Section 3.1, the probabilistic modelling of the sequence
is introduced, while the following two sections describe
how this representation is used to infer static (Section
3.2) and dynamic (Section 3.3) information about the
scene.

3.1. The probabilistic modelling of video sequences

The proposed approach models the whole sequence as a
set of independent per pixel processes (x,y, t), each one
describing the temporal gray-level evolution of the location
(x,y) of a scene (since the camera is fixed). Given this set of
sequences, we want to model them to capture their most
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important characteristics. In particular, we need a model
able to determine: (1) the most stable gray-level compo-
nents measured in the whole sequence; (2) the temporal
chromatic variation of these components; (3) the sequen-
tiality in which the components vary. An adequate compu-
tational framework showing these features is constituted by
the Hidden Markov model (HMM) [24]. Using this model,
all the above requirements can be accomplished. In partic-
ular, using HMMs with continuous Gaussian emission
probability, the most important gray-level components
are modelled by the means li of the Gaussian functions
associated to the states, the variability of those components
are encoded in the covariance matrices Ri, and the sequen-
tiality is encoded in the transition matrix A. The HMM
methodology has been preferred to other similar modelling
techniques, such as Gaussian Mixture models (GMM [40]),
due to its important characteristic of being able to deal
with the temporal sequentiality of the data, which is crucial
when analyzing video sequences. GMMs are indeed not
able to capture the temporal variability, i.e., the model does
not change if the frames of the video-sequence are random-
ly shuffled, as temporal information is not considered.

Summarizing, the sequence is modelled using a forest
of HMMs, one for each pixel. For what concerns the
model selection, the different approaches for determining
the number of states of a HMM directly from data (e.g.
[41–44]) are typically computationally demanding. Since
the proposed approach trains one HMM per pixel, we
have chosen to fix a priori the number of states to
maintain the computational effort at a reasonable level.
This choice is not critical and can be guided from
opportune considerations about the complexity of the
scene, especially in relation to the complexity of the
background. Actually, three states are considered a rea-
sonable choice, taking into account the possibility of a
bimodal BG, and one component for the foreground
activity [46].

Once fixed the number of states, the HMM training has
been carried out using the standard Baum–Welch proce-
dure, paying particular attention to the initialization. Since
the Baum–Welch procedure, starting from some initial esti-
mates, converges to the nearest local maximum of the like-
lihood function, which is typically highly multi-modal, the
initialization issue is particularly crucial for the effective-
ness of the training. In our approach, a Gaussian Mixture
model (GMM) [40] clustering is used to initialize the emis-
sion matrix of the HMM before training. In particular, the
initialization phase first considers the sequence of pixel
gray levels as a set of scalar values (no matter in which
order the coefficients appear); second, these values are
grouped into three clusters by following a GMM clustering
approach, i.e., fitting the data by using three Gaussian dis-
tributions, in which the Gaussian parameters are estimated
by an EM-like [27,28] method. Finally, the mean and var-
iance of each cluster are used to initialize the Gaussian of
each state, with a direct correspondence between clusters
and states.
The computational complexity of the training phase is
O(nImaxN2T), where n is the number of the pixels, ImaxN2T

is due to the standard complexity of the Baum–Welch
training phase for each pixel; Imax is the maximum number
of iterations permitted during the learning step, N2T is due
to the forward and backward variables calculation, where
N is the number of the states and T is the length of the
sequence.

3.2. Static information: the spatio-temporal segmentation

The first kind of information extracted with the pro-
posed approach is a static information, that provides
knowledge about the structure of the scene. The probabilis-
tic representation of the video sequence is used to obtain a
‘‘chromo-spatio-temporal segmentation’’ of the back-
ground. In other words, we want to segment the back-
ground of the video sequence in regions showing a
homogeneous color and a similar temporal evolution, con-
sidering pixel-wise information. In this case, the result is a
spatial segmentation, obtained by using all available infor-
mation: chromatic (different regions have different gray-
level values), spatial (each region is connected in the image
space), and temporal (each region varies its color similarly
along time). In this way, spatial knowledge, typically used
to obtain spatial segmentation, is augmented with temporal
information, allowing a more detailed and informative
partitioning.

The proposed HMM representation implies to define
a similarity measure, to decide when a group (at least, a
couple) of neighboring pixels must be labelled as
belonging to the same region. The basic idea is to define
a distance between locations on the basis of the distance
between the trained Hidden Markov models: in this way
the segmentation process is obtained using a spatial
clustering of the HMMs. The similarity measure should
exhibit some precise characteristics: two sequences have
to be considered similar if they share a comparable
main chromatic and temporal behavior, independently
from the values assumed by the less important compo-
nents. By using the measure proposed in Eqs. (2) or
(3), we have that the Gaussian of each state contributes
in the same way at the computation of the probability,
because of the forward–backward procedure. For our
goal, however, we need that the Gaussian of each state
contributes differently to the probability computation,
depending on the ‘‘importance’’ of the corresponding
state.

To this end, we have regularized the HMMs� states Si,
for every HMMs, with respect to the related p1 (i), which
is a quantitative index of the state importance. Actually,
p1 indicates the ‘‘average’’ occupation of each state, after
the Markov chain has achieved the stationary state [44],
hence, it represents the degree of saliency associated to
the states. This operation allows to normalize the behavior
of the several HMMs so as to allow an effective and reliable
comparison between them.
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The normalization operation is carried out by operating
on the Gaussian parameters of each state, in particular,
each original model k is transformed into a new model
k 0, where all components remain unchanged, except vari-
ances ri of state Si, for each state i = 1, . . . ,N, for all
HMMs, i.e.

r0i ¼
ri

p1ðiÞ
. ð4Þ

The new distance, called DES (Enhanced Stationary), is
then computed using Eq. (3) on the modified HMMs k0k.
The normalization of the state variances ri with respect
to the related p1 (i), corresponds to associate the correct
significance to the Gaussian N ðli; r

2
i Þ, and has two benefi-

cial effects: (1) Gaussians of unimportant states are under-
graded, reducing their contribution to the probability
computation, which results in eliminating moving objects
from the video sequence, as they are considered as non-
stationary components of the background model; (2) the
possibility of match between Gaussians of important
states of different models is increased. These concepts are
exemplified in Fig. 2.

Assuming this kind of similarity measure between
sequences, the segmentation process can be developed as
an ordinary segmentation process of static images. We
adopt a simple region growing algorithm: starting the pro-
cess from some seed-points, we use a threshold h to esti-
mate when two adjacent sequences are similar using the
distance DES. In our case, the threshold has been heuristi-
cally fixed after few experimental trials, and is not a partic-
ular critical parameter to set up. The complexity of the
segmentation process is O(nN2T), where N2T is due to
the calculation of the distance among models, and n is
the total number of the pixels.
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We will see in the experimental section that the modifi-
cation of the metric in Eq. (3), with the integration of the
chromatic-temporal information of the video-sequence,
allows us to obtain a meaningful segmentation.

3.3. Dynamic information: the activity maps

The proposed method is also able to infer the degree of
foreground activity in the scene; we characterize such infor-
mation as dynamic, highlighting the main aspect of the
foreground, i.e., of being (spatially) dynamic in the scene.
Strictly speaking, we define a measure which is able to
quantify for each pixel the related level of activity. By visu-
alizing all these measures, we estimate the ‘‘activity map’’
of the scene, in which the areas more affected by fore-
ground motion are recognizable.

A similar goal was achieved in [45], where the activity
zones were found by clustering the object trajectories
derived from the tracking. Nevertheless, in our case the
analysis is performed without resorting to trajectories,
but by the direct use of the pixel signals. Other approaches
similar in spirit to our objectives are presented in [49], in
which a motion energy image (MEI) is used to represent
and index human gestures, in [55], where an enhancement
of the MEI is proposed, namely the motion history image
(MHI), and in [57], where spatio-temporal entropy image
(STEI) were used to detect foreground activity. Some of
these approaches are summarized in the experimental sec-
tion, where they have been experimentally compared with
our approach.

In our framework, we define a measure which is able to
quantify for each pixel the level of activity related to that
pixel, and this is carried out by analyzing the parameters
of the associated HMM. The key idea is that the temporal
evolution of the pixel gray level could be considered as
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composed by different components, each one assigned to a
particular state during the HMM training. Each compo-
nent is then characterized by a degree of importance: some
are more important, i.e., ‘‘explain’’ more data, others are
less important since they result from disturbing sources
(e.g., noise). Therefore, if we are able to measure the ‘‘im-
portance’’ of a state, we could infer the importance of the
components of the signal which represents the information
that we will use to determine the activity zones. As
explained in Section 3.2, the ‘‘state importance’’ can be
measured using the stationary probability distribution of
the Markov Chain associated with the HMM.

Given a HMM kxy with N states, trained on the
sequence of the gray-level values assumed by the pixel
(x,y), all the information we need is in the vector pxy

1.
The activity measure AL (x,y) should show some precise
characteristics, i.e., it should discard the components rela-
tive to the background (unimodal or multimodal), and
should clearly detect those relative to the foreground, giv-
ing a response proportional to the amount of foreground
passed over the pixel. These requirements are accomplished
by the following measure:

ALðx; yÞ ¼
XN

i¼1

xxy
i pxy
1ðiÞlog2

1

p
xy
1ðiÞ

ð5Þ

with

wxy
i ¼ logð1þ rxy

i Þ; ð6Þ
where rxy

i is the variance of the Gaussian associated to the
state Si of the HMM kxy. The term 1 added to the variance
ensures that the weights are all positive.

We use the logarithm to ensure a smoother increasing
behavior of the weights. This formula is a sort of ‘‘weighted
entropy,’’ and is the result of two ideas: the use of the
entropy, and the weighting of the components in the entro-
py computation. The measure of entropy has been chosen
since it is able to quantify the uncertainty linked to the
model of the pixel gray-level evolution. The idea of weight-
ing has been introduced to deal with multi-modal back-
ground (for example a moving foliage), which produces
an erroneous high entropy: the idea is to assign lower
weight to the terms of the computation that are most relat-
ed to the background. In this case, we are in fact more
interested in the entropy of the states that most probably
do not correspond to background, since they represent
the activity. The weight is linked to the variance of the
Gaussian of the state, so that the lower the variance, the
higher the probability that the state corresponds to a back-
ground component. By computing this quantity for all the
frame pixels, we could finally obtain an activity map of the
observed scene. The computational effort required to calcu-
late the activity map is O(Nn).

An immediate consideration that could arise is why we
do not directly use the entropy of the gray-level evolution
of the pixel, rather that the pseudo entropy of the model

of the gray-level evolution. The reasons are essentially
two: first, the use of a HMM permits to recover from noise
that is present in the video sequence, which cannot be
accomplished by the raw entropy computation. Second,
and more important, the use of HMMs permits to deal also
with multimodal background: the entropy of the raw signal
results large in case of multimodal background, whereas
with our approach this does not occur since the back-
ground states are in some way disregarded from the mea-
sure computation. This behavior is confirmed by results
presented in the experimental section. Moreover, it is
important to note that the dynamic information is only
one of the by-products of the proposed approach: using
the same probabilistic modelling we are also able to infer
static information.

4. Experimental trials and comparative analysis

In this section, some comparative experimental
evaluations of the proposed approaches are presented.2

In particular, in Section 4.1 some results regarding the
video-segmentation are presented, while Section 4.2 con-
tains results from the activity maps detection process. In
the above two sections, some experiments are related to
the same sequence, and others are related to different
sequences to highlight the particular features of each part
of the methodology. Global experiments are then presented
in Section 4.3, in which the strengths and the limitations of
the whole proposed approach are discussed. Finally,
Section 4.4 contains some suggestions about the possible
use of the information extracted from the video sequence.

4.1. Static information: the spatio-temporal segmentation

The approach proposed in Section 3.2 is tested using
two real sequences: the first one regards a person walking
in a corridor in which several doors are present. Some
frames of the sequence are presented in Fig. 3. Looking
at the figure (video sequence), you can notice that some
doors are opened and closed several times, each one with
a random different frequency. The action of opening/clos-
ing a door determines a local variation of the illumina-
tion, i.e., there are two particular regions of the
corridor in which the illumination changes with different
frequencies, that it would be reasonable to separate. These
different spatial chromatic zones are highlighted in Fig. 4:
one is on the left part of the corridor, and the other on
the right part. This example shows all the potentialities
of the proposed approach: the sequential information
employed by our approach is essential to recover all the
different semantic regions of the scene. As an example,
let us consider only the median (or the mean) of the
sequence, i.e., the image formed by the median (mean)
values of each pixel signal, displayed in Fig. 5. From these
images it is not possible to detect the two semantically

http://profs.sci.univr.it/~bicego/VideoSequences/SceneUnderstanding.htm


Fig. 3. Frames of the first indoor sequence.

Fig. 5. (A) Average frame; (B) median frame.

Fig. 4. Different spatial chromatic zones.
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different zones of the background. Actually, any spatial
segmentation technique applied to these images would
segment the zone between the two doors as belonging to
the same region. In Fig. 6, the segmentation resulting
from our approach is displayed. One can easily notice
that our approach clearly separates the two zones,
labelled as different regions of the scene. To assess the
gain obtained with the Enhanced Stationary similarity
measure DES, the segmentation of the corridor sequence
based on the measure of the Eq. (3) is depicted in
Fig. 7. It is evident that the noise affecting the video
sequence and the presence of foreground produce a very
noisy and heavy over-segmentation, whereas our
approach is able to manage foreground objects and noise.



Fig. 7. Segmentation of the first indoor sequence using the similarity
measure without the HMM states� normalization.

Fig. 6. Static information: spatio-temporal segmentation of the first
indoor sequence.
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The second sequence used for testing is obtained from
[29] and regards the monitoring of an indoor environment
with one moving object. The sequence is formed by 135
frames (320 · 240 pixels) acquired at 20 frame/s. Some of
the frames of the sequence are presented in Fig. 8, showing
a sudden not uniformly distributed change of the illumina-
tion. Such non-uniform luminosity change could drastical-
ly affect the comprehension of the sequence, and only a
method that uses spatio-temporal information can be able
to correctly identify the semantically separated regions. To
Fig. 8. Frames of the sec
slow down the computational effort, we partitioned the
field of view in a grid with circular Gaussian filters of
5 · 5 pixels, and at each time step each filter provides one
single weighted value (this improvement has drastically
reduced the computation time). The result of the segmenta-
tion, after the HMM training is reported in Fig. 9: the seg-
mentation is highly informative in that the foreground does
not appear in the resulting segmentation, and the change of
illumination does not influence the spatial chromatic struc-
ture of the scene. Actually, areas of different chromaticity
(the floor, portions of the wall) remain separated despite
the light reduction narrows down the chromatic difference
among them.

4.2. Dynamic information: the activity maps

The method for the extraction of dynamic information,
described in Section 3.3, is first tested using three video
sequences, to highlight the specific features of this part.
Some further comparative evaluations could also be found
in the following section, in which complete examples are
proposed. As comparative techniques, we considered meth-
ods present in the literature (see [49,57]) and simple modi-
fied versions of them. Summarizing, all the approaches
employed in this section are named as follows:

• Motion energy image (MEI) [49]: the MEI is the sum of
the squared differences between each frame and one cho-
sen as reference (the first of the sequence); in particular,
to each difference image is applied a threshold TMEI to
disregard little values due to noise. The best results of
this approach have been obtained using TMEI = 4.

• Modified motion energy image (MMEI): the same
approach as above, but the differences are calculated
between consecutive frames. This measure will weight
much more sudden foreground activities.

• Median over reference squared difference (MedReF):
the median operator is applied over the volume of the
squared differences with respect to the first frame.
ond indoor sequence.



Fig. 9. Static information: spatio-temporal segmentation of the second
indoor sequence.
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• Median over consecutive squared difference (MedCDif):
the median operator is applied over the volume of the
consecutive squared differences.

• Simple entropy: for each pixel, we calculate the associat-
ed signal entropy in a range of 255 gray-level values.
This measure is quite similar to that proposed in [57]:
in such approach the entropy is calculated over a time
interval of five frames, and over a square spatial window
of 3 · 3 pixels.

• The proposed approach.

The first test sequence is composed of 390 frames,
acquired at a rate of 15 frames/s. The sequence regards
an indoor scene, where a man is entering from the left,
walking to a desk, and making a phone call. After the
phone call, he leaves the scene going out to the right. Some
frames of the sequence are shown in Fig. 10.

The activity zones resulting from the application of the
proposed approach and the comparative methods are dis-
played in Fig. 11, in which higher gray-level values corre-
spond to larger activity. All the output values of the
Fig. 10. Some frames of t
different methods are scaled in the pictures in the interval
[0,255]. The results show that the methods based on the
differences with respect to an initial frame (Figs. 11A
and C) are ‘‘complementary’’ with respect to the ones
based on consecutive differences (Figs. 11B and D). In
the former case, the person near the phone represents
the biggest amount of activity, while in the latter the slow
motion of the person makes the vibrating phone wire as
the strongest activity. The simple entropy method
(Fig. 11E) includes both the person and the wire as ener-
getic objects in the scene, and it is also visible in the cen-
ter of the scene a mild energy zone, due to the
approaching phase of the person to the phone. Another
drawback of this method is that also the background sig-
nals (due to reflecting effects in the scene and in the
decoding of the movie) are taken into account in the cal-
culus of the activity map. Therefore, high energy patterns
are detected in correspondence of the bookshelf, over the
chair and under the phone; moreover, a general energy
amount is detected over all the scene, due to the compres-
sion coding of the sequence. Our method (Fig. 11F)
avoids all the noise due to the background, highlighting
a more precise description of the activity present in the
scene. The resulting image is very informative: one could
see that the walking zone (i.e., the zone to the left of the
desk) is quite active, while the zone near the phone is very
active. The zone in the top of the image, where no fore-
ground objects pass, is darker, i.e. no activity is present,
and only some noisy behavior is visible.

Another interesting example is proposed in Fig. 12,
where some frames of the video sequence are shown. The
camera is monitoring an outdoor scene, where there is a
starting fire (please note the smoke in the middle). This is
a clear example in which object-centered trajectories can-
not be extracted, since the moving object has neither a clear
shape nor a well-defined contour. The sequence is 450
frames long, which represents 30 s of observation. The
activity zones, extracted from this video sequence using
all the methods, are shown in Fig. 13.
he original sequence.



Fig. 11. Activity zones resulting from: (A) MEI over reference frame; (B) MEI over consecutive difference (MMEI); (C) median over reference squared
difference (MedReF); (D) median over consecutive squared difference (MedCDif); (E) simple entropy; (F) the proposed approach. The whiter the pixels the
higher the activity.

Fig. 12. Some frames of the sequence of the fire.
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Fig. 13. Activity zones resulting from: (A) MEI over reference frame; (B) MEI over consecutive difference; (C) median over reference squared difference
(MedReF); (D) median over consecutive squared difference (MedCDif); (E) simple entropy; (F) the proposed approach. The whiter the pixels the higher
the activity.
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In this case, all the methods based on consecutive differ-
ences (Figs. 13B and D) fail due to the slow motion of the
smoke. The methods based on the difference with respect to
a reference frame (Figs. 13A and C) perform better, even if
a clear pattern is not identifiable. In general, all these meth-
ods are able to absorb the background noise. The entropy
of the sequence, shown in Fig. 13E, highlights also the
background noise, resulting in a overall high energy scene.
Using our approach, depicted in Fig. 13F, it is possible to
clearly identify the smoke zone, indicating that there is a
certain activity. Further, it is important to note that the fire
has been detected analyzing only 30 s of the scene. The
holes present in the image can derive from the lamp-posts
which are located ahead of the smoke, as can be noticed
by looking at Fig. 12. Comparing the two last images we
can also notice that they carry similar information: in both
cases the smoke area is clearly identified. This is obvious,
since the same guiding principle is used: in our case, it is
the entropy of the model of the signal, whereas in the sec-
ond it is the entropy of the signal itself. However, the image
resulting from our approach clearly separates activity from
inactivity (all the remaining part of the scene is dark), while
using the ‘‘simple entropy’’ approach the activity in the
mountains zone is larger than that of the sky, and this rep-
resents an erroneous interpretation.

Another interesting aspect has to be pointed out. In the
MEI and MedReF approaches, the reference frame has to
be carefully chosen: essentially, being the reference frame
fixed over time, the evolution of the light and the weather
(the background) is not modelled. Our method, as shown
in the following example, is able to deal with such kinds
of situations. We employed the video sequence presented
in Fig. 8, applying the different approaches: results are pre-
sented in Fig. 14.



Fig. 14. Activity zones resulting from: (A) MEI over reference frame; (B) MEI over consecutive difference (MMEI); (C) median over reference squared
difference (MedReF); (D) median over consecutive squared difference (MedCDif); (E) simple entropy; (F) the proposed approach. The whiter the pixels the
higher the activity.
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The change of illumination in the sequence produces
erroneous activity maps in the methods based on differ-
ences over a reference frame (Figs. 14A and C). As stated
before, all these methods work well in the situations in
which the background is highly static, as in the case of
well constrained indoor environments, or environments
considered over short periods of time. In situations in
which the chromatic aspect of the background is changing
over time, all these methods are not applicable. In the
methods based on consecutive differences (Figs. 14B and
D), the change of illumination is better absorbed: it is 5
frames long, therefore, each consecutive difference image
has smaller pixel (absolute) values than the one built
between the current frame and the reference one. Never-
theless, that quantity is bigger with respect to the values
of the consecutive differences due to the moving person
in the scene: the overall result is that the change of
illumination visually predominates on the moving object.
Looking at the Fig. 14E, we can notice that the ‘‘simple
entropy’’ method completely fails in that the illumination
change occurring in the middle of the sequence makes not
possible to recover any meaningful information. Actually,
one can notice that the resulting image does not provide
any expressive interpretation being quite uniform. On
the other side, our method is able to recover useful infor-
mation about the movement of the person in the hallway.
In particular, looking at Fig. 17F, we could infer three
correct information: (1) the top part of the scene is not
active, which is correct; (2) there is something moving
in the bottom, going through all the scene, and this is also
correct; (3) the right part of the scene is more active than
the left part: this is still correct, since the man starts walk-
ing (Fig. 8) in the middle part of the scene and come back
in from the right.



Fig. 15. Some frames from the outdoor sequence.
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4.3. Complete examples

In this section, we present three additional complete
applications of the proposed approach: given a video
sequence, we build the probabilistic representation, and
we extract both static and dynamic information. The first
testing sequence regards an outdoor environment where
two persons are closing and come back. A few frames of
the sequence are presented in Fig. 15.

After building the probabilistic approach, we extract
static and dynamic information.

Looking at the static part of the analysis (Fig. 16), one
could notice that the segmentation is clear, expressive,
and quite accurate: zones with similar gray level and simi-
lar chromatic behavior (the road, the sky, and the motor-
bikes) are represented as single regions. Other zones
characterized by a different chromatic behavior (the two
buildings and part of the pyramid) are oversegmented. It
is worthwhile to notice that this segmentation is obtained
by processing the whole sequence, without any need to
remove the moving objects, in that they are naturally
removed by the procedure used to compute the enhanced
stationary distance DES.
Fig. 16. Information extracted from the outdoor sequence using the
proposed approach: static information (spatio-temporal segmentation).
The comparative results related to the dynamic part
express the same considerations made for the examples rel-
ative to the Section 4.2 (see Fig. 17). In general, all the
noisy background situations have great impact over the
final energy image: the more noisy the background, the less
important the role of the foreground on the final map. In
general, the entropy-based method over relatively short
sequences (100–500 frames) is highly prone to over estimat-
ed energy errors. Moreover, when the foreground appears
briefly in the scene, the median-based methods (Figs. 17C
and D) tend to prune away the correspondent activity,
and the simple entropy method (Fig. 17E) strongly high-
lights the light noise activity, in this case due to the video
compression. Looking at the proposed approach
(Fig. 17F), one could notice that the image is quite infor-
mative: the part of the scene where people are walking is
clearly expressed, as well as the non-active part. Moreover,
it is interesting to notice that it is possible to precisely infer
also some further details, as the positions where the legs of
the people are standing more time, which represents a larg-
er level of detail. This detail is also represented by the MEI
and MMEI approaches (Figs. 17A and B, respectively),
although with less strength.

The second and the third sequences of this section
should be considered the most hard ones, in which our cur-
rent approach shows its limits, regarding in particular the
static analysis. These limits will draw the directions of
our research. The former sequence represents an outdoor
environment,3 in which a traffic situation over a square is
monitored via a fixed camera (Fig. 18). The sequence is
1710 frames long, acquired at 30 fps. The chromo-spatio-
temporal segmentation, in this case, is highly over-segment-
ed. This is due to the intrinsic irregularity with which the
static zone evolve, and to the difficulty to clearly distin-
guish what is the background and what the foreground
(some blocked cars could be detected as background).
One of the possible solutions is to restrict the static analysis
to the zones where the activity map gives low values.
3 Downloaded from ftp://ftp.ira.uka.de/pub/vid-text/image_sequences/
kwbB/sequence.mpg.



Fig. 17. Activity zones resulting from: (A) MEI over reference frame; (B) MEI over consecutive difference (MMEI); (C) median over reference squared
difference (MedReF); (D) median over consecutive squared difference (MedCDif); (E) simple entropy; (F) the proposed approach. The whiter the pixels the
higher the activity.

4 D o w n l oa d e d f r o m h t t p : / / h o me pa g e s . i n f . ed . a c . u k / r b f /
CAVIARDATA1.
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The results of the dynamic part are shown below
(Fig. 19).

As one can notice, the only useful results are the ones
relatives to the entropy-based approaches (E and F)
(MMEI is also good, but not so informative; actually, the
activity due to the people in the upper right part of the
scene and in the middle of the crossing street is not shown).
It is interesting to note the cylindric high energy zone
detected in the middle-right part of the scene. That part
represents a rotating billboard, detected as high energetic
foreground pattern. This represents a wrong estimation,
due to the low number of states with which the HMMs
have been trained. Actually, the behavior of the area is
5-modal, with the modes fixed over time. Intuitively, this
area should be interpreted as background, with low energy
in the activity map, and this situation could be recovered
using HMM with 5 number of states (Fig.20).
The last sequence, 8 min long acquired at 25 fps, repre-
sents an indoor environment of a mall4 (some frames are
depicted in Fig. 21). One of the purpose of this experiment
is to assess the performance of our method over different
sequence lengths. The test is divided in two stages: the first
in which an initial short part of the sequence is evaluated
(48 s long, 1/10 of the original one); in the second stage
the whole sequence is analyzed.

This is the most difficult indoor sequence analyzed, due
to strong noisy effects degrading the data quality, like
reflections over the floor and over the lateral windows. In
both processing cases, the outcome of the static analysis
results over-segmented, as expected. Since the results on

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1


Fig. 18. Some frames from the traffic sequence.

Fig. 19. Activity zones resulting from: (A) MEI over reference frame; (B) MEI over consecutive difference (MMEI); (C) median over reference squared
difference (MedReF); (D) median over consecutive squared difference (MedCDif); (E) simple entropy; (F) the proposed approach. The whiter the pixels the
higher the activity.
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Fig. 22. Information extracted from the whole outdoor sequence using the
proposed approach: static information.

Fig. 20. Traffic sequence: the detail of the billboard in Fig. 19, whose
pixels are trained with HMMs having 3 (A) or 5 states (B). It is possible to
evaluate the decreasing of activity detected in (B) due to the correct
estimation of the five modalities which characterize the billboard behavior.
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the short sequence are not significative, only the results
related to the longer sequence are shown in Fig. 22.

Looking at this figure, it is possible to reason about
what are the biggest areas whose chromatic behavior is
similar in time, so as to detect the most ‘‘stable’’ scene
areas. In particular, it is possible to detect stable zones in
proximity of the lateral columns, and in some parts of
the floor, while the area corresponding to the left wall, with
several glass windows, is in general over-segmented.

For what concerns the dynamic analysis, the techniques
based on differences between frames give poor results in
both tests, hence only the method based on the entropy
and the proposed approach are presented.

As shown in the previous results, the proposed approach
works better compared to the entropy method, individuat-
ing the zones in which the foreground activity is located,
disregarding the noise. In particular, in Fig. 23F1 is possi-
ble to clearly detect the left drift of energy, that models the
fact that the people enters frequently in the mall. In
Fig. 23E1 this aspect is not so clearly highlighted. More-
over, augmenting the sequence length, the effect of the
entropy takes strongly into account the noise due to the
reflection on the floor: this results in an activity map that
‘‘forgets’’ the amount of activity present in the bottom part
of the hallway. Conversely, our approach is able to repre-
sent all the foreground activity as shown in Fig. 23F2.

Summarizing, the experiments have assessed that the
proposed method, concerning the static information
extraction, provides a novel kind of analysis able to explain
Fig. 21. Some frames from
the chromatic evolution of the static part of the sequence,
individuating regions with similar temporal-chromatic pro-
file. The main drawback results in the generation of an over
segmentation, which occurs in noisy cases. For what con-
cerns the dynamic analysis of the foreground, the proposed
approach outperforms in general all the tested comparative
methods, showing a certain degree of robustness over all
the input (long/short sequences with low/high noise levels).

4.4. Possible applications

In this section, the possible uses of the information
extracted with the proposed approach are investigated. A
first example can be found in [22], where this information
has been used in order to initialize an integrated pixel-
and region-based approach to background modelling, pro-
posed in [23]. This background model uses information
derived from a spatial segmentation of the scene in order
to modulate the response of a standard pixel-level back-
ground modelling scheme [46], increasing the robustness
against local non uniform illumination changes. The
information extracted with our approach is used to initial-
ize this model: in particular, the initialization of the pixel
level part of the model straightforwardly derives from the
the traffic sequence.



Fig. 23. Activity zones resulting from: (E1) simple entropy and (F1) the proposed approach calculated over the 48 s sequence; (E2) simple entropy and
(F2) the proposed approach calculated over the entire 8 min sequence; the whiter the pixels the higher the activity.
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probabilistic modelling of the video sequence, while the ini-
tialization of the region level part is the spatio temporal
segmentation described in Section 3.2.

There are two other ways of employing the information
extracted from the proposed approach, which are currently
in progress. The first is to use the activity map to decide the
level of detail of a variable resolution background model-
ling scheme: the idea is that in those zones where no activ-
ities typically occur, a very accurate background analysis is
not necessary, and a coarse analysis could be sufficient. The
second application can be to use the activity maps to infer
the zones of appearance of the foreground with high prob-
ability, the so-called source detection problem [47]. The
idea is that it is not useful to accurately monitor the zones
of the scene where typically no foreground objects are
likely to occur.

One constraint of the described approach regards the
requirement of a fixed camera. In principle, this condition
can be relaxed by performing a pre-registration of the
image pixels using an estimate of dominant motion of the
scene so that temporal gray-level profiles can be reliably
evaluated. Further, such registration could not be critical
if small local areas are considered instead of single pixels
like in one of the experiments above.

5. Conclusions

In this paper, a new method for scene analysis from
video sequences has been proposed, using only very
low-level data, that is just pixel behavior. The proposed
approach models the sequence using a forest of Hidden
Markov models, each one devoted to modelling the tempo-
ral evolution of the gray level of each pixel. Given this rep-
resentation, two kinds of analysis have been developed: the
first one clusters the HMMs to obtain a spatio-temporal
segmentation of the background, and the second one
defines an entropy based measure computed on the station-
ary probability distribution of each HMM to infer the
activity zones of the scene. The proposed approach has sev-
eral key features with respect to the methods in the state of
the art: it extracts information from the lowest possible
level (the pixel level), it is unsupervised in nature, it uses
HMM at a very basic level, and it employs the same prin-
cipled probabilistic modelling to infer both static and
dynamic information. The results obtained from real
experiments have shown the effectiveness of the proposed
approach, also with respect to state of the art methods,
able to get a better insight of the scene and on the interpre-
tation of the activities occurring therein.
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