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Abstract In this paper, the problem of classifying the
quality of microarray data spots is addressed, using
concepts derived from the supervised learning theory.
The proposed method, after extracting spots from the
microarray image, computes several features, which take
into account shape, color and variability. The features
are classified using support vector machines, a recent
statistical classification technique that is being employed
widely. The proposed method does not make any
assumptions on the problem and does not require any a
priori information. The proposed system has been tested
in a real case, for several different parameters’ configu-
rations. Experimental results show the effectiveness of
the proposed approach, also in comparison with state-
of-the-art methods.

Keywords Microarray data - Quality classification -
Support vector machines - Pattern recognition

1 Introduction

The recent wide employment of microarray tools in
molecular biology and genetics have produced an
enormous amount of data, which has to be processed to
infer knowledge. Due to the dimension and complexity
of those data, automatic tools coming from computer
science and data analysis research areas have been suc-
cessfully employed. In the particular case of microarray,
the result of an experiment is an image, therefore, the
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extraction of information is performed through the
analysis of visual patterns present in the image itself. The
whole analysis is improved and made more reliable with
the introduction of automated and sophisticated tech-
niques coming from the image processing and pattern
recognition research area [1].

Most literature concerning the employment of com-
puter science methodologies to microarray data is re-
lated to two aspects: the detection of the spots
(segmentation spot/background, grid matching, noise
suppression [2]) and the analysis of data for classifica-
tion (data mining) [3, 4]. Nevertheless, there is another
interesting and crucial issue, typically disregarded in the
current literature: the determination of the quality of the
microarray experiment. It is essential to employ a
quality control process in microarray experiments since
each experiment, even if performed under optimal con-
ditions, could result in several spots whose intensity may
vary due to experimental oscillations. It is also crucial to
exclude spots whose quality is poor in the early stages of
a microarray study because data normalization methods
typically involve an estimation phase. Algorithms used
in estimation may get confused when number of aber-
rations is large. Furthermore, microarray data are fre-
quently used by researchers different from the original,
and distributing quality certified data could be more
efficient and useful than distributing images.

The literature about spot quality control is not vast,
only recently some papers appeared, which can be
subdivided into two main classes of approaches. In the
first class [5, 6, 7], the main goal is to assess the quality
of the spot by monitoring and imposing thresholds on
one or more features of the spot, supposed to be dis-
criminative and informative for the quality. For
example, in [5], a composite characteristic is introduced,
based on five qualitative features. Five thresholds are
set for these characteristics, mainly derived from a
priori knowledge, experience and heuristic consider-
ations. A similar approach has been proposed in [6],
employing four spot features. In this case also, there is
the need to choose some thresholds driving the quality
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assessment. Finally, in [7], the quality is linked to the
uniformity of the signal in the spot.

The second class of techniques to quality detection
employs a completely different approach. Instead of
using heuristic considerations for setting thresholds on
arbitrarily chosen characteristics, the idea is to employ
pattern recognition techniques to ‘““learn” how the ex-
perts in the microarray field separate good spots from
bad spots. This class represents a more interesting kind
of approach, since the classifier is derived directly from
the data, without the need to determine what the “rel-
evant” features are and how the “‘reasonable’ thresholds
have to be set. In this class, using concepts and theories
of supervised learning, the algorithms try to mimic and
replicate the human decision. The approaches proposed
in [8] and [9] belong to this class. The former detects the
position of the spot in the image, assessing also the
quality using a classifier learned on previously and
manually classified examples. The classifier uses as fea-
tures the intensity and the position. Even if it represents
the first tentative of using supervised techniques in this
context, this approach is quite poor, using very simple
tools. More interesting and well principled is the second
approach, employing carefully trained Bayesian Net-
works [10] to assess the quality of a spot. Several
experiments have been carried out in that work, using
both continuous and discrete features, showing that
Bayesian Networks are an effective tool to solve the
problem. Nevertheless, the proposed approach has a
great disadvantage: the structure of the Bayesian Net-
work, which describes the interrelationships occurring
between the components of the model, should be defined
and designed a priori, needing to exactly know such
relationships '. In other words, this method, similarly to
the approaches of the first class, needs a significative
part of heuristic-based knowledge in order to set up a
determinant part of the method.

In this paper, we investigated the use of an alterna-
tive system to classify the quality of a spot, which be-
longs to the second class of the above-described
taxonomy, implementing supervised learning techniques
to detect the quality of the spots. The proposed method
does not make any assumption on the problem, and
does not require any a priori knowledge. Even if
making assumptions on the problem could be useful in
some cases, we are persuaded that wrong a priori
specifications could drastically affect performances of
the method. For example, in the Bayesian Network
approach of [9], the assumption of an incorrect cau-
sality between two factors could lead to a bad model. In
our opinion, a reasonable compromise could be the use
of a “consensus” approach, assessing the quality of a
spot by using more than one single method, at least one
a priori knowledge driven and one data driven.

'The B-Course method used by the authors to infer the structure of
the Naive Bayesian Networks merely represents a feature selection
step.

In this paper, we investigated the classification
capability of a completely data-driven technique in spot
quality classification, namely the support vector ma-
chine (SVM) [11, 12]: this tool represents a quite recently
introduced supervised technique widely and successfully
employed in several areas. This technique has been also
used in the microarray data classification context [4],
even if its use for quality assessment has never been
investigated. Spot quality classification is an appropriate
problem to assess the capabilities of SVMs, especially
because they show some characteristics that are very
suitable for that context, as for example, their intrinsic
binary nature and their capability to deal with high-
dimensional space.

The SVMs are here customized to tackle the above-
mentioned problem, and have been experimentally
evaluated on the same data set of [9], so that an ana-
lytical comparison is possible. A thorough testing has
been carried out on the SVM, analyzing different
parameters’ configurations. Moreover, the effect of a
dimensionality reduction technique, such as principal
component analysis (PCA) [13], has been investigated.
The best result obtained in our experiments outperforms
the best result obtained in [9], showing the effectiveness
of our approach.

The rest of the paper is organized as follows. In
Sect. 2, a brief introduction to SVM is presented, and
the proposed approach is detailed in Sect. 3. Experi-
mental results and discussion are described in Sect. 4,
and in Sect. 5 conclusions are drawn and future
perspectives are envisaged.

2 Support vector machines

Support vector machines [12] are binary classifiers, exten-
sively employed in recent years in several applications,
such as face recognition and authentication [14, 15], object
classification [16], textile defects classification [17],
robotics [18] and others. They have several appealing
characteristics: possibility of fast training [19], accurate
classification and at the same time, high performance
of generalization, i.e., ability of learn the trend and
regularity of the data. Due to lack of space, the SVM
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Fig. 1 Geometric interpretation of SVMs. A hyperplane separates
black points from white points. The hyperplane is obtained as a
linear combination of the circled points, called support vectors



methodology is not formally described here, only the
intuition is given. Interested readers are referred to [12].

Briefly, SVMs are binary classifiers, able to separate
two classes through an optimal hyperplane. The optimal
hyperplane is the one maximizing the “margin”, defined
as the distance between the closest examples of different
classes (see Fig. 1).

To obtain a nonlinear decision surface, it is possible to
use kernel functions, in order to project data in a high-
dimensional space, where a hyperplane can more easily
separate them. Examples of kernel are polynomial functions

K(x,y) = ((x-y)+1)

and the Gaussian radial basis function

2
Xy

It is important to notice that, by the use of this “kernel
trick”, the non-linear decision surface is obtained in
roughly the same amount of time needed to build a
linear SVM.

Besides the specific parameter of the chosen kernel,
namely o for the Gaussian radial basis function (RBF)
and p for the polynomial, another crucial parameter
is the regularization constant C [11]. C controls the
tradeoff between complexity of the machine and the
number of nonseparable points. A larger C indicates
that we assign a high penalty to errors and thus it re-
duces the number of misclassifications: in this case, we
force the classifier to be well trained on the specific
training set. In contrast, a smaller C indicates that we
neglect some misclassifications to allow a wider margin,
typically resulting in a better generalization capability.

3 The proposed approach

Given a microarray experiment, several operations have
to be performed before the classification could actually
be carried out. In particular, the spot should be local-
ized, i.e., its pixels should be identified, the background
should be determined and features can be finally com-
puted. In literature, several approaches have been pro-
posed to solve this problem, mainly based on image
processing techniques (see for example [2] or [20]). After
features computation, the classification can be per-
formed. Our goal is to investigate the SVM capabilities
in classifying the quality of a microarray spot, hence, we
do not care about the previous phases, and we start
describing our system from the features.

3.1 Features extraction

One of the most critical phases in spot quality determi-
nation is the choice of appropriate features. Before
describing the approach used to extract them, let us
describe what the main problems are that occur in
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microarray experiments and how they could drive to bad
quality spots.

Spot intensity The spot intensity is considered one of
the most important features affecting the quality of spot.
If a signal is weak, it is impossible to discriminate the
actual signal from the background. The principal reason
of the weakness of a spot stem in the fact that many
genes are physiologically expressed at very low levels.
Moreover, there are some experimental factors which
may cause low signal intensities such as low amount of
DNA in the spot, incomplete hybridization, low sensi-
tivity of the scanner and others.

Spot size Microarray spots are expected to be of
roughly equal size, deviations from this fact could rep-
resent important cues indicating that something wrong
happened. Wrong size spots could be caused by impu-
rities in the printing solution, or by damaged or dirty
needles, or by high humidity during printing.

Spot morphology Spots are expected to be circular in
shape, so the morphology is important. In particular, the
not roundness and the bleeding >

Pixel intensity distribution A spot is expected to con-
tain approximately equal amounts of DNA all over its
area, so brightness should be uniform. Not uniform area
could derive from uneven distribution of the printed
DNA in the spot or nonspecific binding.

Starting from these considerations, the features used
to classify quality were [9]: the bleeding, the size of the
spot, the roundness of the spot, the alignment error,
the spot intensity, the intensity of the background and
the background noise. Each feature was measured sep-
arately using the Cy5- and the Cy3-channels, giving a
total of 14 features. The procedure is the following:
assuming the bounding box of the spot known, we fitted
a Gaussian shaped surface on the spot, considering the
color of each pixel as the height of the surface. The
fitting has been determined using a standard nonlinear
least squares procedure [21]. The fitted Gaussian could
be expressed as:

f(x,0) = A e"omStem) g

where m is the Gaussian mean, and S is the covariance
matrix, which depends on the two variances ¢;,6, and
on the rotation angle ¢. Six out of the seven features are
computed from the estimated Gaussian, more in detail:

— the spot intensity is 4;

the background intensity is B;

the alignment error is the distance between the center
of the Gaussian m and the center of the bounding box
— the roundness of the spot is the ratio ,/c;

The bleeding could be defined as the phenomenon in which a spot
spreads so much that it is mixed with its neighbors should be
carefully avoided.
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— the size of the spot is the product ¢ o5
— the background noise is the root mean square error of
the fitted Gaussian

Finally, the bleeding is computed by counting the
pixel of the spot falling out the estimated Gaussian spot.

The features have been considered as continuous val-
ues or have been discretized using the following method:
the spot bleeding feature was discretized into two values,
using as threshold a constant proportion of 65% of spot
pixels. The other features were discretized into three val-
ues, so that the 30% of the lowest feature values within the
image were labeled with 1, the 30% of the highest features
values with 3, and the remaining values with 2.

3.2 Spot quality classification

Once determined the features of the spot, its quality
could be assessed. The problem of quality detection is
cast into a binary classification problem, where the two
classes are “good” (class 1) or “bad” (class —1). The
membership of a spot to one class is decided by a su-
pervisedly learned machine, which observes several
examples of the problem, with the corresponding labels,
and tries to learn the general driving behavior. There-
fore, the system is developed in two phases: the training
step and the testing step. The former is devoted to the
construction of the SVM, given a training set of previ-
ously classified spots. This set is crucial, since a bad
choice of the training set could invalidate the whole
process. The training set should be representative of the
process under analysis, should be complete and cover all
classes. In our case, the training set is defined as a set of
spots whose quality has been judged by three experts in a
conservative manner, i.e., discarding those spots for
which all experts were not in perfect agreement. Once
the training set is given, we have to choose the SVM
parameters, as the kernel and the regularization constant
C; finally, the SVM is trained. We want to stress the fact
that, differently from the approaches previously pro-
posed in this context, this method is completely data-
driven, using only the training set in a supervised fashion
to set-up the classifier, modeling the relationships among
components and decide the goodness or the badness of
the microarray spots.

If the number of features is large, a common strategy
is to reduce the dimensionality of the resulting space
using linear reduction techniques, in order to reduce the
impact of the curse of dimensionality problem [22] to the
classification. The PCA [13] represents one example of
such technique. This method projects the data in the
dimension “explaining” the largest amount of variance
of the data, and is widely used in the pattern recognition
area. In this paper, we tested the effectiveness of such a
dimensionality reduction technique when a SVM is ap-
plied. In particular, we reduced the data space using
PCA, by applying a linear transformation of the data.
The transformation matrix is composed by the Eigen-

vectors corresponding to the dominant Eigenvalues, in
order to lose the minimum amount of variance in the
transformation. The number of FEigenvectors (which
determines the dimensionality of the resulting space) was
chosen in order to maintain an adequate amount of
variance in the data.

Once trained the SVM, the testing phase consists of
the computation of the features of a spot, possibly
reducing the dimensionality (by applying the prestored
transformation matrix), and, finally, the hyperplane
side, the spot belongs to, is determined. If it is in the
correct side (class 1), the spot is classified as good;
otherwise it is classified as bad.

The SVMs have been chosen for different reasons.
The first is that the SVMs are able to automatically
determine if a spot is good or not, without the need to
find an appropriate threshold owing to the supervised
nature of the technique. Moreover, this technique does
not require any a priori knowledge on the application
domain, making the proposed approach completely
“data driven”. Another reason is that the problem is
binary (spot good or bad), and SVMs are intrinsically
binary classifiers (the generalization of SVM to a mul-
ticlass system is not a completely solved problem). A
further motivation is that SVMs have a very high ability
in classifying data in high-dimensionality spaces, like in
this case since they are less affected by the curse of
dimensionality problem [11]. Moreover, SVM represents
one of the most powerful techniques in pattern recog-
nition and their customization to tackle the spot quality
classification problem has not been investigated yet. To
this aim, results show that microarray-related applica-
tions can be greatly improved by this preliminary data
analysis. Finally, the SVM methodology proposed in
this paper could be straightforwardly extended in order
to derive a quality measure, able to label each spot with
a confidence score. This could be easily done by con-
sidering the quality score as the distance of the point
representing the spot from the hyperplane derived from
the training procedure * This has been already done in
other contexts (see for example [23]), and will be inves-
tigated by the authors in the future.

4 Results and discussion

The proposed approach has been tested using data ob-
tained from [9], consisting of 155 spots obtained from
two different hybridizations (HBL-100 versus BT-474
and MCF7 versus HBL-100). The dataset contains 97
good spots, while the remaining were bad * Examples of
spots derived from the two hybridizations, after the
gridding procedure, are presented in Fig. 2.

3In classification, only the sign is used, not the magnitude.

“Data, together with experiments’ descriptions, data specifications,
figures, experts’ classifications and labels are available on the web
site http://sigwww.cs.tut.fi/ TICSP/SpotQuality/.
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Fig. 2 Spots from the two different hybridizations after the
gridding procedure: a HBL-100 versus BT-474 and b MCF7 versus
HBL-100

The subarrays used in the experiments were chosen so
that they do not contain any large-scale defects such as
scratches that had removed many spots or large areas of
strong background. Further, the subarrays were chosen
to be of average quality, i.e., they do not only contain
mostly good or bad spots. The features have been
computed using the strategy proposed in Sect. 3.1.

As in [9], the classification error was determined using
Leave One Out Cross Validation [22], a method that
separates the training set from the testing set, in order to
get a good estimate of the generalization error. We
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Table 1 Best results obtained by the proposed approach using
continuous features, varying kernel on PCA-reduced or not re-
duced space

Kernel C plo #sv Accuracy
Linear 86 - 36 90.97%
Polynomial 76 2 27 94.84%
Gaussian RBF 86 2 44 91.61%
Linear (PCA2) 61 - 102 74.84%
Polynomial (PCA2) 31 8 70 82.58%
Gaussian RBF(PCA2) 96 2 109 73.55%

performed several experiments, varying all the SVM
parameters, like the kernel and the C parameter. We
performed testing using both continuous and discrete
features. Moreover, we tested the accuracy with and
without the application of the PCA.

All the implementation was done in MATLAB; in
particular, we used a publicly available SVM toolbox
[24] and the PCA was employed using the MATLAB
statistic toolbox.

We tested three kernels, the linear, the polynomial
(with the degree ranging from 2 to 8), and the Gaussian
RBF (with o ranging from 2 to 8). For all these con-
figurations, the C parameter from 1 to 96 (step 5) is
varied, computing the accuracy error. Due to lack in
space, only the best results are reported for each kernel,
shown in Table 1. In that table “PCA2” means that the
accuracy was computed on the space reduced by PCA.
We used only two dimensions since with these two the
99% of the total variance of the data is explained. More
in detail, each component of the reduction matrix covers
a fraction of the total variance of the data. By com-
puting the cumulative variance, we could determine
which is the minimum number of components needed to
cover a given amount of variance. In our experiments,
with only two components, 99% of the variance is
covered. In the table also, the number of support vectors
(#sv) obtained after the training is shown, giving an idea
of the generalization capability of the SVM [25]. The
coefficient p indicates the parameter of the polynomial
kernel, and o stands for the parameter of the Gaussian
RBF kernel.

By looking at this table, one can notice that the best
result is obtained using the polynomial kernel, and with
a less number of #sv with respect to the other kernels
used. The accuracy is quite satisfactory, reaching almost
95%. Moreover, one can also observe that the use of
PCA worsens the classification accuracies: this confirms

Table 2 Best results obtained by the proposed approach using
discretized features, varying kernels and kernel parameters

Kernel C plc #sv Accuracy
Linear 6 - 25 96.13%
Polynomial 86 6 13 94.19%
Gaussian RBF 11 2 29 97.42%
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Table 3 Leave One Out accuracies of different classifiers on the
discrete features set

Method Accuracy
B-Course (subjective) 96.8%
Pair-wise NB (subjective) 95.5%
NB (subjective) 95.5%
NB (uniform) 94.8%
Decision Tree 91.6%
Neural Networks 90.3%
The proposed approach 97.4%

the fact that the SVMs are more effective in nonstruc-
tured spaces, as hypothesized in [14]. In other words, it
seems that the SVMs are more effective if the space is
coarse and not “preprocessed”’. Another consideration is
that these results confirm the fact that PCA is not always
the best choice and especially in not normally distributed
classification contexts, other techniques are often more
appropriate (one choice could be the Matching Pursuit
approach [26]).

The second testing session was performed using the
discretized data. As in the previous case, we tested the
three kernels, varying the C parameter from 1 to 96 (step
5) and computing the accuracy error. Also in this case,
only the best results are shown in Table 2, together with
the number of support vectors.

From this table, one can notice that the best result is
obtained using the kernel Gaussian RBF, which is sim-
ilar to results typically reported in literature in other
application domains [15, 17].

Finally, in order to compare our approach with the
state-of-the-art, in Table 3, we summarize our best
performance and those of some of the best methods
proposed in [9] on the same data set.

For all these classifiers, the Leave One Out Cross
Validation error has been computed. The first four en-
tries of the table are different variants of the Bayesian
Networks system introduced in [9], where the prior is
enclosed in brackets, while the fifth and sixth rows show
the results of the standard decision trees and standard
Neural Networks, respectively. The last row shows the
best result obtained with our approach, which is better
than those of all other methods, confirming the effec-
tiveness of the SVM method for this problem. We want
to emphasize the fact that we are talking about experi-
ments involving thousands of spots, so the advance with
respect to the state-of-the-art, which could be considered
quite poor (about 1%), assumes in this context a rele-
vant significance.

5 Conclusions

In this paper, the problem of classifying the quality of
microarray spot has been addressed with a complete
“data-driven” approach. The method is based on
SVMs, a binary classifier which determines a hyper-
plane able to separate good spots from bad ones. The

system has been thoroughly tested in a real experiment,
varying the SVM parameters. The use of PCA for
dimensionality reduction has also been investigated.
Experimental results on real data sets are comparable
or better than the state-of-the-art methods, therefore,
SVMs seem to be very suitable in spot quality classifi-
cation. A future issue could be the investigation of the
possible derivation of a confidence score from the
SVM, in order to give a quality measure to be propa-
gated in all the subsequent analyses.

6 Originality and contributions

The microarray technique has emerged in recent years as
an inspection tool, able to contemporarily analyze the
expression of several thousands of genes. Nevertheless,
several factors could affect a microarray experiment,
resulting in bad quality spots that could drastically re-
duce the significativeness of subsequent analysis, and
that should be removed from the data to be processed.
On the other side, the large amount of spots resulting
from each experiment makes the manual inspection very
time consuming. Thus, there is a real need of a reliable
system able to automatically detect and discard bad
quality spots. In this paper, the problem of classifying
the quality of microarray data spots is addressed
implementing supervised learning techniques. The key
tool of the proposed approach is represented by SVMs,
a classification approach introduced in the field of sta-
tistical pattern recognition in the 90’s. This technique,
which presents several appealing intrinsic properties,
seems to be really suitable for spot quality classification:
nevertheless, its use in this context has never been
investigated. Another key feature of the proposed sys-
tem is that, differently from other approaches proposed
in the-state-of-art methods, it does not make any
assumption on the problem and does not require any a
priori knowledge. The proposed approach has been
tested on real data, outperforming other state-of-the-art
methods on the same dataset.
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