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Odor classification using similarity-based representation
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Abstract

In this paper a new approach to odor classification is presented, founded on the similarity-based representation paradigm. The proposed
approach builds a new representation space, called similarity space, in which each object is not represented by features, but by its similarities
with respect to other objects in the data set. The classification step is performed using support vector machines, a technique introduced in the
statistical learning theory context. One of the major drawbacks of the similarity-based representation paradigm is the dimensionality of the
similarity space: a method for addressing this problem has been introduced in this paper, based on a notion of the unsupervised classification
(clustering) theory, namely the medoid concept. The approach outperforms standard features-based representations on tests regarding data
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athered from a chemical sensors array electronic nose.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The problem of recognition and classification of odors is
challenging multidisciplinary research area, whose impor-

ance has impressively grown in the last decade, for both
ethodological[1,2] and applicative reasons[3,4]. Initial ef-

orts in this field were performed by chemical researchers, in
rder to obtain adequate and reproducible sensors. In recent
ears, nevertheless, an increasing interest has been shown by
he pattern recognition community, and several state of the art
ethodologies developed in this context have been applied

o odor classification[5–7].
These approaches are mostly related to the classification

spects of the problem, that is, the problem of deciding the
ategory of an odor given a representation of it. Typically,
his representation strongly depends on the kind of sensors
sed (SAW, QCM, optical, polymeric, etc.), nevertheless re-
ulting in a vector of features. In this paper we propose
o employ an alternative representation scheme, namely the
imilarity-based representation[8–14]for odor classification.

∗ Tel.: +39 079 2017323; fax: +39 079 2019016.
E-mail address:bicego@uniss.it (M. Bicego).

This paradigm, which has recently been introduced, di
from typical pattern recognition approaches where ob
to be classified are represented by sets (vectors) of fea
In the similarity-based paradigm, objects are described u
pairwise (dis)similarities, i.e. distances from other objec
the data set. In this way, objects are not constrained to b
plicitly represented in a feature space, and all that is nece
is a way to compute (dis)similarities between pairs of obje
Then the goal is to learn a classifier only from these relati
data. The advantage is that, with this representation, th
gorithm could be generic and independent from the a
data representation, allowing the use of non-metric sim
ties (thereby violating the triangular inequality). Further,
representation makes standard feature-based PR tech
applicable to problems that do not have a natural embed
to a uniform feature space, i.e. problems for which it is
possible to straightforwardly extract features, but it is ea
to compute similarities, such as problems concerning im
[15] or sequences[14,16].

The literature on similarity-based classification is not
[8–14] (a brief review is given inSection 2.1). The genera
idea behind all these approaches is basically the same:
a set of pairwise dissimilarity values, a new representa
167-0987/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.snb.2005.01.034



226 M. Bicego / Sensors and Actuators B 110 (2005) 225–230

space can be built, in which each object is described by these
values.

In this paper we propose to build a similarity1 space, rep-
resenting each object by the vector of its similarities with re-
spect to a predetermined set of objects (this can be the whole
data set, in the simplest approach), called therepresentatives
set; the classification is then performed in this new represen-
tation space. In this paper, for the classification stage, we used
support vector machines (SVMs)[17,18], a statistical learn-
ing tool which has been recently applied in several different
contexts, with excellent results; SVM has been recently intro-
duced also in the context of odor detection and classification,
showing promising performances[19,20].

One problem to be addressed with the similarity-based
approach is the dimensionality of the resulting space, which,
in the basic approach, could be equal to the cardinality of the
training set. The problem, and the related state of the art, is
briefly summarized inSection 2.2. In this paper we proposed
a solution to this problem, using the concept of medoid, a
notion of the unsupervised classification (clustering) theory.

The proposed approach has been tested on a real case,
regarding data gathered from an e-nose[7] composed by an
array of carbon black-polymer detectors[21,22]. The system
has been thoroughly described in[7], and briefly summarized
in Section 4. Classification accuracies on standard features-
based representation and on similarity-based representation
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proximities, using an approach based on Vapnik’s struc-
tural risk minimization[23]. Jacobs and Weinshall[10] stud-
ied the use of distance-based classification with non met-
ric distance functions (i.e. that do not satisfy the triangle
inequality). Duin and Pekalska are very active researchers
in this area,2 having recently produced several papers[11–
13]. Motivation and basic features of similarity-based meth-
ods were first described in[11]: it was shown, by experi-
ments in two real applications, that a Bayesian classifier (the
RLNC—regularized linear normal density-based classifier)
in the dissimilarity space outperforms the nearest neighbor
rule. These aspects were more thoroughly investigated in
[13], where other classifiers in the dissimilarity space were
studied, namely on digit recognition and bioinformatics prob-
lems. Finally, in[12], a generalized kernel approach was in-
troduced, dealing with classification aspects of the dissimi-
larity kernels.

Recently, the similarity-based representation has been ap-
plied to other contexts: images[15], where the paradigm was
used for determining feedback in image retrieval by content,
and sequences[14,16], where the paradigm is combined with
hidden Markov models[24], in order to make both supervised
and unsupervised classification of sequential data.

2.2. The dimensionality issue
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ave been compared, showing that the proposed app
s effective in odor classification. Moreover, the method
educing the dimensionality of the similarity space has b
ested, showing that it is able to make more tractable the s
hile maintaining reasonable accuracies.
The rest of the paper is organized as follows: the simila

ased approach is proposed inSection 3, together with th
tate of the art. The e-nose apparatus used for gatherin
s briefly summarized inSection 4, together with the SVM
ased classification strategy. Experimental results and
ussions are presented inSection 5, and, finally, inSection 6
onclusions are drawn and future perspectives are envis

. State of the art

.1. The similarity-based representation

The literature on similarity-based classification is
ast. The approach seems to have been first introduc
ain and Zongker[8], who obtained a dissimilarity me
ure, based on deformable templates, for the handw
igit recognition problem. A multidimensional scaling
roach was then used to project this dissimilarity space
low-dimensional space, where a one-nearest-neighb
N) classifier was employed to classify new objects. In[9],
raepel et al. investigate the problem of learning a c
ifier based on data represented in terms of their pai

1 Note that we refer indifferently to similarity or dissimilarity.
The main problem of the similarity-based approach
articular relevance in practical applications, is the high
ensionality of the resulting similarity space. Two type

olutions have been proposed in order to address this
em. The first consists of building the similarity space us
ll available patterns, and subsequently applying some
ard dimensionality reduction technique. One example o
ind of approach is the multidimensional scaling met
sed in[8]. Another recent example is presented in[25],
here a reduction of the dimensionality of the dissim

ty space is obtained by a modified multidimensional s
ng scheme, able to reduce the computational burden
llow generalization to new data. The second type o

ution works by directly choosing a small set of repres
atives. An example of this type of solution can be fo
n [13], where random selection,most-dissimilarrule, and
hecondensed nearest neighbor(CNN) rule were employed
ther examples can also be found in[10], where a new typ
f CNN method is proposed, in[26], where a greedy a
roach is proposed, able to find prototypes encoding
rincipal components of the similarity space, or in[14],
here two approaches were proposed: a matching pursu
roach[27], used to determine the representative most “

ul” for classification, and a “one per class” approach,
o identify one representative for each class of the trai
et.

2 Seehttp://www.ph.tn.tudelft.nl/Research/neural/index.html.

http://www.ph.tn.tudelft.nl/Research/neural/index.html
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3. The similarity-based representation paradigm

The idea at the basis of the proposed approach is concep-
tually simple: to build a new representation space, using the
similarity values between objects, and construct a classifier
in that space. One of the justifications for this approach lies in
the fact that similarity is high for similar objects, i.e. belong-
ing to the same class, and low for objects of different classes,
making discrimination possible[12]. Therefore, we can in-
terpret the similarity measureD(X,Xi) between an objectX
and another “reference” objectXi as a “feature” of the object
X. This fact suggests the construction of a feature vector for
X by taking the similarities betweenX and a set of reference
objectsR = {Xk}, so thatX is characterized by apattern
(i.e. a set of features){D(X,Xk), Xk ∈ R}. Notice that the
fact that two objects, sayXi andXj, present similar degrees
of similarity to several other objects (e.g., they are both very
similar to some objects, and also both very dissimilar to some
other objects) enforces the hypothesis thatXi andXj belong
to the same class.

3.1. Formal definition

Formally, the proposed strategy is defined as follows.
Consider a classification problem withC classes; for each
c
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As summarized in previous section, the problem could be
addressed in two ways: the first is to create the whole similar-
ity space, subsequently reducing it using some dimensional-
ity reduction technique (as principal component analysis, for
example). The second is to directly choose the representative
objects. The approach proposed in this paper belongs to the
latter class, and proposes to choose one or more represen-
tative for each category, trying to determine the “most” de-
scriptive for each class. The concept of “most” descriptive is
derived from the PAM (partitioning around medoid) method
[28], an algorithm used for clustering data: the descriptor
of each cluster is the element nearest to the centroid of the
group, called medoid. Nevertheless, in our representation we
cannot directly compute the medoid, since we cannot com-
pute the centroid: we only have distances, not features. The
problem is solved by defining the medoid as the most “cen-
tral” pattern of the class, i.e. the object with the minimum
distance to all the other patterns. A similar concept could be
found in the DPAM (distance partition around medoid) algo-
rithm, proposed in[29] to perform HMM-based clustering of
sequences. Please note that this definition is in some sense
similar to the definition of the median, which is the central el-
ement in a list of ordered numbers. More formally, we define
the medoidmd0(k) of the classCk as:
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lassk ∈ {1, 2, . . . , C}, we have a set ofNk training objects

k = {X(k)
1 · · ·X(k)

Nk
}; thusN = ∑

k Nk is the total size of th

raining setT = ⋃C
k=1 Tk.

LetR = {P1, . . . ,PR} be a set ofR “reference” or “rep
esentative” objects; these objects may belong to the s
raining objects (R ⊆ T) or may be otherwise defined. No
etDR(X) be a function that returns the vector of similarit
etween an arbitrary sequenceX and all the sequences inR,

hat is

R(X) =



D(X,P1)

...

D(X,PR)


 ∈ RR (1)

e will designate the spaceRR in which the dissimilarity
ector exists as the “similarity space” and denote it asSR,
here the subscriptR is used to emphasize the depende
f the similarity space on the setR. Once this similarity spac

s defined, any standard classifier can, in principle, be u

.2. The dimensionality issue

Regarding the choice ofR, different approaches can
dopted; the basic one is to chooseR = T, the whole training
et. With this choice, the dimensionality ofSR = ST is equa
oN, the cardinality of the training setT. This is obviously a
roblem, because it makes the proposed method inappl

n most cases; nevertheless it is interesting to investiga
iscrimination ability of this space.
d0(k) = min
X∈Ck


Xj∈Ck

D(X,Xj) (2)

he representative set becomes:

= MD0 = {md0(0), md0(1), . . . , md0(C)} (3)

ith this set, one element for each class was chosen, red
he dimensionality of the similarity space from the numbe
attern to the number of classes. This method could be g
lized, introducing in theR set not only the medoid, but al

he “second” medoid (the second element most centra
he third. We could have different representative setsMDM ,
f increasing dimensionality, which include theM + 1 most
entral elements in the class. More formally, we could ind
ively define these sets as:

DM = MDM−1
⋃

{mdM(0), mdM(1), . . . , mdM(C)}

here

dM(k) = min
X∈CkX 
∈{md0(k),...,mdM−1(k)}


 ∑

Xj∈Ck

D(X,Xj)




e call this method the “medoid” approach, whereM repre-
ents the “order” of the medoid. Using as representativ
DM , we obtain a similarity space of dimensionality eq

o (M + 1)C, reducing the dimensionality from the num
f elements in the training set to a factor of the numbe
lasses.
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4. The e-nose

In this section the electronic nose is briefly introduced:
firstly, the sensors are described, and the instrumental appa-
ratus is briefly sketched. Secondly, the classification strategy
based on support vector machines is introduced.

4.1. Carbon black-polymer sensors based electronic
nose

The data used in this paper were obtained using the elec-
tronic nose described in[7], and here summarized. The sensor
device is a chemical sensors array, composed by eight differ-
ent types of sensors. Each sensor is a carbon black-polymer
detector[21,22], a particular kind of conducting polymer
sensors[30,31]. Briefly, the individual sensor elements were
constructed from films consisting of carbon black particles
dispersed into insulating organic polymers. The carbon black
endows electrical conductivity to the films (chemical diver-
sity among elements in the array was obtained using different
organic polymers for each sensor). Swelling of polymer dur-
ing solvent exposure increases film resistance; by this way
we could simply and efficiently monitor the presence of va-
por of interest. The lack of reproducibility of those sensors
imposes that the subsequent analysis should be carefully per-
formed, using flexible and sophisticated techniques. These
s ering
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The basic SVM scheme relies to binary classification and
in order to deal with multi-class problems a generalized
scheme should be introduced. In this paper we have em-
ployed the method calledSVM 1-vs-1 Max Win, proposed
in [32]. This scheme trains one SVM for each pair of classes.
Given an unknown pattern, all SVMs are evaluated, counting
for each class the number of wins. The pattern is assigned to
the class with the maximum number of wins.

The SVM parameters have been determined using a
cross-validation averaged holdout procedure[33]: the data
set has been randomly split in two mutually exclusive
parts, one used for training and one for testing. This
process has been repeated several times (50 repetitions), and
classification accuracies have been computed for different
parameter configurations. The parameters leading to the
best classification accuracies have been chosen. These
experiments, not reported here, have shown that the best
kernel is the radial basis function kernel in every case, result
confirmed by the literature[34–36], while the corresponding
optimalσ andC vary depending on the classification tasks.

5. Experimental results and discussion

This section describes experimental evaluation of the
proposed approach. The aim is to compare standard features-
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ensors were organized in an array, connected to a gath
C. A typical experiment consisted of a three step pro
eginning with a 5 minutes of air flow (in order to determi

he sensor baseline resistance), followed by a variable am
f time of odor exposure (up to 10 minutes) and by 10 m
tes of air flow, in order to recover the baseline resist
alue. For each experiment, the maximum relative varia
f each sensor resistance was used as feature, compo

eature vector of length 8. Moreover, in order to test the m
um time needed by the e-nose for resolving vapor task

ompute the maximum relative variation of the resistanc
er 1, 2,. . . seconds from the vapor exposure. These va
athered together, forms the so called “photo sets”, w

he name recalls the way they are obtained, that is mak
photo” of the sensors situation after 1, 2,. . . seconds. Fo
urther information please refer to[7].

.2. The classification strategy

Data coming from the e-nose have been classified u
upport vector machines, a classification tool derived
he statistical learning theory[17,23,18]. SVMs have bee
uccessfully employed in a wide range of applications in
ecent years, with successful performances. They have
hosen due to their high generalization capability, and to
ajor ability to deal with high dimensionality space, suc

hat resulting from the proposed approach. SVMs are
ully described here, and an exhaustive general introdu
an be found in[18], while its use in the e-nose context h
een investigated in[19,20].
a

ased representation with the proposed similarity-b
epresentation using SVM classification. The classifica
ccuracies have been determined using the averaged h
rocedure described in previous section, comparing

wo approaches on the same sets. The 2 approache
een tested on 2 sets, both composed by 102 elemen
classes, with 34 elements each, deriving from the s

xperiment. The e-nose has been exposed to 2-pro
with a concentration of 5.8 ppth3), acetone (22.62 ppth) a
thanol (5.7 ppth). The difference between the first and
econd set regards the time exposure: in the former
ensor answers were gathered after 10 minutes of exp
hile in the latter case they were gathered after 1 se
f exposure, making a “photo” of the sensor situations
alled the first set “Whole” set and the second “Photo”
learly the second task is more difficult than the first,
ore challenging: recognizing an odor after few second

xposure could have great practical implications.
The first analysis was performed on the “Whole” set:

he similarity-based approach, the distances have been
uted using the Euclidean metric. The representative sR
as equal to the whole training setT. Classification accura
ies are shown inTable 1: for each SVM, the used paramet
ave been also reported. “Standard” stands for the sta

eature based approach, while “ST” stands for the similarity
ased method, using as representative set the whole tr
etT. From the table it is evident that both approaches
uracy perform about perfectly on this set. Since there

3 Parts per thousand.
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Table 1
Classification accuracies on the “Whole” set

Representation space Parameters Classification accuracy (%)

σ C

Standard 0.02 100 99.02
ST 0.02 120 99.02

Table 2
Classification accuracies on the “Photo” set, using Euclidean metric

Representation space Parameters Classification accuracy (%)

σ C

Standard 0.02 200 78.76
ST 0.04 140 80.52

chance of improving results (it is difficult to capture differ-
ences between the two approaches if the accuracy is about
perfect), we concentrated our analysis on the “Photo” set,
which is more difficult and challenging, and for which a thor-
ough analysis has been carried out.

The first analysis was again using the Euclidean metric for
computing distance in the similarity-based approach, while
the representative setR was equal to the whole training set
T. Results are proposed inTable 2, following the same nota-
tions ofTable 1. Looking to this table we could notice that the
proposed approaches is more effective than the standard ap-
proach, resulting in an improvement of about 2%. We could
also notice that this classification task is harder, as expected,
since the classification accuracies are reduced.

The second analysis was about the metric used to compute
the similarity space: our definition does not rely to a partic-
ular metric, and could be used starting from any pairwise
similarity matrix. In particular, non metric similarity func-
tions could also be used, as for example probabilistic values
[14,16]. In this analysis, we repeated the previous experi-
ment, performed with the Euclidean metric, using the Man-
hattan metric, which, given two vectorsx = (x1, x2, . . . , xp)
andy = (y1, y2, . . . , yp), is defined as

d(x, y) =
p∑

|xi − yi|
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Table 4
Classification accuracies on the “Photo” set with the “medoid” approach,
using Euclidean metric

Representation space Parameters Classification accuracy (%)

σ C

ST 0.04 140 80.52
SMD0 0.02 180 74.18
SMD1 0.02 200 78.56
SMD2 0.02 200 79.22
SMD3 0.02 120 79.48
SMD4 0.02 140 79.80

Table 5
Classification accuracies on the “Photo” set with the “medoid” approach,
using Manhattan metric

Representation space Parameters Classification accuracy (%)

σ C

ST 0.10 140 81.76
SMD0 0.02 120 74.18
SMD1 0.04 200 78.04
SMD2 0.04 140 80.00
SMD3 0.04 200 80.85
SMD4 0.08 160 81.24

some experiments in order to test the “medoid” system
introduced inSection 3.2. Results are shown inTables 4
and 5, for Euclidean and Manhattan metrics, respectively.
The “medoid” approach was applied with an order increas-
ing from 0 to 4: following the notation introduced in the
paper, the corresponding similarity space are denoted as
SMD0,SMD1, . . . ,SMD4.

From these tables we could observe that the medoid system
represents a quite effective system for reducing the dimen-
sionality of the similarity space, except for the order equal to
0 or 1. In that last case the similarity space is a three (or six)-
dimensional space, which probably is a too reduced version of
the original space. Nevertheless, for orders greater than 2, the
proposed approach reaches a performance which is inferior
than the one in the original similarity space, but still outper-
forming standard feature-based representation approach.

As a last consideration, we could say that the similarity-
based representation seems to be suitable for odor classifi-
cation, improving the classification accuracy. To be really
employable, nevertheless, one has to employ classification
strategies which do not suffer too much from the curse of
dimensionality problem, as support vector machines, or to
develop techniques able to reduce the dimensionality of the
similarity space, as the medoid system proposed in this paper.
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esults are shown inTable 3: we could note that also in th
ase the similarity-representation could be quite usefu
mproving the classification accuracies.

One of the most severe problem of the similarity-ba
epresentation paradigm is the dimensionality of the re
ng similarity space, which, in the basic approach, is e
o the cardinality of the training set: this could result in a
ere curse of dimensionality problem[37]. We performed

able 3
lassification accuracies on the “Photo” set, using Manhattan metric

epresentation space Parameters Classification accura

σ C

tandard 0.02 200 80.00

T 0.10 140 81.76
. Conclusions

In this paper a new approach to odor classification
een presented, founded on the similarity-based repres

ion: the method proposes to build a new representation s
n which each object is represented by the vector of sim
ties to other objects in the data set. The classification
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is then performed using support vector machines. The pro-
posed approach has been tested on real data gathered from
an electronic nose, showing performances that outperform
standard approaches. A method for reducing the dimension-
ality of the similarity space has been also proposed in this
paper, able to reduce that dimensionality without affecting
the classification accuracies.
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