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Abstract

In this paper a new approach to odor classification is presented, founded on the similarity-based representation paradigm. The proposed
approach builds a new representation space, called similarity space, in which each object is not represented by features, but by its similarities
with respect to other objects in the data set. The classification step is performed using support vector machines, a technique introduced in the
statistical learning theory context. One of the major drawbacks of the similarity-based representation paradigm is the dimensionality of the
similarity space: a method for addressing this problem has been introduced in this paper, based on a notion of the unsupervised classification
(clustering) theory, namely the medoid concept. The approach outperforms standard features-based representations on tests regarding dat
gathered from a chemical sensors array electronic nose.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction This paradigm, which has recently been introduced, differs
from typical pattern recognition approaches where objects
The problem of recognition and classification of odors is to be classified are represented by sets (vectors) of features.
a challenging multidisciplinary research area, whose impor- In the similarity-based paradigm, objects are described using
tance has impressively grown in the last decade, for both pairwise (dis)similarities, i.e. distances from other objects in
methodologicall,2] and applicative reasoifi3,4]. Initial ef- the data set. In this way, objects are not constrained to be ex-
forts in this field were performed by chemical researchers, in plicitly represented in a feature space, and all that is necessary
order to obtain adequate and reproducible sensors. In recents a way to compute (dis)similarities between pairs of objects.
years, nevertheless, an increasing interest has been shown byhen the goal is to learn a classifier only from these relational
the pattern recognition community, and several state of the artdata. The advantage is that, with this representation, the al-
methodologies developed in this context have been appliedgorithm could be generic and independent from the actual
to odor classificatiof—7]. data representation, allowing the use of non-metric similari-
These approaches are mostly related to the classificationties (thereby violating the triangular inequality). Further, this
aspects of the problem, that is, the problem of deciding the representation makes standard feature-based PR techniques
category of an odor given a representation of it. Typically, applicable to problems that do not have a natural embedding
this representation strongly depends on the kind of sensorsto a uniform feature space, i.e. problems for which it is not
used (SAW, QCM, optical, polymeric, etc.), nevertheless re- possible to straightforwardly extract features, but it is easier
sulting in a vector of features. In this paper we propose to compute similarities, such as problems concerning images
to employ an alternative representation scheme, namely the/15] or sequencef4,16]
similarity-based representatif-14]for odor classification. The literature on similarity-based classification is not vast
[8—14] (a brief review is given irSection 2.]. The general
idea behind all these approaches is basically the same: given
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space can be built, in which each object is described by theseproximities, using an approach based on Vapnik's struc-
values. tural risk minimizatior{23]. Jacobs and Weinshll0] stud-

In this paper we propose to build a similafitypace, rep-  ied the use of distance-based classification with non met-
resenting each object by the vector of its similarities with re- ric distance functions (i.e. that do not satisfy the triangle
spect to a predetermined set of objects (this can be the wholenequality). Duin and Pekalska are very active researchers
data set, in the simplest approach), calledréipeesentatives  in this are& having recently produced several papfrs—
set the classification is then performed in this new represen- 13]. Motivation and basic features of similarity-based meth-
tation space. In this paper, for the classification stage, we usedds were first described if11]: it was shown, by experi-
support vector machines (SVME)7,18], a statistical learn-  ments in two real applications, that a Bayesian classifier (the
ing tool which has been recently applied in several different RLNC—regularized linear normal density-based classifier)
contexts, with excellent results; SVM has been recently intro- in the dissimilarity space outperforms the nearest neighbor
duced also in the context of odor detection and classification, rule. These aspects were more thoroughly investigated in
showing promising performancgk9,20] [13], where other classifiers in the dissimilarity space were

One problem to be addressed with the similarity-based studied, namely on digit recognition and bioinformatics prob-
approach is the dimensionality of the resulting space, which, lems. Finally, in[12], a generalized kernel approach was in-
in the basic approach, could be equal to the cardinality of the troduced, dealing with classification aspects of the dissimi-
training set. The problem, and the related state of the art, islarity kernels.
briefly summarized irsection 2.2In this paper we proposed Recently, the similarity-based representation has been ap-
a solution to this problem, using the concept of medoid, a plied to other contexts: imag§k5], where the paradigm was
notion of the unsupervised classification (clustering) theory. used for determining feedback in image retrieval by content,

The proposed approach has been tested on a real casgnd sequencg$4,16] where the paradigm is combined with
regarding data gathered from an e-npgecomposed by an  hidden Markov modelR4], in order to make both supervised
array of carbon black-polymer detect¢24,22] The system and unsupervised classification of sequential data.
has been thoroughly described T, and briefly summarized
in Section 4 Classification accuracies on standard features- . . L

. Lo - 2.2. The dimensionality issue
based representation and on similarity-based representation
have been compared, showing that the proposed approach
is effective in odor classification. Moreover, the method for . . . 2 . . .
particular relevance in practical applications, is the high di-

reducing the dimensionality of the similarity space has been mensionality of the resulting similarity space. Two types of

tested, showing thatitis able to make more tractable the space . ; X
. L : solutions have been proposed in order to address this prob-
while maintaining reasonable accuracies.

: . i ... lem. The first consists of building the similarity space using
The rest of the paperis organized as follows: the similarity- all available patterns. and subsequently anplving some stan-
based approach is proposedSaction 3 together with the b ' 5 y appying

. dard dimensionality reduction technique. One example of this
state of the art. The e-nose apparatus used for gathering datﬁind of approach is the multidimensional scaling method
is briefly summarized irsection 4 together with the SVM-

e : . used in[8]. Another recent example is presented[25],
based classification strategy. Experimental results and dis- . . : ) o
cussions are presentedSection 5and. finally, inSection 6 where a reduction of the dimensionality of the dissimilar-
; P ' Y . ity space is obtained by a modified multidimensional scal-
conclusions are drawn and future perspectives are envisaged, .
ing scheme, able to reduce the computational burden and
allow generalization to new data. The second type of so-
lution works by directly choosing a small set of represen-
tatives. An example of this type of solution can be found
in [13], where random selectiomost-dissimilarrule, and
thecondensed nearest neightd@NN) rule were employed.
Other examples can also be found10], where a new type

The literature on similarity-based classification is not : :
vast. The approach seems to have been first introduced byOf CNN method is proposed, i[26], where a greedy ap-

Jain and Zongkef8], who obtained a dissimilarity mea- proach is proposed, able to find prototypes encoding the

sure, based on deformable templates, for the handwrittenprmcuo‘leI components of the 5|m||ar|t>/ space, or [}, .
- . -~ : . where two approaches were proposed: a matching pursuit ap-
digit recognition problem. A multidimensional scaling ap-

proach was then used to project this dissimilarity space onto proach[27], used to determine the representative most *use-

. . . ful” for classification, and a “one per class” approach, able
a low-dimensional space, where a one-nearest-neighbor (1-

NN) classifier was employed to classify new objects/dh ;oetldentlfy one representative for each class of the training
Graepel et al. investigate the problem of learning a clas- =
sifier based on data represented in terms of their pairwise

The main problem of the similarity-based approach, of

2. State of the art

2.1. The similarity-based representation

1 Note that we refer indifferently to similarity or dissimilarity. 2 Seehttp://www.ph.tn.tudelft.nl/Research/neural/index.html
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3. The similarity-based representation paradigm As summarized in previous section, the problem could be
addressed in two ways: the first is to create the whole similar-

The idea at the basis of the proposed approach is concepity space, subsequently reducing it using some dimensional-
tually simple: to build a new representation space, using theity reduction technique (as principal component analysis, for
similarity values between objects, and construct a classifierexample). The second is to directly choose the representative
in that space. One of the justifications for this approach lies in objects. The approach proposed in this paper belongs to the
the fact that similarity is high for similar objects, i.e. belong- latter class, and proposes to choose one or more represen-
ing to the same class, and low for objects of different classes,tative for each category, trying to determine the “most” de-
making discrimination possiblg.2]. Therefore, we can in-  scriptive for each class. The concept of “most” descriptive is
terpret the similarity measuf@(X, X;) between an object derived from the PAM (partitioning around medoid) method
and another “reference” objeXt as a “feature” of the object  [28], an algorithm used for clustering data: the descriptor
X. This fact suggests the construction of a feature vector for of each cluster is the element nearest to the centroid of the
X by taking the similarities betweetand a set of reference  group, called medoid. Nevertheless, in our representation we
objectsR = {X;}, so thatX is characterized by pattern cannot directly compute the medoid, since we cannot com-
(i.e. a set of feature)D(X, Xx), Xr € R}. Notice that the pute the centroid: we only have distances, not features. The
fact that two objects, say; andX ;, present similar degrees  problem is solved by defining the medoid as the most “cen-
of similarity to several other objects (e.g., they are both very tral” pattern of the class, i.e. the object with the minimum
similar to some objects, and also both very dissimilar to some distance to all the other patterns. A similar concept could be
other objects) enforces the hypothesis taandX ; belong found in the DPAM (distance partition around medoid) algo-
to the same class. rithm, proposed ifi29] to perform HMM-based clustering of
sequences. Please note that this definition is in some sense
similar to the definition of the median, which is the central el-
ementin alist of ordered numbers. More formally, we define
the medoidnd®(k) of the classCy as:

3.1. Formal definition

Formally, the proposed strategy is defined as follows.
Consider a classification problem wit classes; for each

classk € {1, 2, ..., C}, we have a set aW; training objects mdo(k) = min Z D(X, X;) 2)
T = {X(lk) e X(NkZ}; thusN = >, Ny is the total size of the XeC X;€Cy
training set7 = |~ ; T- , ,
= The representative set becomes:
LetR = {P1, ..., Pg} be a set oR “reference” or “rep- P
resentative” objects; these objects may belong to the set ofR = MD® = {md®(0), md°(2), ..., md®(C)} ©)

training objectsR < 7) or may be otherwise defined. Now . ' .
let D (X) be a function that returns the vector of similarities With this set, one element for each class was chosen, reducing

between an arbitrary sequen¢eand all the sequencesTR), the dimensionality of the similarity space from the number of
that is pattern to the number of classes. This method could be gener-
alized, introducing in th& set not only the medoid, but also
D(X, P1) the “second” medoid (the second element most central), or
Dr(X) = : c RR ) the; third. We cquld h{:\ve djfferen} re'presentative Y,
: of increasing dimensionality, which include the+ 1 most
D(X, Pr) central elements in the class. More formally, we could induc-
tively define these sets as:
We will designate the spade® in which the dissimilarity
vector exists as the “similarity space” and denote itSas MDM — pypM-1 U{mdM(O)’ md(Q), ..., md™(C)}
where the subscripR is used to emphasize the dependence
of the similarity space on the sBt Once this similarity space

is defined, any standard classifier can, in principle, be used. where

3.2. The dimensionality issue md" (k) =

XECkXg{mdtl;(r){I)?..,mdel(k)} ngCk D(X’ X/)
Regarding the choice ok, different approaches can be

adopted; the basic one is to cho@&e= 7, the whole training We call this method the “medoid” approach, whiteepre-

set. With this choice, the dimensionality® = Sris equal sents the “order” of the medoid. Using as representative set

to N, the cardinality of the training st This is obviously a MDM  we obtain a similarity space of dimensionality equal

problem, because it makes the proposed method inapplicablgo (M + 1)C, reducing the dimensionality from the number

in most cases; nevertheless it is interesting to investigate theof elements in the training set to a factor of the number of

discrimination ability of this space. classes.
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4. The e-nose The basic SVM scheme relies to binary classification and
in order to deal with multi-class problems a generalized
In this section the electronic nose is briefly introduced: scheme should be introduced. In this paper we have em-
firstly, the sensors are described, and the instrumental appaployed the method calleBVM 1-vs-1 Max Winproposed
ratus is briefly sketched. Secondly, the classification strategyin [32]. This scheme trains one SVM for each pair of classes.

based on support vector machines is introduced. Given an unknown pattern, all SVMs are evaluated, counting
for each class the number of wins. The pattern is assigned to

4.1. Carbon black-polymer sensors based electronic the class with the maximum number of wins.

nose The SVM parameters have been determined using a

cross-validation averaged holdout proced[88]: the data

The data used in this paper were obtained using the elec-set has been randomly split in two mutually exclusive
tronic nose described [ii], and here summarized. The sensor parts, one used for training and one for testing. This
device is a chemical sensors array, composed by eight differ-process has been repeated several times (50 repetitions), and
ent types of sensors. Each sensor is a carbon black-polymeclassification accuracies have been computed for different
detector[21,22], a particular kind of conducting polymer parameter configurations. The parameters leading to the
sensor$30,31] Briefly, the individual sensor elements were best classification accuracies have been chosen. These
constructed from films consisting of carbon black particles experiments, not reported here, have shown that the best
dispersed into insulating organic polymers. The carbon black kernel is the radial basis function kernel in every case, result
endows electrical conductivity to the films (chemical diver- confirmed by the literaturg834—36] while the corresponding
sity among elements in the array was obtained using differentoptimalo andC vary depending on the classification tasks.
organic polymers for each sensor). Swelling of polymer dur-
ing solvent exposure increases film resistance; by this way
we could simply and efficiently monitor the presence of va- 5. Experimental results and discussion
por of interest. The lack of reproducibility of those sensors
imposes that the subsequent analysis should be carefully per- This section describes experimental evaluation of the
formed, using flexible and sophisticated techniques. Theseproposed approach. The aim is to compare standard features-
sensors were organized in an array, connected to a gatherindgpased representation with the proposed similarity-based
PC. A typical experiment consisted of a three step process,representation using SVM classification. The classification
beginning wih a 5 minutes of air flow (in order to determine accuracies have been determined using the averaged holdout
the sensor baseline resistance), followed by a variable amounprocedure described in previous section, comparing the
of time of odor exposure (up to 10 minutes) and by 10 min- two approaches on the same sets. The 2 approaches has
utes of air flow, in order to recover the baseline resistance been tested on 2 sets, both composed by 102 elements and
value. For each experiment, the maximum relative variation 3 classes, with 34 elements each, deriving from the same
of each sensor resistance was used as feature, composing @xperiment. The e-nose has been exposed to 2-propanol
feature vector of length 8. Moreover, in order to test the mini- (with a concentration of 5.8 ppth acetone (22.62 ppth) and
mum time needed by the e-nose for resolving vapor tasks, weethanol (5.7 ppth). The difference between the first and the
compute the maximum relative variation of the resistance af- second set regards the time exposure: in the former case
ter 1, 2,... seconds from the vapor exposure. These values, sensor answers were gathered after 10 minutes of exposure,
gathered together, forms the so called “photo sets”, wherewhile in the latter case they were gathered after 1 second
the name recalls the way they are obtained, that is making aof exposure, making a “photo” of the sensor situations. We
“photo” of the sensors situation after 1,.2, seconds. For  called the first set “Whole” set and the second “Photo” set.

further information please refer {@]. Clearly the second task is more difficult than the first, but
more challenging: recognizing an odor after few seconds of
4.2. The classification strategy exposure could have great practical implications.

The first analysis was performed on the “Whole” set: for

Data coming from the e-nose have been classified usingthe similarity-based approach, the distances have been com-
support vector machines, a classification tool derived from puted using the Euclidean metric. The representativékset
the statistical learning theoift7,23,18] SVMs have been  was equal to the whole training sgtClassification accura-
successfully employed in a wide range of applications in the cies are shown ifiable 1 for each SVM, the used parameters
recent years, with successful performances. They have beerave been also reported. “Standard” stands for the standard
chosen due to their high generalization capability, and to their feature based approach, whil&7” stands for the similarity-
major ability to deal with high dimensionality space, such as based method, using as representative set the whole training
that resulting from the proposed approach. SVMs are not set7. From the table it is evident that both approaches’ ac-
fully described here, and an exhaustive general introduction curacy perform about perfectly on this set. Since there is no
can be found if18], while its use in the e-nose context has
been investigated if19,20] 3 Parts per thousand.
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Table 1 Table 4
Classification accuracies on the “Whole” set Classification accuracies on the “Photo” set with the “medoid” approach,
Representation space Parameters Classification accuracy (%) using Euclidean metric
o C Representation space Parameters Classification accuracy (%)
Standard 002 100 99.02 d c
St 0.02 120 99.02 Sr 0.04 140 80.52
Sypo 0.02 180 74.18
Table 2 Sypt 0.02 200 78.56
Classification accuracies on the “Photo” set, using Euclidean metric Sup? 0.02 200 79.22
Representation space Parameters Classification accuracy (%) Sups 0.02 120 79.48
s c MD? 0.02 140 79.80
Standard 0.02 200 78.76
Table 5
St 0.04 140 80.52

Classification accuracies on the “Photo” set with the “medoid” approach,
using Manhattan metric

chance of improving results (it is difﬁ(FUIt to capture Qiﬁer- Representation space ~ Parameters Classification accuracy (%)
ences between the two approaches if the accuracy is about e

perfect), we concentrated our analysis on the “Photo” set, 7 c

which is more difficult and challenging, and for which a thor- 57 010 140 81.76

ough analysis has been carried out. gMDO 8'82 ;(2)8 ;g'cl)i
The first analysis was again using the Euclidean metric for S:Z: 004 140 80.00

computing distance in the similarity-based approach, while s,,,s 0.04 200 80.85

the representative s@& was equal to the whole training set  Sype 0.08 160 81.24

7. Results are proposed Trable 2 following the same nota-
tions of Table 1 Looking to this table we could notice thatthe gome experiments in order to test the “medoid” system
proposed approaches is more effective than the standard apmtroduced inSection 3.2 Results are shown iffables 4
proach, resulting in an improvement of about 2%. We could ang 5 for Euclidean and Manhattan metrics, respectively.
also notice that this classification task is harder, as expected;the “medoid” approach was applied with an order increas-
since the classification accuracies are reduced. ing from 0 to 4: following the notation introduced in the
The second analysis was about the metric used to COmMputéyaper, the corresponding similarity space are denoted as
the similarity space: our definition does not rely to a partic- Syip0s Sypts - -+ Saypia-
ular metric, and could be used starting from any pairwise " From these tables we could observe thatthe medoid system
similarity matrix. In particular, non metric similarity func- represents a quite effective system for reducing the dimen-
tions could also be used, as for example probabilistic valuessjonality of the similarity space, except for the order equal to
[14,16] In this analysis, we repeated the previous experi- g or 1. In that last case the similarity space is a three (or six)-
ment, performed with the Euclidean metric, using the Man- gimensional space, which probably is a too reduced version of

hattan metric, which, given two vectors= (x1, x2, ..., xp) the original space. Nevertheless, for orders greater than 2, the
andy = (v1, y2, - .- yp), is defined as proposed approach reaches a performance which is inferior
» than the one in the original similarity space, but still outper-
d — Ly forming standard feature-based representation approach.
x,y) = lxi — yil . . .
=1 As a last consideration, we could say that the similarity-

based representation seems to be suitable for odor classifi-

Results are shown ihable 3 we could note that also in this  cation, improving the classification accuracy. To be really
case the similarity-representation could be quite useful for employable, nevertheless, one has to employ classification
improving the classification accuracies. strategies which do not suffer too much from the curse of

One of the most severe problem of the similarity-based dimensionality problem, as support vector machines, or to
representation paradigm is the dimensionality of the result- develop techniques able to reduce the dimensionality of the
ing similarity space, which, in the basic approach, is equal similarity space, as the medoid system proposed in this paper.
to the cardinality of the training set: this could result in a se-
vere curse of dimensionality problef@7]. We performed

Table 3 6. Conclusions

Classification accuracies on the “Photo” set, using Manhattan metric

In this paper a new approach to odor classification has
been presented, founded on the similarity-based representa-
tion: the method proposes to build a new representation space,
Standard 0.02 200 80.00 in which each object is represented by the vector of similar-
St 010 140 81.76 ities to other objects in the data set. The classification step

Representation space Parameters Classification accuracy (%)

o C
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is then performed using support vector machines. The pro-[18] C.Burges, A tutorial on support vector machine for pattern recognition,
posed approach has been tested on real data gathered from Data Min. Know. Disc. 2 (1998) 121-167.

an electronic nose showing performances that Outperform [19] D. DeCoste, M. Burl, Support vector machines and kernel fisher dis-
tandard h’ A thod f ducina the di . criminants: A case study using electronic nose data, in: Proceedings
standard approaches. A method for reducing the dimension- of the Fourth Workshop on Mining Scientific Datasets (KDD-2001),

ality of the similarity space has been also proposed in this 2001.
paper, able to reduce that dimensionality without affecting [20] C. Distante, N. Ancona, P. Siciliano, Support vector machines for ol-
the classification accuracies. factory signals recognition, Sens. Actuators B 88 (1) (2003) 30-39.
[21] M. Lonergan, E. Severin, B. Doleman, S. Beaber, R. Grubbs, N. Lewis,
Array-based vapor sensing using chemically sensitive carbon black-
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